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Abstract

Structure solution of nanostructured materials that have limited long-range order1

remains a bottleneck in materials development. We present a deep learning algo-2

rithm, DeepStruc, that can solve a simple nanoparticle structure directly from a3
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Pair Distribution Function (PDF) obtained from total scattering data by using a4

conditional variational autoencoder. We first apply DeepStruc to PDFs from seven5

different structure types of monometallic nanoparticles, and show that structures6

can be solved from both simulated and experimental PDFs, including PDFs from7

nanoparticles that are not present in the training distribution. We also apply Deep-8

Struc to a system of hcp, fcc and stacking faulted nanoparticles, where DeepStruc9

recognizes stacking faulted nanoparticles as an interpolation between hcp and fcc10

nanoparticles and is able to solve stacking faulted structures from PDFs. Our11

findings suggests that DeepStruc is a step towards a general approach for structure12

solution of nanomaterials.13

1 Introduction14

Crystallographic methods, such as single crystal and powder diffraction, have been foundational in15

the development of functional materials over the past century. They yield atomic-scale structural16

models for crystalline materials and allow establishing the links between material structure and17

properties that are at the heart of materials development.[1,2] However, other approaches for structure18

determination are needed for nanostructured materials that have limited long-range order, and total19

scattering methods such as atomic pair distribution function (PDF) analysis have become increasingly20

important tools.[3-7] Currently, PDF analysis is mainly done by fitting a known starting model to21

an experimental PDF, a process known as structure refinement. Recent developments in automated22

modelling[8-10] have made it possible to extend the searched structural space, but identifying a23

model or solving a structure de novo from a PDF is still an enormous challenge. So far, only highly24

symmetrical nanostructures such as the C60 buckyball have been solved ab initio from a PDF.[11-15]25

Determining the structure of less symmetrical nanostructures is limited by the lost information caused26

by PDF peak overlap, which challenges the use of PDF for structure solution of more complicated27

nanomaterials.28

An approach to handle the challenges due to the information barrier in PDFs is to employ supervised29

machine learning (ML) methods that can learn from well-known PDF-structure pairs. While deter-30

mining a unique structure from a PDF is not always a solvable problem, as several different structures31

may give rise to identical PDFs, ML methods can still learn to capture the relationship between PDF32

and structure and thereby push the boundaries of nanostructure solution from PDF. When there is not33

enough information in the PDF to provide a unique structure solution, ML methods may provide a34

distribution of starting models which can aid in further structure analysis. In this work, we use deep35

generative models (DGMs). DGMs are a class of ML models that can estimate the underlying data36

distribution from a reasonably small set of training examples.[16] A well-known use case of DGMs37

is in the generation of synthetic ‘deep-fake’ images[17,18] based on large datasets of real images. We38

here train our DGM to identify new structure models by training on known chemical structures. The39

DGM learns the relation between PDF and atomic structure, which enables it to solve a structure,40

based on a PDF it has not seen before and its learned chemical knowledge.41

We apply our DGM, which we refer to as ‘DeepStruc’, for structural analysis of a model system of42

monometallic nanoparticles (MMNPs) with seven different structure types (Fig. 1a) and demonstrate43

the method for both simulated and experimental PDFs. DeepStruc is generative, which means that it44

can be used to construct structures that are not in the training set, i.e., solve a structure from a PDF.45

We demonstrate this capability on a dataset of face-centered cubic (fcc), hexagonal closed packed46

(hcp) and stacking faulted structures, where DeepStruc can recognize the stacking faulted structures47

as an interpolation between fcc and hcp and construct new structural models based on a PDF.48

2 Results49

2.1 Training DeepStruc to determine the structure of MMNPs from PDF data50

DeepStruc, illustrated in Fig. 1a and discussed below, is a graph-based conditional variational autoen-51

coder (graph CVAE). Autoencoders are a class of deep learning (DL) methods where high-dimensional52

inputs, such as chemical structures,[19,20] are reduced in dimensionality. The transformation into 253

or 3 dimensional vectors is achieved using an information bottleneck by an encoder neural network54

(NN),[19,21,22] and the resulting lower-dimensional, compressed feature space is known as the latent55
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space. A decoder NN can reconstruct the input from these low-dimensional representations. When56

the latent space is regularized (smoothed) using normal distributions instead of discrete points we57

obtain a variational autoencoder (VAE). It has previously been demonstrated that VAEs does a better58

job interpolating in the latent space compared to deterministic AEs.[19] The VAE can be made to be59

dependent (conditioned) on additional information by the prior NN resulting in a CVAE.[22]60

