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Abstract

Recent work has shown the potential of graph neural networks to efficiently predict
material properties, enabling high-throughput screening of materials. Training
these models, however, often requires large quantities of labelled data, obtained
via costly methods such as ab initio calculations or experimental evaluation. By
leveraging a series of material-specific transformations, we introduce CrystalCLR,
a framework for constrastive learning of representations with crystal graph neural
networks. With the addition of a novel loss function, our framework is able to
learn representations competitive with engineered fingerprinting methods. We also
demonstrate that via model finetuning, contrastive pretraining can improve the
performance of graph neural networks for prediction of material properties and
significantly outperform traditional ML models that use engineered fingerprints.
Lastly, we observe that CrystalCLR produces material representations that form
clusters by compound class.

1 Introduction

The discovery of novel materials is a problem of considerable interest. Machine learning (ML) has
demonstrated potential in accelerating material discovery with accurate prediction performance and
lower computational cost [1]. Traditional ML models used in material discovery rely on expert
knowledge to construct material fingerprints as inputs to ML models [2]. The development of
fingerprint-based representations require manual design which is often limited to specific material
families and properties and can be time-consuming to compute.

Recent advances in deep learning provide an alternative way of learning feature representations
automatically from data. In particular, graph neural networks (GNNs) have been developed for
modeling crystalline materials to predict material properties [3–8]. In addition, Magar et al. [9] have
introduced several augmentations specific to crystalline structures, including perturb-structure and
supercell. They find that training GNNs on augmented crystal data results in improved performance
in prediction of several material properties. While GNNs are becoming increasingly popular, like in
other deep learning domains, adoption is limited by the availability of high quality labelled data [10].
Oftentimes, we only have access to very limited labelled data, such as materials’ physical properties
(e.g., melting point, thermal conductivity) that require laborious and time-consuming experimentation
or computationally expensive ab initio calculations. One way to tackle this problem is to transfer the
learned model trained on a related base task with large labelled data to the target task [11]. However,
this approach is limited by the availability of large labelled data for the base task. In the absence of
labelled data, self-supervised methods provide a way to learn representations from samples alone.

Contrastive learning is one such method of self-supervised learning, which seeks to learn represen-
tations such that similar pairs remain close in embedding space, while others remain distant. In
recent years, this has become a powerful method of both learning of representations, as well as
self-supervised pre-training for transfer learning, primarily in the image domain [12]. You et al.
[13] introduced a framework for applying contrastive learning to graphs, using GNNs and broadly
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Figure 1: Visualizations of the crystal transformations used. All transforms are stochastic by nature
with the exception of supercell.

applicable transformations to biochemical molecules, social network, and image super-pixel graphs.
Similar work has shown that contrastive pretraining can improve supervised performance in predicting
the chemical properties of molecules [14]. Lastly, Khosla et al. [15] showed how supervised labels
can be incorporated into the contrastive learning framework, allowing these labels to be incorporated
into the representations. Despite the success of contrastive learning in a broad range of domains, very
little work has been done to apply contrastive learning to crystalline materials.

In this work, we introduce CrystalCLR, a framework for the constrastive representation learning
of crystalline materials. We highlight the importance of augmentation selection, and show that
contrastive learning is capable of learning representations competitive with fingerprinting methods.
We also incorporate a novel loss function into the contrastive learning objective, which further improve
representation quality. Furthermore, we show transfer learning with the pretrained contrastive model
can outperform supervised learning for the prediction of material properties.

2 Method

Following [12, 13], we construct our constrastive learning framework with four major components:
augmentation, GNN encoder, projection head and contrastive loss. Let V and E denote the atomic
and bond attributes of a material’s crystal structure, respectively. Each crystal graph G = (V,E) is
first augmented into a similar pair Ĝi and Ĝj where Ĝi = (V̂i, Êi) and the augmentations used to
transform G into Ĝ are specific to the domain of crystalline materials (Sec. 2.1). A GNN encoder,
f(·), maps crystal graphs Ĝi, Ĝj into representations hi,hj . For our work we use the CGCNN
architecture as the encoder, following the same graph representation of crystal structure as inputs
[3]. The projection head, a two layer MLP g(·), projects representations hi,hj into 128-dimensional
space to create projections zi, zj . The addition of a non-linear projection prior to the loss function
has shown to improve representation quality [12]. The contrastive loss function seeks to maximize
the agreement between representations zi, zj augmented from the same crystalline material while
minimizing the agreement among the rest of the pairs augmented from different crystalline materials.
We use the NT-Xent loss [16], written for pair zi, zj in a batch of N pairs as:

LCLR
i = − log

exp(sim(zi, zj)/τ)∑2N
k=1 1[k 6=i] exp(sim(zi, zk)/τ)

(1)

where sim(u,v) denotes cosine similarity (u>v/‖u‖‖v‖). The final loss is the sum across all
positive pairs in the batch.

