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Abstract

One of the most important problems in rational design of batteries is predicting the
properties of the Solid Electrolyte Interphase, which (for a metallic anode) is the
part of the battery where metallic and non-metallic components come into contact.
However, there is a fundamental problem with predicting the properties of such a
mixed material: the two components are best simulated with incompatible levels of
density functional theory. Pure functionals perform well for metal properties, while
hybrid or long-range-corrected density functionals perform better for molecular
properties and reaction barriers. We demonstrate a simple method to obviate this
conflict by training a machine learning potential energy surface using both levels
of theory via transfer learning. We further show that the resulting model is more
accurate than models trained individually to these levels of theory, allowing more
accurate property prediction and potentially faster materials discovery.

1 Introduction

The Solid Electrolyte Interphase (SEI) is a key part of lithium-ion battery design which has proved
resistant both to experimental characterization and to accurate simulation[1]. It is difficult to mea-
sure the properties of the SEI, such as electronic and ionic conductivity, and therefore difficult to
gather enough data to predict how its properties will change with respect to electrode or electrolyte
composition.

Quantum mechanics simulations can allow us to calculate materials properties that are difficult to
characterize experimentally. For example, Kuai et al[2] simulate the boundary between lithium
metal and an electrolyte, as in a battery with a lithium metal anode, over short timescales using
Density Functional Theory (DFT). DFT is the method of choice for quantum mechanics simulation
of materials, providing excellent coverage of chemical space, reasonable accuracy, and tolerable
cost (at least for small systems). But the SEI is too large, and forms over too long a timescale, to
be convenient to describe with DFT. More fundamentally, the SEI is also plagued by a discrepancy
between the types of DFT appropriate for accurate simulation of its different components.

A large number of DFT methods, known as "functionals", have been developed based on different
approximations and parameterization (for further details, see Goerigk et al[3]). DFT functionals
without other quantum mechanical calculations included are known as "pure" DFT. Pure DFT
functionals such as the popular Perdew–Burke-Ernzerhof (PBE)[4] functional are computationally
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Figure 1: Diagram of transfer learning architecture.

efficient and are known to accurately predict the properties of many metals, including lithium[5].
However, pure DFT produces less accurate results for organic systems, and in particular, is known
to have large errors for reaction benchmarks[3]. For a reactive system like the SEI, this is a serious
drawback.

Hybrid DFT improves on pure DFT by incorporating an additional quantum mechanical property,
Hartree-Fock exchange. Long-range corrected (LRC) hybrid functionals such as ωB97X-D3(BJ)[6]
achieve particularly high accuracy across large benchmark sets[3]. However, hybrid DFT is much
more costly for periodic systems than pure DFT, making periodic hybrid DFT rare aside from
computationally cheaper "screened" variants[7]. Even more problematic for SEI simulation, Hartree-
Fock theory introduces poor convergence and non-physical effects when applied to metals[8]. Because
of the limitations of both pure and hybrid DFT, there is no broadly satisfactory method to study
organic reactions on a metallic surface with high accuracy.

Machine-learning models for potential energy functions [9] have shown promise in simulating
electrolytes[10] and metals[11, 12] at much lower cost than either pure or hybrid DFT. Furthermore,
machine learned potential energy surfaces have been trained to output multiple target tasks including
different types of DFT[13]. Therefore, it is natural to implement a combined machine learning
potential energy surface which can cover both Li metal and common electrolytes, and also the
interactions between these components which produce the SEI.

2 Methods

We begin from the dataset of Dajnowicz et al, which is composed of non-periodic organic electrolyte
clusters labeled using the LRC hybrid functional (ωB97X-D3(BJ)/def2-TZVPD).[10] We supplement
this dataset with calculations at the same level of theory including metallic lithium clusters, organic
reactions of common electrolytes, and lithium-organic complexes (see Appendix for details). In
addition, we add periodic bulk lithium metal data labeled using the pure DFT functional PBE-
D3[4, 14].

The model architecture we use is QRNN (charge recursive neural network)[15] modified to allow
transfer learning in a hard parameter sharing paradigm, as shown in Fig. 1. Each energy network
ENN shares parameters for the first N-1 layers, creating a shared latent space, followed by a linear
output layer which decodes the latent space into separate predictions. Therefore, the output of each
energy network ENN is not one energy value, but one per level of theory to be predicted, as shown in
Eqn 1.