We here use MMNP structures (Fig. 1b) as input, and condition them on their simulated PDFs (Fig.61

1c). The MMNP structures span seven different structure types computed using a variety of metals62

to emulate the variability in bond lengths in real metallic nanoparticle samples. The structure types63

are simple cubic (sc), body-centered cubic (bcc), face-centered cubic (fcc), hexagonal closed packed64

(hcp), decahedral, icosahedral, and octahedral, and all structure types have been constructed in sizes65

from 5 to 200 atoms. We used 3743 MMNP structures, which were randomly split into training-66

(60 %), validation- (20 %) and testing-sets (20 %). Note that the validation and test sets are derived67

from the same underlying data distribution as the training set, and serve as intermediaries to the68

actual test set which is based on the experimental PDF data. A histogram of the distribution of69

the seven structure types are provided in section A in the Supplementary Information. During the70

training process (blue + green region Fig. 1a), DeepStruc learns to map the conditioning PDFs to71

their structures in the latent space. After the training process is complete, DeepStruc can be used on72

data that have not been part of the training set, which is referred to as ‘inference’. Further details73

about the DeepStruc network can be found in section B in the Supplementary Information.74

2.2 Mapping of structures in a latent space75

We first evaluate DeepStruc’s ability to map the MMNP structures in a low-dimensional latent space76

by investigating structural trends and clustering. Fig. 2 shows a visualization of the two-dimensional77

latent space with selected MMNP reconstructions indicated. The colour of the points indicates the78

structure type, and the relative point size indicates the size of the MMNP cluster. We observe that79

DeepStruc learns to map the chemical structures in the latent space by size and symmetry. It maps the80

cubic structure types (sc, bcc, and fcc) together, and it learns that the octahedral MMNPs are closely81

related to the fcc structure type. Interestingly, DeepStruc also allocates the decahedral structures to82

be in between the fcc and hcp structures. This can be rationalized by considering that decahedral83

structures are constructed from five tetrahedrally shaped fcc crystals which are separated by {111}84

twin boundaries that resemble stacking faults.[9,23,24] The twin boundaries will resemble stacking85

faulted regions of fcc justifying that they exist in the latent space between fcc and hcp.86

2.3 DeepStruc for structure determination from PDF87

We now move on to identify structures directly from a PDF. The results of using DeepStruc on seven88

simulated PDFs of MMNPs not used in the training process are illustrated in Fig 3. Here, we show89

the structure that the input PDF was calculated from (left), the reconstructed structure (right), and90

its agreement with the input PDF after structure refinement (middle, discussed below). In all seven91

cases, the structures are correctly reconstructed from the PDF input. Before structure refinement, the92

mean absolute error (MAE) of the atom positions is 0.128 ± 0.073 Å as described in section C in the93

Supplementary Information. However, the MAE is artificially high due to a common aberration by94

DeepStruc, where it predicts the right geometric atomic arrangement, but isotropically contracted95

or expanded compared to the original structure. We do not yet understand why DeepStruc has this96

aberration, but it is easily solvable by refining an expansion/contraction variable as a post processing97

step to DeepStruc. After refining the structure to the PDF[25] by fitting a contraction/expansion98

factor, a scale factor and an isotropic atomic displacement parameter (ADP), as described in section99

C in the Supplementary Information, the MAE of the atom positions is reduced to 0.093 ± 0.058100

Å. The inference is thus robust against moderate changes in lattice parameter between a provided101

PDF and the structures that DeepStruc were trained on. The reconstructed structures exhibit some102

artificial positional atomic disorder that broadens the PDF peaks. The fitted ADP values (section C in103

the Supplementary Information) are thus lower than the ADP values of the conditioning PDFs.104

Having established that DeepStruc works for structures highly resembling those in the training set, we105

now consider more challenging cases and explore the capabilities of DeepStruc on an actual test set106

which is far from the training distribution. As described above, the largest structures in the training107

