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Abstract

We introduce a novel approach to conformer search, the discovery of three-
dimensional structures for two-dimensional molecular formulas. We focus on
organic molecules using deep imitation learning and equivariant graph neural net-
works, with the prospect of using reinforcement learning algorithms for fine tuning.
To that end, we present our interactive environment that describes the molecule
in a rigid-rotor approximation and leverage a behavioral cloning torsion policy to
autoregressively determine the dihedral angles of the molecule ultimately yielding a
three-dimensional molecular structure. For our policy architecture, we leverage an
SE(3) equivariant neural network, which enables us to exploit inherent molecular
symmetries and to respect the topology of the angle distribution using a Mixture of
Projected Normals action distribution. Our preliminary results for a policy trained
on a behavioral cloning objective using the QM9 dataset for expert trajectories
shows that the policy can accurately predict torsion angles for various molecules.
We believe this to be a promising starting point for future work pertaining to
performing conformer search using deep reinforcement learning.

1 Introduction

Many molecular properties heavily depend on the 3D arrangement of the atoms in space. Thus,
predicting the structure of a given molecule is a fundamental question of computational chemistry.
In 3D molecular structures, the energy of a given state governs its likelihood: The lower the energy,
the more likely we are to find the molecule in that given arrangement, where different low energy
states of a given molecule are known as its conformers. Generally, the likelihood of a given state

with energy Es at temperature T is given by p(s) = e
− Es

kbT

Z . Yet, modelling p(s) is extremely
difficult, as it involves estimating the normalization constant Z. Recent works have shown substantial
progress in applying using machine learning by learning p(s) directly from data [Mansimov et al.,
2019, Ganea et al., 2021, Jing et al., 2022, Xu et al., 2021]. However, the primary drawback of
the aforementioned models’ reliance on data is, that it is uncertain how well they generalize to
out-of-distribution molecules. Ideally one would like to have a way to incorporate the energy Es

directly, which can be gained from ab-initio physical simulations to train a generalizeable conformer
search policy.
In order to simplify the problem of searching the entire chemical space of p(s), we consider only the
k lowest energy modes s∗0:k for organic molecules in three dimensional space. Many algorithms have
been developed for this simplified conformer search problem, including rdkit’s Experimental-Torsion
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Distance Geometry with Basic Knowledge [Landrum] and OpenBabel’s Confab systematic search
algorithm [O’Boyle et al., 2011]. The former works by defining a set of known constraints on atom
distances. It then samples many configurations that fulfil these constraints and picks the ones that
minimize energy. OpenBabel, on the other hand, decomposes the molecule into rigid fragments
with distances and angles taken from experimental data and assumes that these are fixed, which
is called the rigid-rotor approximation. The rigid-rotor approximation leaves only the rotatable
bonds as free parameters, over which OpenBabel searches using different strategies. One major
shortcoming of these aforedescribed traditional approaches is that they begin every optimization from
scratch, even if they have optimized a similar molecule before. In other words, they do not learn
from prior experience. Thus, we propose a framework that applies deep imitation and reinforcement
learning techniques. Our framework enables us to use energies directly as rewards along with the
ability to learn from prior experience using a neural network for more effective training and broader
generalization.

2 Method

2.1 Deep Reinforcement Learning & Deep Imitation Learning

Reinforcement Learning (RL) is a technique used to find a policy πθ(ai|si−1) parameterized by
the parameters θ that interacts with an environment such that the expected reward of state-action
trajectories τ = (s0, a0, s1, a1, ..., sN , aN ) sampled from the policy are maximized [Sutton and
Barto, 2018]. In other words, we want to find θ∗ that maximizes Eτ∼πθ

[R(τ)] where R(τ) assigns a
reward to a trajectory. Given the difficulty to train RL policies from scratch, we pretrain our policy
using Imitation Learning (IL). Specifically, we apply behavioural cloning (BC) [Osa et al., 2018]
where we create a dataset of state action pairs si, aii=1:N obtained from an expert policy, which
we approximate with ground truth conformers from the QM9 dataset [Ramakrishnan et al., 2014,
Ruddigkeit et al., 2012]. This allows us to frame policy training as supervised learning and minimize
the negative log-likelihood of the expert’s action, given the state those experts were in. Concretely,
we minimize − log

∑N
i πθ(ai|si) over a training dataset of expert trajectories and evaluate the policy

on a validation set of trajectories.

2.2 Molecular Design Environment

Interactive learning methods such as RL and IL require an environment to train and deploy the
policies. Our custom-built environment tracks the molecular state and updates the atomic coordinates
as the policy chooses its actions, adopting an OpenAI Gym [Brockman et al., 2016] interface. In
our formulation, we define the state as a ’query graph’ that describes the atoms and bonds of the
molecule, but not the 3D coordinates. The generation process then starts by randomly picking a
starting fragment from the query graph. Next, we randomly select a new fragment from the query
graph that is attached to the previously placed one defined as s0. subsequently, s0 serves as input
to an SE(3)-Transformer [Fuchs et al., 2020] backbone to predict the angle α0 by which we rotate
the fragment along the bond the two fragments are attached to each other and arrive at a new state
s1. The initial pose of the new fragment, before the agent picks the torsion angle, is given by a
’pre-torsion embedding’ as shown in Figure 1, which we predict using a second SE(3) Transformer.
This pre-torsion embedding is trained using expert data once, in the beginning of the framework, to
predict the correct pose up to the symmetry group of the fragment and remains fixed for the training
of the actual torsion policy. Moreover, we encode the entire 2D topological molecular graph (without
3D coordinates) using a vanilla graph convolution network Xu et al. [2018], as well as the 3D position
of the atoms that have already been placed and concatenate the output of this network to the input
features of s for the SE(3)-Transformer policy. Compared to prior approaches that choose all angles
simultaneously, such as Gogineni et al. [2020], we believe our autoregressive approach has a clearer
definition of the problem given that the required number of steps in the environment is known a priori.
This prevents the agent from "walking in cycles" created by revisiting states from prior actions.