Ej =

Natoms∑
i

NNQRNN
Zij

(GAEV
i , qi, G

qR
i ) + Edisp + Ecoul(q) (1)

where Ej is the energy for label j, pure or hybrid DFT in this case, NNQRNN
Zij

is output head j
of the energy network for chemical element i, Edisp is the empirical dispersion correction of the
ωB97X-D functional[16, 17] and Ecoul is a truncated Coulomb energy which decays smoothly at
short range[18]. Input GAEV

i is the Atomic Environment Vector (AEV), a rotationally-invariant set
of descriptors of the environment of each atom within a radius of 5.2 Angstrom[18], qi is the atomic
partial charge predicted as in QRNN (no transfer learning is used for charge prediction), and GqR

i is
the charge-weighted radial AEV of Jacobson et al[15].

2



Figure 2: Experimental phonon spectrum from Smith et al, 1968[23] (left) vs QRNN trained with
hybrid DFT without transfer learning (right). The QRNN phonon spectrum without transfer learning
deviates very significantly from the experimental result. DOS indicates the predicted density of states.

Figure 3: Phonon spectrum with pure DFT head (left) and hybrid DFT head (right) of a transfer-
learned QRNN model. The pure DFT head is nearly perfect as compared to the experimental result in
Fig. 2; the hybrid DFT head, while not as accurate, is far better than that without transfer learning.

For each training batch, the loss function is a Multi-task Learning (MTL)[19, 18] combination of the
energy, atomic force, and charge loss terms over all training points which have the corresponding
labels. Rather than using DFT dipoles to determine the atomic charge loss, as in Dajnowicz et al[10],
we use reference atomic partial charges, calculated with the method Geometries, Frequencies, and
Non-covalent 2 Extended Tight Binding (GFN2-xTB)[20]. For large systems, especially systems with
high symmetry which have a very small dipole moment, atomic partial charge labels give much more
information per system than the overall dipole, and GFN2-xTB is an inexpensive source of reasonable
partial charge labels. Training the charge model neural networks χNN using periodic data introduces
difficulties, since the dipole moment of a periodic system is difficult to define[21], and since no
current GFN2-xTB implementation provides fully consistent support for periodic systems[22]. The
subject of generating consistent charge training using both periodic and non-periodic data merits
further study. However, since in our dataset the periodic data is only 1% of the full dataset, the
problem is not yet a practical concern in this work; we simply train the QRNN charge networks χNN

using only the non-periodic data.

3 Results

A sensitive test of a potential energy surface for a metal is to calculate its phonon spectrum[11].
Training only to the hybrid DFT dataset produces a qualitatively inaccurate phonon spectrum for
lithium, as shown in Fig. 2. By comparison, transfer learning with both pure and hybrid DFT
produces reasonable phonon spectra for both prediction heads of the model. The pure-DFT head
is more accurate, as expected, since the pure DFT dataset contains only periodic metallic lithium.
However, the ωB97X-D3BJ/def2-TZVPD head is still approximately correct, and vastly improved
over the equivalent head trained without transfer learning.

Organic reaction barrier tests show a similar trend. As shown in Table 1, the hybrid head of the transfer
learning model shows equivalent or slightly improved performance compared to the equivalent model
without transfer learning, on a test set composed of Li radical-initiated organic reaction barriers
(see Fig. 4 and the Appendix). For the transfer learning model, only the hybrid DFT head gives
reasonable results, since the pure DFT dataset is composed of Li only: the transfer learning technique
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Figure 4: A reaction barrier test set example consisting of Li radical-initiated ethylene carbonate ring
opening. In order from left to right: initial state, transition state (barrier), final product.

Table 1: Reaction barrier test set RMSE by model (vs ωB97X-D3BJ/def2-TZVPD reference). "No
relevant data" for the pure DFT head is to note that the pure DFT part of the dataset lacks any chemical
elements besides Li, explaining the large RMSE.

Model RMSE (kcal/mol)

QRNN, no transfer learning (hybrid DFT head) 4.9
QRNN, transfer learning (hybrid DFT head) 4.8
QRNN, transfer learning (pure DFT head, no relevant data) 35.3
PBE-D3/def2-TZVPD 11.1

does not produce good results in the complete absence of relevant data for the given output head,
which is expected. Even more effective transfer learning might occur if the overlap between the pure
and hybrid parts of the dataset were greater: currently no exactly-equivalent geometries exist in the
dataset, since the pure DFT is uniformly periodic and the hybrid DFT is uniformly non-periodic. The
final entry in Table 1 is the equivalent RMSE for the pure DFT functional PBE-D3, demonstrating
the relative weakness of this functional for electrolyte reaction barriers.