set contained only 200 atoms.108
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Figure 1: Training DeepStruc to determine the structure of MMNPs from PDFs. a) DeepStruc
predicts the xyz-coordinates of the MMNP structure with conditional input provided in the form
of a PDF. The encoder uses the structure and its PDF as input while the prior only takes the PDF
as input. To obtain the structural output a latent space embedding is given as input to the decoder
which produces the corresponding MMNP xyz-coordinates. During training of DeepStruc both the
blue and green regions are used, while only the green region is used for structure prediction during
the inference process. b) Examples of the seven different structure types which are used as input to
DeepStruc together with their c) simulated PDFs used as conditioning in DeepStruc. Each structure
type has been included in the training set with varying sizes of 5 to 200 atoms and with varying lattice
constants. The 3743 structures were split into training- (60 %), validation- (20 %), and testing sets
(20 %).
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Figure 2: The two-dimensional latent space with structure reconstructions. The points in the latent
space correspond to a structure and its simulated PDF. Data points from the test set are shown in solid
colour and outlined. The points from the training and validation sets are shown as semi-transparent.
The size of the points relates to the size of the embedded MMNP, and the orange background indicates
the general size increase throughout the latent space. The colour of each point resemblances its
structure type, fcc (light blue), octahedral (dark grey), decahedral (orange), bcc (green), icosahedral
(dark blue), hcp (pink), and sc (red). Note that the structures shown here are predicted by DeepStruc
during inference on PDFs from the test set.

We now evaluate it on a test set of simulated MMNPs with 5 to 1000 atoms, i.e., containing much109

larger particles. The latent space obtained from this new test set is plotted using diamond markers in110

Fig. 4, where the latent space from the training process is shown with semi-transparent markers. We111

observe that the trends in the training area are comparable for the training set and the test set of larger112

MMNPs. Notably, the trends of both the size and the structure types continue beyond the training area113

to structures containing about 400 atoms. Beyond 400 atoms, all structure types collapse onto a line,114

however, DeepStruc still estimates the size of the structure. Of course, DeepStruc could be retrained115

on a larger training set if reconstructions are desired on clusters larger than 200 atoms. However, this116

experiment shows that DeepStruc can extrapolate significantly in the latent space. It can thereby give117

useful information about PDFs from structures not represented in the training set and is generative in118

a meaningful way. This can be compared to, for example, a tree-based ML-classifier, which is limited119

to a predefined structural database and cannot extrapolate. The capability of DeepStruc to extrapolate120

arises from each structure in the latent space being predicted as a normal distribution instead of a121

discrete point.122

In practice, DeepStruc must be able to yield valid reconstructed structures from experimental data123

that contain noise and other aberrations. We therefore use DeepStruc to infer structures from124
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Figure 3: Structure determination from PDFs. Simulated PDFs (grey) from the original structures of
the seven different structure types (left) are used during inference for structure prediction (right). The
middle column shows the fitted PDFs of the predicted structures to the simulated PDFs of the original
structures. Only the scale-factor, contraction/expansion-factor, and ADP are refined, see section B in
the Supplementary Information.
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Figure 4: DeepStruc applied on PDFs of structures up to 1000 atoms. Each point is coloured after
its structure type, i.e. fcc (light blue), octahedral (dark grey), decahedral (orange), bcc (green),
icosahedral (dark blue), hcp (pink), and sc (red). Each point in the latent space corresponds to a
structure based on its simulated PDF. Test PDFs from structures up to 1000 atoms are plotted as
diamond markers on top of the training and validation data which are made semi-transparent. Note
that the training set latent space is identical to that plotted in Fig. 2. DeepStruc has only been trained
on structures up to 200 atoms. Three experimental PDFs (shown in section C in the Supplementary
Information) obtained from differently sized fcc nanocrystals estimated to contain 203 (cross marker
1), 371 (cross marker 2), and 1368 (cross marker 3) atoms are illustrated as purple cross markers in
the latent space.

previously published experimental PDFs from MMNPs. Fig. 5a shows the latent space with the125

predicted location of structures from three experimental PDFs. Here, the location in the latent space126

is represented as distributions rather than as discrete points, and multiple structures are sampled from127

each distribution and compared to the experimental PDF to select the best candidate. The mean of128

the experimental PDF distributions is represented as a black diamond with three ellipsoids indicating129

different confidence intervals with σ: 3, 5 and 7, where σ is the standard deviation of the normal130

distribution.131

The first experimental dataset that we evaluate was published by Jensen et al.,[26] who identified132

a decahedral structure as the core motif of Au144(p-MBA)60 nanoparticles. DeepStruc locates the133

Au144(p-MBA)60 PDF (Fig. 5b) in a decahedral region (orange distributions in Fig. 5a) in the latent134

space. Given the generative capabilities of DeepStruc, in theory, we can sample an unlimited number135

of structures for a given PDF. As described in section D of the Supplementary Information, we here136

sampled up to 1000 structures from the three normal distributions (σ: 3, 5, and 7), and compared their137

fit to the experimental PDF. Fig. 5b shows the fit of the best structural prediction, which was among138

the structures sampled from the σ: 3 distributions. DeepStruc predicts a decahedral structure, which139

agrees well with the literature.[26] Other structures sampled from the three distributions are shown140

in Section E of the Supplementary Information, where we also compare the DeepStruc analysis to141

baseline methods. We first consider a brute-force structure-mining method inspired by Banerjee et142

al.,[27], but also compare the DeepStruc results to two simpler ML-algorithms, namely a tree-based143

