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Abstract

Discovering a rare material within a vast search space exhibits a Needle-in-a-1

Haystack challenge. This challenge of finding a rare material, i.e., the "needle",2

inside a vast search space, i.e., the "haystack", arises when there is an extreme3

imbalance of optimum conditions relative to the size of the search space. For ex-4

ample, only 0.82% out of 146k total materials in the open-access Materials Project5

database have a negative Poisson’s ratio, a rare material property. However, current6

state-of-the-art optimization algorithms are not designed with the capabilities to7

find solutions to these challenging multidimensional Needle-in-a-Haystack prob-8

lems, resulting in slow convergence to a global optimum or pigeonholing into a9

local minimum. In this paper, we present a Zooming Memory-Based Initialization10

algorithm, entitled ZoMBI, that builds on conventional Bayesian optimization11

principles to quickly and efficiently optimize Needle-in-a-Haystack problems in12

both less time and fewer experiments by addressing the common convergence13

and pigeonholing issues. ZoMBI actively extracts knowledge from the previously14

best performing evaluated experiments to iteratively zoom in the sampling search15

bounds towards the global optimum "needle" and then prunes the memory of16

low-performing historical experiments to accelerate compute times by reducing17

the algorithm time complexity from O(n3) to O(1), as the number of experiments18

sampled increases. Additionally, ZoMBI implements two custom acquisition func-19

tions that use active learning to further guide the sampling of new experiments20

towards the global optimum. We validate the algorithm’s performance on two21

real-world 5-dimensional Needle-in-a-Haystack material property optimization22

datasets: discovery of auxetic Poisson’s ratio materials and discovery of high ther-23

moelectric figure of merit materials. The ZoMBI algorithm demonstrates compute24

time speed-ups of 400x compared to traditional Bayesian optimization as well as25

efficiently discovering materials in under 100 experiments that are up to 3x more26

highly optimized than those discovered by current state-of-the-art algorithms.27

1 Introduction to Rare Material Discovery28

Current optimization algorithms perform well on low-dimensional problems that are smooth and have29

wide basins of attraction. Examples of smooth manifolds with wide basins of attraction within material30

science include process- and recipe-optimization problems such as tuning perovskite manufacturing31

variables to achieve higher efficiency [1], optimizing microfluidics flow parameters to achieve ideal32

droplet formation [2], optimizing silver nanoparticle recipes for optical properties [3], and tuning33

perovskite compositions with physics-based constraints to maximize stability [4]. Optimization34

techniques like Bayesian optimization (BO) are well-suited to model these simple manifolds using35

a Gaussian Process (GP) surrogate [5, 6, 7, 8, 9]. However, the performance of this BO with a GP36

breaks down as the manifold complexity increases. Material property optimization problems that37
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have high technological significance, such as discovering materials with rare properties or materials38

with a specific combination of properties, have search space manifolds that more closely resemble a39

Needle-in-a-Haystack [10], shown in Figure 1(b), rather than a smooth or convex space. This Needle-40

in-a-Haystack (NiaH) problem arises when only few optimum conditions exist within the entire41

search space, resulting in an extreme imbalance. Interpolating the parameter space of an imbalanced42

search space with an estimation function, such as a GP, results in smoothing over the optimum or43

over-predicting the properties of the materials found near the optimum [11, 12, 13]. Examples of44

NiaH materials optimization problems include discovering auxetic materials (i.e., materials that45

have a highly negative Poisson’s ratio, ν) for energy absorptive medical devices or protective armor46

[14, 15, 16] and discovering materials that have a combination of high electrical conductivity and low47

thermal conductivity (i.e., a highly positive thermoelectric figure of merit, ZT ) used from improving48

sensor technology to enable ubiquitous solid-state cooling [17, 18, 19]. Both of these rare material49

optimization problems are examples where an extreme data balance exists in the search space because50

only a fraction of the total number of materials exhibit these rare properties [14, 20, 21, 22, 23]. This51

NiaH optimization challenge of extremely imbalanced search spaces is largely applicable to many52

fields, not just materials science, including the fields of ecological resource management [24], fraud53

detection [25, 26], and rare diseases [27, 26].54

(a) Process Optimization Manifold (b) Materials Optimization Manifold

Figure 1: Archetype Manifolds in Materials Science Optimization. (a) Smooth and wide basin of
attraction landscape that is common to process optimization problems. This 2D projected manifold is
adapted from the 6D perovskite process optimization problem by Liu et al. [1]. (b) Rough and narrow
basin of attraction landscape that is typical of material property optimization problems. This 2D
projected manifold is obtained from the 5D negative Poisson’s ratio optimization problem presented
in this paper [20, 21].