The model is able to simulate the dynamics of Li metal in contact with ethylene carbonate at 300K, as
shown in Fig. 5. However, we do not yet have an appropriate reference comparison to determine the
accuracy of the combined simulation, besides extrapolation from our test sets. Comparison to DFT
dynamics, such as the work of Kuai et al[2], is costly (especially with hybrid functionals) and not
necessarily reliable. Another option is to create non-periodic test sets labeled with hybrid DFT (or
higher-level quantum mechanics calculations), allowing comparison to accurate references at lower
cost, but with the risk of missing larger-scale effects.

4 Conclusions

Figure 5: Molecular dynamics snapshot
of a lithium metal slab in contact with
ethylene carbonate electrolyte at 300K.
Pink=Li, Red=O, Gray=C, White=H.

We have shown that a simple transfer learning architecture
allows effective transfer between pure and hybrid DFT,
making simulations of metallic systems and organic re-
actions more effective. In particular, we show that the
phonon spectrum of metallic lithium for such a model is
greatly improved over the non-periodic hybrid DFT equiv-
alent, without degrading the accuracy for organic reaction
barriers.

Like other machine learning potential energy surfaces,
this model does not have the broad chemical applicability
of DFT: functional groups outside the training set (such
as phosphates) will likely give larger errors. Likewise,
given unusual geometric inputs such as atoms very close
together, the energies and forces returned may be very
inaccurate, thus ruining the predictive power of a given
simulation from that point onward. We find that these
unstable regimes are easy to detect during MD because
they produce obvious spikes in system energies. However, demonstrating that a model is free from
such errors without running MD appears to be difficult, since the recent work of Fu et al[24] shows
that force benchmark accuracy does not correlate well with MD stability. Further work is needed in
this direction - for example, some models use added atomic repulsion terms to make out-of-training
geometries in MD less likely[13].

4



Even with potential energy models much faster than DFT, such as this one, all-atom SEI simulations
cannot reproduce the full dynamics of SEI formation, since the time scale of SEI formation (hours)
is far beyond that of all-atom simulations (typically nanoseconds). However, the same applies
to problems such as crystal structure prediction for organic molecules, where all-atom methods
have achieved successes - not by simulating the full crystallization, but by optimizing and ranking
candidate crystal structures. Given an accurate potential energy surface, the same procedure should
be applicable to the SEI, significantly refining our understanding of the SEI’s true nature. Such
a breakthrough would facilitate rational structure-property design of the SEI. Furthermore, we
expect all-atom SEI simulations to aid design by predicting structure-property relationships (such as
variations in composition based on initial additives) which can be used as inputs for conventional or
AI-guided design methods.

Being able to simulate millions of timesteps per day on a GPU for systems of 1000 or more atoms,
our method promises to be able to study materials systems much faster than pure DFT or hybrid
DFT, while avoiding the accuracy pitfalls of training to just a single DFT method. Outside of our
demonstrated area of application, lithium batteries, this technique should be applicable to other
metal-nonmetal interface problems which commonly arise in materials science, such as the study of
corrosion and the design of corrosion-resistant coatings. We anticipate that transfer learning potential
energy models will be an important tool for future materials design.
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A Appendix

Training and test datasets of labeled data (atomic coordinates, system net charges, system energies,
atomic forces, and atomic partial charges) are provided under the MIT license (https://www.mit.
edu/~amini/LICENSE.md), and are available here: https://doi.org/10.6084/m9.figshare.
21200515.v1. The dataset is a superset of that from Dajnowicz et al[10] containing 600,390 total
datapoints, of which 362,382 are from Dajnowicz et al and 238,008 are new calculations in a format
compatible with the old. Of the newly added points, 6902 are periodic systems. GFN2-xTB charges
have also been added to all non-periodic systems for which GFN2-xTB labeling converged (581,954
points), including the points from the Dajnowicz et al dataset. The keys are arbitrary integers (stored
as strings). Each value is a dictionary with the following properties:

{
’atomicNumbers’: [integers representing atomic number for each atom],
’elements’: [strings representing the element for each atom],
’positions’: [[x, y, z] coords of each atom, in Angstroms],
’charge’: integer representing system total charge,
’multiplicity’: integer representing spin multiplicity,
’lattice’: [[lattice vectors, in Angstroms, only exists if periodic]],
’labels’: dict of QM reference data for this point (energy, gradient, etc)

}
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Every system needs at least one entry under ’labels’: ’PBE-D3’ or ’wB97X-D3BJ__def2-TZVPD’.
Some label types will be missing from some points, for example xtbCharges for periodic systems.
Labels not present for a datapoint are simply excluded from the loss function for that datapoint.
Example ’labels’ entry:

{
’PBE-D3’: {

’totalEnergy’: system energy in Hartree,
’atomizationEnergy’: system energy, in Hartree, minus per-atom offsets,
’gradient’: [[dE/dx, dE/dy, dE/dz] for each atom, in Hartree/Angstrom]

}
’wB97X-D3BJ__def2-TZVPD’: {

’totalEnergy’: system energy in Hartree,
’gradient’: [[dE/dx, dE/dy, dE/dz] for each atom, in Hartree/Angstrom],
’dipoleMoment’: [system dipole moment vector in electron-Angstroms],
’atomizationEnergy’: system energy, in Hartree, minus per-atom offsets,
’xtbCharges’: [atomic partial charges from GFN2-xTB, in e-]

}
}

The metallic lithium cluster geometries are sampled from common crystal packings (BCC, FCC,
SC) supplemented with scaling and Gaussian noise. In addition, we add periodic bulk lithium metal
data for these common crystal packings, also supplemented with scaling and Gaussian noise. The
organic reaction samples are generated by applying Articial Force-Induced Reactions (AFIR)[25, 26]
sampled across the set of electrolytes by selecting atom pairs uniformly at random to induce reactions.
The lithium-organic complexes are prepared using AFIR between existing clusters to cause them to
react, followed by one round of running MD of an EC/Li metal interface with the QRNN model and
extracting clusters at random along the interface region. This procedure could likely be improved by
active learning, by running more rounds of MD and extracting new clusters selectively via ensemble
estimates of model uncertainty[27]. Recent work by Zhang et al[28] provides evidence that active
learning from MD performed with a machine learning model can be used to sample and model the
space of chemical reactions.

All non-periodic DFT calculations in the training dataset are performed using Psi4[29] v1.6, with
the same settings as in Dajnowicz et al (density fitting, a 1e-10 DFT basis tolerance, a 1e-10
Schwarz screening threshold)[10] with the addition of two newly available Psi4 acceleration settings:
dft_pruning_scheme "robust" and s_orthogonalization "partialcholesky" with s_cholesky_tolerance
set to 1e-6 (matching the 1e-6 linear dependency cutoff of Dajnowicz et al). Using Google Compute
n2d-highmem CPU nodes with hyperthreading disabled, we observed a CPU time per system of
approximately

tDFT,seconds = 7e−7 ∗
(
n2
basis ∗ nbasis−aux

)
+ 1 (2)

Where nbasis is the number of basis functions used for the system and nbasis−aux is the number of
auxiliary basis functions. This agrees with the expected cubic scaling of density-fitting DFT.

All periodic DFT calculations in the training dataset are performed using Quantum Espresso[30] as
implemented in Schrodinger Materials Science Suite[31] version 2022-3. The exchange-correlation
energy is determined using generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof
(PBE) functional[4] coupled with D3 dispersion correction[14] and a plane wave energy cutoff of 40
Ry. The Brillouin zone integration is performed using 3x3x3 k-point mesh for bulk supercells and
3x3x1 k-point mesh for the surface supercells.

GFN2-xTB charge labeling is performed using the Python API xtb-python[32] with default settings.

The test dataset of electrolyte decomposition reaction barriers is labeled using Jaguar[33] release
2019-4 using the ωB97X-D3(BJ)/def2-TZVPD and PBE-D3/def2-TZVPD levels of theory, with
default settings for single-point energies. It consists of Li radical-initiated decomposition reactions
for the following common electrolytes: ethylene carbonate, propylene carbonate, vinylene carbonate,
dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluoroethylene carbonate. The
transition state geometries are generated using Jaguar transition state search[33].

Our code is a proprietary fork of TorchANI[34], the original of which is available at https://
github.com/aiqm/torchani.
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Our phonon and molecular dynamics calculations are performed using our PyTorch code interfaced
with the Atomic Simulation Environment (ASE)[35]. The molecular dynamics speed for this setup on
a 1000-atom system is approximately 0.4ns/day on a 1080-Ti GPU in our internal cluster. Significantly
greater speed can be achieved with a native GPU implementation.

Our training is performed using the same hyperparameters as Dajnowicz et al[10], except for a
training batch size of 128 (which makes periodic training more efficient), fixed epoch size of 200,000
(so that the length of training would not increase with dataset size), and a training/validation split
uniformly at random at a ratio of 99:1 (we have not seen an increase in generalization from early
stopping on larger validation sets, so we use a small validation set). More hyperparameter tuning
would probably be helpful, especially for metallic lithium, which is unlike the non-metallic systems
for which these hyperparameters were originally developed. Each training run is performed on a
1080-Ti GPU for approximately 48 hours.
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