ML classifier and a regular CVAE without a graph-based input.144

The second dataset that we evaluate, published by Quinson et al.,[28] are from 1.8 nm Pt nanoparticles145

with the fcc structure (described further in Section F in the Supplementary Information). This size146

corresponds to ca. 203 atoms, i.e. the number of atoms in the particle goes slightly beyond the fcc147

structures in the training set that contain only 165 atoms.[28] The location of the predicted mean is148

again shown as a black diamond in Fig. 5a, enclosed by three blue ellipsoids illustrating different149

magnitudes of standard deviation. The mean of the predicted structure is placed near the largest sc150
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structures. If DeepStruc only favoured symmetry it would be placed directly on the fcc structures.151

Interestingly, DeepStruc does not purely favour size either, as it does not position the PDF near the152

largest structures which are hcp structures of 200 atoms. Instead, we observe that DeepStruc takes153

both symmetry and size into account by placing the mean predicted structure adjacent to the largest154

sc structures containing 185 atoms. To identify the structure from the experimental PDF, we again155

sample 1000 structures from the σ: 3, 5 and 7 distributions. When fitting these sampled structures to156

the dataset, we obtain the best fit from an fcc structure of 146 atoms that is visualized in Fig. 5c and157

which agrees with the baseline models (section E in the Supplementary Information). DeepStruc thus158

identifies an fcc structure even though the size of the MMNP is outside the training set distribution.159

We also attempted to input PDFs from even larger fcc nanoparticles, estimated to have diameters of160

2.2 and 3.4 nm, corresponding to 371 and 1368 atoms, respectively (section F in the Supplementary161

Information).[28] Their positions in the latent space are shown in Fig. 4 along with the 1.8 nm fcc162

nanoparticles using cross markers labelled 1, 2, and 3 for increasing size. We observe that they follow163

the trend of the simulated fcc structures discussed above: while it is possible to estimate both size and164

symmetry for the 2.2 nm particles through extrapolation, DeepStruc can only estimate size for the 3.4165

nm particle. We note that the size can be read from a PDF directly without any modelling. However,166

the ability of DeepStruc to predict structures on experimental data beyond those in the training set is167

promising for future structure solution from PDF.168

While DeepStruc only has been trained on simple MMNPs, we finally evaluate it on a PDF from169

Au144(PET)60 nanoparticles, consisting of an icosahedral core of 54 atoms surrounded by a rhombi-170

cosidodecahedron shell of 60 atoms (Fig. 5d and e).[26,29] We show the predicted mean position of171

the structure with a black diamond enclosed by pink ellipsoids. DeepStruc positions the PDF in the172

hcp region of the latent space, and when sampling 1000 structures from the distribution with σ: 7,173

the best fitting structures is an hcp structure with 40 atoms for the Au144(PET)60 nanoparticle (Fig.174

5d). Similar structures are found when sampling from the σ: 3 and σ: 5 distributions. However, the175

PDF fit reveals that the reconstructed structure does not capture all peaks in the experimental PDF.176

When considering further the latent space, icosahedral structures are strongly underrepresented in our177

dataset (section A in the Supplementary Information) which results in an inconsistency when placing178

icosahedral structures in the latent space. DeepStruc is thus challenged when solving the icosahedral179

core structure of the nanoparticle. However, we observe that one of the test icosahedral structures is180

placed near the experimental PDF in latent space within the σ: 5 distribution. Therefore, we again181

try to sample 1000 structures by moving the mean of the σ: 3 distribution to the nearest cluster182

of icosahedral structures in the latent space, which are located right outside the σ: 7 distribution.183

The best fitting structure (Fig. 5e) captures all main peaks of the experimental PDF. Strategies184

for sampling of underrepresented structures is discussed further in section D in the Supplementary185

Information.186

2.4 Structure determination from PDF: fcc, hcp, and stacking faulted nanoparticles187

To obtain a deeper understanding of the latent space’s behaviour, we investigate a dataset only188

containing fcc, hcp, and stacking faulted structures. Fcc and hcp structures are distinguished by the189

stacking sequence of closed packed layers in their structures: while fcc structures can be described190

by ABCABC stacking, hcp structures have ABABAB stacking. Structures with other sequences are191

stacking faulted structures. We hypothesize that stacking faulted structures can be considered an192

‘interpolation’ in the discrete space between the fcc and hcp structure type.[30]193