Several challenges exist for the current landscape of computational tools that inhibit effective55

optimization of these complex NiaH problems. Firstly, the "needle" makes up only a small percentage56

of the total manifold search space, resulting in a weak correlation between the measured input57

parameters and the target property of interest, inhibiting discovery of the region containing the needle58

[28, 29, 11]. This challenge requires the development of an algorithm that can more quickly determine59

the plausible region of the manifold where the needle exists. The second challenge for algorithms,60

such as BO, to optimize NiaH manifolds is in the nature of the acquisition function to pigeonhole61

sampling into local minima because of the narrowness of the needle’s basin of attraction [30, 31].62

Standard BO acquisition functions, including expected improvement (EI) [32] and lower confidence63

bound (LCB) [7, 12], are static sampling techniques that only adjust sampling based on the output of64

the surrogate model, which enacts smoothing of the needle [11, 5, 6]. To overcome this challenge,65

active learning-based tuning of the acquisition function hyperparameters can be implemented to66

improve the sampling quality and avoid pigeonholing. We design two active learning acquisition67

functions, LCB Adaptive and EI Abrupt, further discussed in the Appendix (sections A.1 & A.2).68
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Lastly, there exists a computing challenge for NiaH problems where, typically, several thousands of69

samples must be observed to find an optimum when using an algorithm that is poorly-suited to tackle70

NiaH manifolds [10]. The compute time of BO using a GP surrogate scales with the complexity71

O(n3), where n is the number of experiments sampled, hence, the compute time of traditional BO72

blows up as more data is required to find the optimum [33, 34, 35, 5, 6, 36, 37]. To solve this73

computing challenge, an algorithm must be designed that both efficiently optimizes the space in as74

few experiments as possible and reduces the effect of compounding compute times over the length of75

the optimization procedure.76

1.1 Related Literature on Fast and Bounded Optimization77

In recent literature, algorithms have been developed to address some of these challenges individually,78

but not all of them together. The first class of solutions bound the search space using a trust region79

approach to sample regions with higher probability of containing the optimum. Uber AI develop80

TuRBO [38] that compiles a set of independent model runs, using separate GP surrogate models to81

compute a new, smaller search region, narrowed in on the target optimum. Regis develops TRIKE82

[39] that utilizes maximization of the EI acquisition function to bound a trust region containing the83

global optimum. Diouane et al. develop TREGO [40], which interleaves sampling between global84

and local search regions, where the local search regions are defined by the single best historical85

experiment sampled. Although these methods offer solutions to one of the three challenges presented,86

each method has its downfalls when optimizing NiaH problems. For example, TuRBO requires the87

computation of several GP model runs, which increases compute time and also does not guarantee88

that the needle will be resolved due to interpolation effects; TRIKE is inflexible to the use of other89

acquisition functions as it locks the user in to only using EI, which may pigeonhole into local90

minima; TREGO uses only the best sampled experiment to define its search regions, which will yield91

inconsistent or sub-optimal results when the needle consists of a fractional region of the manifold92

and single point is unlikely to land in its basin of attraction.93

The second class of solutions to the challenges presented in this paper are designed to decrease the94

computing time required to run an optimization procedure. A common method for reducing the95

compute time of BO with a GP surrogate is to introduce a sparse GP [5, 41, 36]. A sparse GP uses a96

small subset of pseudo data, often denoted as m, to reduce the GP time complexity from O(n3) to97

O(nm2) [42]. However, the process of selecting a useful subset requires minimizing the Kullback-98

Leibler divergence between the sparse GP and true posterior GP, which is often a computationally99

intensive procedure of using variational inference [43]. In addition to sparse GPs, new algorithms100

have been developed in literature to improve the compute time of optimization in various ways.101

Van Stein et al. develop MiP-EGO [44], which parallelizes the function evaluations of efficient102

global optimization (EGO) to discover optima faster and in fewer experiments using derivative-free103

computation [45]. Joy et al. [46] use directional derivatives to accelerate hyperparameter tuning104

by 100x and achieve higher accuracy than the FABOLAS baseline by Klein et al. [47]. Zhang et105

al. develop FLASH [48] to achieve optimization speed-ups of 50% by using a linear parametric106

model to guide algorithm search within high-dimensional spaces. Snoek et al. [13] design a neural107

network-based parametric model that reduces the overall time complexity of BO to O(n) compared108

to the complexity of O(n3) of standard BO with a GP surrogate model. These existing methods109

from literature within the class of solutions for accelerating compute time are generally introducing110

external models necessary to perform optimization, such as neural networks, variational inference,111

or parameteric models. While these external models do speed-up compute time, they often lack the112

predictive capabilities to capture the weak correlation between measured input parameters and the113

target property of interest in NiaH problems. We illustrate this mechanic later in the paper when114

comparing the optimization results on two materials science NiaH problems of a fast algorithm115