2.1 Crystal Augmentations

We investigate four transformations specific to crystalline materials (Fig. 1). Each transformation
is isoelectronic, preserving the valence electron configuration of the material: (1) perturb structure:
each site is perturbed by a distance uniformly sampled between 0 and 50% of the minimum pairwise
distance within the structure; (2) strain: a random, anisotropic tensile strain deformation is applied
to the structure. Each lattice vector is increased by a factor uniformly sampled from [0, 0.05]; (3)
column replace: with probability 1, a single, randomly selected site within the structure is replaced
with an element from the same column in the periodic table as the original element; and (4) supercell:
a supercell of the original crystal is created, scaling each lattice vector by a factor of 3. The perturb
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structure strength range is selected based on values used in prior work [9], and the strain strength
range is selected based on physically reasonable values.

2.2 Optimizing for composition similarity

Under the notion that materials with similar composition may tend to have similar properties, we
hypothesize that explicitly guiding representations of similarly composed materials together may
improve the representation quality. We propose an additional loss term, composition similarity (CS),
to promote representation similarity among materials that have one or more common elements. Each
crystal is assigned a binary vector a ∈ {0, 1}100, indicating which of the possible 100 atoms (that
exist in the dataset used) are contained in the crystal. The set P (i) = {p ∈ I : ai · ap > 0, i 6= p} is
the set of indices that share one or more atom with the ith crystal. The loss can then be defined as:

LCS
i = − log

{ 1

|P (i)|
∑

j∈P (i)

exp(sim(zi, zj)/τ)∑2N
k=1 1[k 6=i] exp(sim(zi, zk)/τ)

}
(2)

Where |P (i)| is the cardinality of the set. While prior work in [15] has shown that placement of the
summation over positives outside the log is more theoretically optimal, we found the above formula-
tion to produce better representations empirically. In the final model, (2) is used in combination with
the original NT-Xent loss (1) and weighted equally.

2.3 Learning Task Description

Our self-supervised training dataset consists of 90,160 crystal structures downloaded from Materials
Project in April, 2021 [17]. For evaluation, we use additional melting temperature, thermal conduc-
tivity, and bulk moduli (K_VRH) datasets of sizes 3,014, 5,540, and 13,121 respectively. The melting
temperature data were experimental data scraped from MatWeb [18]. Thermal conductivity data were
downloaded from AFLOW [19]; all values are at 300K. Bulk moduli data were downloaded from
Materials Project. Each dataset is split 80/10/10 into train, test, and validation sets.

3 Experimental Setup and Results

3.1 Augmentation Study
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Figure 2: Linear regression evaluation of mean-
absolute-error (MAE) of melting temperature. Sin-
gle transformations are applied for elements along
the diagonal, while other elements contain two
transformations applied sequentially.

To evaluate the effects of individual and combi-
nations of augmentations, we train models under
all of the pairwise combinations of augmenta-
tions. For this study, we apply augmentations
to only one sample in each positive pair. Each
model is evaluated by performing a linear re-
gression on the learned representations for each
of the studied material properties. In our work,
we use no augmentations for evaluation. Simi-
lar to [12, 13], we observe that the composition
of transformations is crucial for representation
quality. As shown in Figure 2 for melting point
prediction, the best representations are obtained
using the perturb-structure and column-replace
transformations, and the addition of supercell
often deteriorates performance. We observe a similar trend across all of the studied material properties.

3.2 Model Evaluation

We selected perturb-structure, strain, and column-replace as the final set of data augmentations;
each augmentation has a 50% chance of being applied to each training sample. We trained two
self-supervised models; each model was trained for 5000 epochs, with a batch size of 512. The first
model (CrystalCLR) uses LCLR alone, while the second model (CrystalCLR+CS) uses a final loss of
LCLR + LCS. We use the Adam optimizer [20] with a learning rate of 1e-4.
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Melting temp (◦C) Thermal cond. (Wm−1K−1) K_VRH (GPa)

Random Forest evaluation:
Site Stats Fingerprint 415.7± 2.2 5.41± 0.02 43.02± 0.11
Sine Coulomb Fingerprint 336.7± 2.2 3.50± 0.03 25.74± 0.13
Element Properties 106.1± 1.6 3.39± 0.03 17.64± 0.07
CrystalCLR (ours) 161.7± 2.5 3.73± 0.03 21.98± 0.11
CrystalCLR + CS (ours) 156.7± 1.8 3.51± 0.03 20.79± 0.07