Examples of reconstructed fcc (blue), hcp (pink), and different stacking faulted structures (purple)194

and their position in the new latent space are illustrated in Fig. S8a. The MMNPs cluster in size,195

whilst we also observe that fcc and hcp structures separate in the latent space. It is evident that the196

stacking faulted structures are located in between the fcc and hcp structures in the latent space as197

hypothesized. It is chemically reasonable that they are positioned in this exact order based on their198

similarity to fcc and hcp. For example, the structure with ABCABA layers, shown in Fig. S8 with a199

purple star is structurally close fcc. We see that it is also located closer to the fcc structures in the200

latent space. On the other hand, the structure with ABCBCB layers (marked as a purple diamond in201

Fig. S8) can be considered structurally more closely related to hcp than fcc. DeepStruc places this202

structure adjacent to hcp structures of the same size in the latent space. DeepStruc can thus insert203

stacking faulted structures between fcc and hcp into the latent space in a chemically meaningful way.204
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Figure 5: Fitting experimental PDFs with structures obtained by DeepStruc. a) The DeepStruc latent
space showing predicted latent space positions for structures from three experimental PDFs. The
predicted means are shown as diamond markers, which are enclosed by three rings, indicating the
sampling regions for σ: 3, 5, and 7. b) PDF fit of the reconstructed structure from the Au144(p-
MBA)60 PDF[26] c) PDF fit of the reconstructed structure from the 1.8 nm Pt nanoparticle PDF
from Quinson et al.[28], d) PDF fit of the reconstructed structure from the Au144(p-MBA)60 PDF[26]
using a hcp structure. e) PDF fit of the reconstructed structure from the Au144(p-MBA)60 PDF[26]
using an icosahedral structure. Note that the test set structures shown here are the predicted structures
from DeepStruc obtained during inference on experimental PDFs.

Fig. S8b illustrates the fits of the reconstructed structures to the PDF data. The difference curves205

indicate that the predicted and true structures are very close to being identical, which is supported by206

the MAE of the atomic positions on 0.030 ± 0.019 Å (section E in the Supplementary Information).207

While disorder causes a broadening of the peaks, the disorder in the generated structures is minor and208

structures with distinct difference between the layers and in the correct sequence can be reconstructed209

to a satisfying degree. This is a promising result, showing that a graph-based CVAE can be used as a210

tool to determine the structure of stacking faulted nanoparticles from PDFs,[31,32] which is a topic211

of significant current interest.[33-37]212

3 Discussion213

We have shown the potential of using a DGM for structure determination from simulated and214

experimental PDFs. Our graph-based CVAE algorithm, DeepStruc, provides valuable information215

through its latent space, as the MMNP structures cluster based on symmetry and size in agreement216

with their structural chemistry. Using experimental data, the Au144(p-MBA)60 nanoparticle was217

determined to be decahedral, Pt nanoparticles were determined to be fcc and the Au144(PET)60 was218

determined to have an icosahedral core structure, all in agreement with previous literature. While219
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these systems are relatively simple MMNPs, we recognise that there are more complex materials220

where the measured PDF would not contain sufficient information to solve the structure. DeepStruc221

would then be limited to provide a distribution of starting models which can aid in the further structure222

analysis.223

Our approach is only restricted by the distribution of the structural training set. When DeepStruc224

is trained on fcc, hcp, and stacking faulted structures, it will locate the stacking faulted structures225

in between the fcc and hcp structures. This suggests a strategy for training DeepStruc models on226

different chemical systems that also ‘interpolate’ from one to another when this can be identified.227

DeepStruc does not yet provide a completely general structure solution approach, but gives critical228

insight into how DGMs can interact with structural and diffraction information to yield candidate229

structures and ultimately structure solutions.230

We suggest to implement DeepStruc as part of PDF-in-the-cloud (PDFitc.org),[38] where the training231

data can gradually be expanded over time. So far, the structures investigated are fairly ordered and232

contain some symmetry, but in the future, we plan to expand DeepStruc to chemical systems with233

more atoms and higher complexity such as metal oxide nanoparticles and alloys. Combining the234

PDF conditioning with data from complimentary techniques could prove important for structure235

determination of more complex systems. Such studies would both enable structure determination from236

a combined modelling perspective, but it would also reveal fundamental aspects of the information237

content of the different datasets for solving structure problems.238

4 Data availability239

Code for DeepStruc and the baseline models are available at:240

https://github.com/EmilSkaaning/DeepStruc241

https://github.com/AndyNano/Brute-force-PDF-modelling242

https://github.com/AndyNano/MetalFinder243

https://github.com/AndyNano/CVAE244
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