MiP-EGO with that of TuRBO, an algorithm better suited for discovering optima within narrow basins116

of attraction.117

Although these methods from existing literature address some of the challenges in optimizing NiaH118

problems, none of them have been designed specifically to quickly and efficiently discover a needle-119

like optimum within a haystack of sub-optimal points, resulting in all of them falling short of full120

solution. Therefore, in this paper, we design an algorithm that addresses all three of the challenges121

faced when optimizing NiaH problems by (1) zooming in the manifold search bounds iteratively and122

independently for each dimension based on m number of best memory points to quickly converge to123

the plausible region containing the global optimum needle, (2) anti-pigeonholing into local minima124
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by using actively learned acquisition function hyperparameters to tune the exploitation-to-exploration125

ratio, (3) relieving compute utilization by pruning the low-performing memory points not being126

used to zoom in the search bounds. The proposed algorithm, entitled [Zo]oming [M]emory-[B]ased127

[I]nitialization (ZoMBI), combines these three contributions into a method that efficiently optimizes128

NiaH problems quickly. In essence, this process of scanning broadly and then focusing in on points129

of interest based on memory was inspired by the way we humans solve similar problems, but stands130

in contrast to the way standard BO methods with static acquisition functions solve problems. We131

demonstrate the performance of this algorithm on two NiaH materials science datasets: (1) discovery132

of materials with negative Poisson’s ratio and (2) discovery of materials with both high electrical133

conductivity and low thermal conductivity. The performance of the proposed ZoMBI algorithm is134

compared against standard BO with static acquisition functions and two state-of-the-art (SoTA)135

algorithms, one from each of the two classes of partial NiaH solutions: (1) TuRBO (bounded search136

space) and (2) MiP-EGO (faster compute).137

2 Methodology: Bounded & Memory-Pruning Optimization138

The [Zo]oming [M]emory-[B]ased [I]nitialization ZoMBI algorithm has two key features: (1) iterative139

inward bounding of proceeding search spaces using the m number of best-performing memory140

points within the prior search space and (2) iterative pruning of low-performing historical search141

space memory. The newly computed search space bounds are unique for each dimension, such142

that optimum basin of attraction of complex, non-convex NiaH manifolds can be discovered. This143

algorithm leverages these two key features to guide the acquisition of new data towards more optimal144

regions while only fitting the surrogate within the suggested optimum region to resolve more detail145

of the space of interest, as shown in Figure 2. This process subsequently reduces the compute time146

significantly compared to the compute of a GP in a standard BO procedure, as shown in Figure 3.147

Figure 2: Zooming Search Bounds. For every activation of ZoMBI, the search bounds are zoomed
inward based on the prior best-performing memory points. A 4D Ackley function manifold is
projected in 2D. The bounding regions of each 2D slice are illustrate by the red and orange boxes.
The ϕ number forward experiments sampled are illustrated as black markers. The global optimum is
indicated by the red region of the heatmap.

We define m as the number of retained memory points during an activation of ZoMBI. The m memory148

points are saved to memory while all other data are erased from memory. These are the historical149

data points that achieve the m lowest (for minimization) target values, y, and they are used to zoom150

in the search bounds. Using these memory points, the multi-dimensional upper and lower bounds of151

the zoomed search space are computed for each dimension, d. Let X := {X1, X2, . . . , Xn} be a set152

of data points, where Xj ∈ Rd. Let f : Rd → R be the objective function. We first assume that the153
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points in X are in general position so that f(X) contains unique elements. Then, for each m ≤ n154

define X(m) = {Xπ(1), . . . , Xπ(m)} where π is a permutation on {1, . . . , n} so that {f(Xπ(j))} is155

in ascending order. If f(X) contains repeated elements, we may first remove the points with repeated156

f values and apply the definition above. Then, for each d, the bounds are defined as:157

Bld = min
X∈X(m)

{[X]d}

Bud = max
X∈X(m)

{[X]d},
(1)

where Bld and Bud computed lower and lower bounds for each dimension, d, respectively. The bounds158

[Bld,Bud ] constrain the proceeding acquisition of new data as well as the computation of a GP, such159

that sampling cannot occur outsides of the bounded region. This constraining process operates160

independently for each dimension, such that each dimension has a unique lower and upper bound.161

To initialize the algorithm with data from the constrained space, i data points are sampled from the162

bounded region using Latin Hypercube Sampling (LHS). LHS splits a d-dimensional space into i ∗ d163

equally spaced strata, where i is the number of points to sample uniformly over d dimensions with164

low variability, unlike random sampling that has high sampling variability [50]. A GP surrogate165

model is retrained on these i LHS points sampled from the constrained space and then for every166

proceeding experiment sampled from the space, denoted as a forward experiment, the surrogate model167

is retrained. Thus, the GP is only being trained on information within the constrained region and as168

the constrained region iteratively zooms inward and decreases in hypervolume, so does the region169

computed by the GP. This process allows for more information to be resolve within regions plausibly170

containing the global optimum basin of attraction. Up to ϕ forward experiments are sampled in serial,171

where {Xi}∪{Xϕ} ⊆ {Xn}. These forward experiments are sampled by maximizing an acquisition172

value, a ∈ [0, 1], computed by a user-selected acquisition function from one of the four functions EI,173