2.3 Molecular Symmetries

Previous work has shown that it is beneficial for molecular property prediction tasks to incorporate
inductive biases about the rotation and translation symmetries of a molecule into the neural network
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Figure 1: Workflow of the agent: We start with a random fragment from the query graph. Since we
work in the rigid-rotor approximation, we know angles and bond distances, allowing us to place the
fragment in space. Next, we input this fragment to our neural network to predict a rotation equivariant
output vector. We use this to align the next fragment to this vector, yielding a rotation equivariant
embedding. The resulting molecular graph is then fed into another neural network to predict a rotation
invariant angle α, which indicates how much we need to rotate the fragment to get the final position.
We repeat this process until all fragments are placed.

architecture. We achieve this by constraining the architecture in such a way that all features are
rotation equivariant. A function f(x) : V → Y is equivariant with respect to some symmetry group
G, if for every transformation Tg : V → V and Sg : Y → Y with g ∈ G, the function f transforms
as f(Tgx) = Sgf(x). The SE(3)-Transformer architecture [Fuchs et al., 2020] we use represents data
in the spherical harmonics basis and can produce outputs of different "types" for each node and edge.
The "0-type" output is a rotation invariant scalar, while the "1-type" output is a rotation equivariant
three-dimensional vector. This allows us to construct a rotation invariant agent to make efficient use
of the available data during training. Specifically, we want a given molecule τ and its rotated and
translated version to have the same probability under the policy. Therefore, for a rotation matrix
R ∈ R3×3 and t ∈ R3, πθ(τ) = πθ(Rτ + t) should for every Rτ + t along a rotated or translated
trajectory. One way of achieving this would be to predict the dihedral angle between one of the
atoms in the new fragment and one of the atoms in the old fragment. However, the choice of the two
reference atoms is not always unique. Instead, we perform a two-step process: First, we equivariantly
embed the new fragment in some initial position in space as show in Figure 1. At this step, the agent
can predict the rotation up to the symmetry of the fragment given that there is no canonical way to
choose the attachment point of the new fragment. The rotation of the fragment by αinv is predicted
using a rotation invariant radial distribution.

2.4 Radial Distribution

Angles possess a circular topology since 0 and 2π represent the same angle. As such, we model
our action distribution as a circular distribution described by a circular probability density function.
Specifically, we apply the projected normal distribution [Hernandez-Stumpfhauser et al., 2016],
which is described by a mean and a variance parameter. To increase the model’s flexibility and allow
for multi-modality, we use a "mixture of projected normals" distribution with K mixture components.
We parameterize the direction of the distribution using K rotation equivariant output vectors from
the SE(3)-Transformer and project them onto the plane defined by the torsion axis (shown by the
red arrow in Figure 1). The length of the same vectors parameterizes the variance in the distribution.
While we desire our final distribution to be rotation invariant, the output from the current formulation
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is rotation equivariant. In order to make our output rotation invariant, we predict one more equivariant
output in the same way we described above and use it as a measuring reference for the angles. Since
two equivariant vectors maintain their relative angle under rotations, the resulting distribution is
rotation invariant. Figure 2 depicts some of those distributions on a set of torsion actions.

3 Preliminary Results

Figure 2: A random batch of action distributions on the validation set. Black Arrows: The mixture
component of Mixture of Projected Normal distribution. Light red arrow: Reference vector, with
respect to which angles are measured. Red arrow: The target, rotated in the coordinate system of
the reference vector. Overall, we can see that the model is converging to the desired with higher
confidence as expressed by the peaky distributions in the image.

Figure 3: Behavioural Cloning Training and Vali-
dation Curves for QM9-X

We conducted experiments with our behavioural
cloning formulation described in Section 2 for
a subset of molecules from QM9 that do not
include ring structures, which we name QM9-
X. The exclusion of ring structures was primar-
ily due to time constraints with the aim being
to include ring structures in future work. We
split QM-X into a training and a validation set
and subsequently decomposed the molecules
into states and actions that led to the ground
truth conformer, resulting in 269130 training
and 95360 validation samples. We first train the
neural network encompassing the "pre-torsion"
embedding and apply it for training of the tor-
sion policy using the QM9-X data as expert pol-
icy trajectories.

From Figure 3, we see that the BC training is
stable and with low variance. To get a better
insight into the model, in Figure 2 we visualize
the predictions of a random batch in the valida-
tion set. The black arrows represent the mixture
components, the light red arrow is the reference

vector, and the dark red vector is the target angle, rotated into the coordinate system of the reference
vector. We see that most predictions successfully put most of the probability mass around the target
vector. The third plot in the top row represents a linear fragment, where no dihedral angle can be
defined and can therefore be ignored. The leftmost plot in the top row corresponds to a tetrahedral
fragment with three hydrogen atoms, which has equal probability in all three directions separated by
120 degrees correctly determined by the policy. We also some ambiguous cases where the model can-
not distinguish between two directions that are not entirely symmetric. We aim to resolve those cases,
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and to further improve performance of the policy, with subsequent fine-tuning using energy-based
rewards in a reinforcement setting. Overall, the imitation learning results appear very encouraging
as a starting point for subsequent experiments centering on deep reinforcement learning for further
improvements.
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