Fine-tune:
Random init 119.9± 2.0 3.08± 0.16 13.13± 0.25
CrystalCLR (ours) 106.8± 6.0 3.04± 0.33 12.89± 0.19
CrystalCLR + CS (ours) 102.8± 2.6 3.11± 0.13 12.95± 0.28

Table 1: Evaluation of models, measured in mean absolute error. Each reported value is the mean
over five random seeds, along with standard deviation

To quantitatively evaluate the learned representations, we trained random-forest regression models
[21] to predict material properties. We compare the predictive performance of the learned embed-
dings to several other material fingerprinting methods, all obtainable without supervision: (1) Site
stats fingerprint that aggregates statistics of the CrystalNNFingerprint [22] using structural order
parameters, (2) Sine Coulomb fingerprint which is a variant of the Coloumb matrix for periodic
crystals [23], and (3) Element property which is a weighted mean, standard deviation, minimum and
maximum of element properties obtained from Magpie [24]. See Table 2 for the list of properties
used. We use the default hyperparameters for the random forest from scikit-learn [25].

Table 1 shows the representations learned from contrastive training perform at or above traditional fin-
gerprinting methods, with the exception of element properties. Element properties contain additional
information, including melting point, which explain its high performance. Furthermore, we observe
that the addition of the composition loss yields an improvement in performance across all properties.

CrystalCLR + CS Element Properties intermetallic
halide
oxide
chalcogenide
fluoride
boride
hydride
nitride
carbide
pnictogenide

Figure 3: UMAP [26] visualizations of CrystalCLR + CS and Element Properties embeddings,
colored by compound classes.

We also evaluate the use of contrastive learning as a pretraining task for material property prediction.
For each of aforementioned properties, we train CGCNN models; one randomly initialized, and one
initialized with the CGCNN encoder weights from each of the two contrastive training methods. For
each model, we use the Adam optimizer [20] to fine-tune the models, using the learning rate with the
best validation performance.

Table 1 shows by transferring weights from the contrastive-pretrained encoder, we are able to obtain
more accurate predictions of material properties than a randomly initialized model for melting
temperature and bulk moduli. The benefit of the composition loss is more evident for melting
temperature prediction than the thermal conductivity and bulk moduli properties.

Lastly, in Figure 3 we visualize produced crystal embeddings using UMAP [26]. CrystalCLR learns
representations that form clusters by compound class, despite training in a self-supervised manor.
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4 Conclusion

In this work, we introduce a method for the contrastive training of graph neural networks for represen-
tation learning of materials. First, we establish several crystalline material specific transformations,
and study the effects of the composition of transformations on representation quality. In addition,
we introduce a novel loss function to explicitly maximize the similarity among materials that share
common elements. We show that our framework is capable of producing representations competitive
with engineered material fingerprinting techniques. Finally we show that constrastive pretraining
improves performance over random initialization for downstream tasks. Future work will investigate
additional contrastive learning methods, the ability to use CrystalCLR representations for material
retrieval, and the applicability of equivariant graph neural networks.
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5 Appendix

5.1 Element Properties List

Table 2 lists the element properties used for the Element Property classifier.

Feature Name Description

Number Atomic Number
MendeleevNumber Mendeleev Number (position on the periodic table, counting

columnwise from H)
AtomicWeight Atomic weight
MeltingT Melting temperature of element
Column Column on periodic table
Row Row on periodic table
CovalentRadius Covalent radius of each element
Electronegativity Pauling electronegativity
NsValence Number of filled s valence orbitals
NpValence Number of filled p valence orbitals
NdValence Number of filled d valence orbitals
NfValence Number of filled f valence orbitals
NValence Number of valence electrons
NsUnfilled Number of unfilled s valence orbitals
NpUnfilled Number of unfilled p valence orbitals
NdUnfilled Number of unfilled d valence orbitals
NfUnfilled Number of unfilled f valence orbitals
NUnfilled Number of unfilled valence orbitals
GSvolume_pa DFT volume per atom of T=0K ground state
GSbandgap DFT bandgap energy of T=0K ground state
GSmagmom DFT magnetic moment of T=0K ground state
SpaceGroupNumber Space group of T=0K ground state structure

Table 2: Element properties used. Feature names and descriptions are reproduced from the supple-
mentary materials of Ward et al. [24].
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