EI Abrupt, LCB, and LCB Adaptive. Once i+ ϕ number of experiments are sampled, the bounds are174

re-constrained using the m best performing experiments, i new experiments are sampled from the175

zoomed-in space using LHS, and then the memory is pruned. The process of collecting ϕ forward176

Figure 3: Wall-clock Compute Time. The compute time per experiment is illustrate for traditional
BO with a GP surrogate (orange) and for ZoMBI with a GP surrogate (blue) with the y-axis in
log-scale. Five independent trials of each method were run to optimize a 5D Ackley function with
a narrow basin of attraction using an NVIDIA Tesla Volta V100 GPU [49]. The averages of the
trials are shown as solid orange and blue lines while the shaded regions indicate the maximum and
minimum compute times bounds. The red dashed line indicates the trend of the ZoMBI compute
times. The measured compute time includes the time to compute the GP surrogate model and the
time to acquire an experiment from the surrogate.
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experiments is repeated. A complete constraining-resetting iteration is denoted as an activation, α.177

This iterative zooming and pruning process over several α significantly speeds up compute time.178

3 Rare Material Discovery Results179

3.1 Compute Time180

In this section, we assess the compute time of the developed algorithm in comparison that of standard181

BO methods. As more experiments are amassed and committed to memory to run traditional BO182

by computing a GP and an acquisition value, the compute time increases polynomially, following183

the O(n3) time complexity of GP matrix multiplication [33, 5, 6, 51, 36, 37]. This complexity is184

unfavorable as it leads to compounding compute times as more experiments are run. Therefore, we185

implement a memory pruning feature into the ZoMBI algorithm that iteratively selects which prior186

data points to keep and which ones to prune from the memory during each activation, α. Via memory187

pruning, the number of experiments used to train the GP surrogate varies between [i, i+ϕ] for every α,188

rather than being proportional to n. This is computationally favorable because {Xi}∪{Xϕ} ⊆ {Xn}.189

Thus, for a single α, the time complexity is O((i+ ϕ)3). However, since ϕ resets back to zero after190

each α, a non-increasing sawtooth pattern in compute time is exhibited, hence, as α, n → ∞, the191

complexity approaches O(1). Figure 3 illustrates that the sawtooth compute time pattern maps to192

the resetting interval of ϕ, which trends towards a constant, non-increasing value over many α and193

n. After collecting 1000 experiments, the compute time of traditional BO trend towards > 400194

seconds, whereas after 1000 experiments, the compute time ZoMBI trends towards a constant 1195

second. Therefore, the memory pruning feature of ZoMBI accelerates the optimization compute time196

by over 400x at n = 1000 and achieves further relative acceleration as n increases. The memory197

pruning mechanic of ZoMBI drives fast compute times without sacrificing the ability to converge on198

rare materials, demonstrated in the following sections (3.2 & 3.3).199

3.2 Poisson’s Ratio200

We demonstrate the ability of the ZoMBI algorithm to optimize Needle-in-a-Haystack problems on two201

real-world datasets. The first dataset consists of 146k materials and the objective is to find the material202

with the minimum negative Poisson’s ratio, ν. The second dataset consists of 1k materials and the203

objective is to find the material with the maximum thermoelectric merit, ZT , i.e., a material with204

high electrical conductivity and low thermal conductivity. Both of these datasets are 5-dimensional205

and are obtained from the open-access Materials Project database [20].206

The ν dataset exhibits a Needle-in-a-Haystack problem due to very few materials having negative207

ν values [14, 20, 21, 15]. A positive ν > 0, describes a material that expands when a compressive208

load is applied to the orthogonal direction [52, 53]. Conversely, a negative ν < 0 describes a material209

that contracts rather than expands when compressed in the orthogonal direction, denoted as an210

auxetic material [14, 23] – a rare phenomenon that occurs in only 0.82% of materials within the211

Materials Project database [20, 21]. Auxetic materials with highly negative Poisson’s ratios have212

energy absorptive properties, which are ideal materials for wearable medical devices and protective213

armor that must absorb the energy of large impacts to keep bones from shifting or to inhibit the214

penetration of the protective layer [15, 16]. Thus, for this NiaH problem, the objective is to discover215

the material with the lowest ν value. Figure A.2 illustrates the spread of ν values within the raw216

dataset as a histrogram as well as a manifold generated by a Random Forest (RF) regression on the217

raw dataset using 500 trees. The search space generated by the RF is noisy and non-convex with218

narrow basins of attraction containing each optimum, resulting in a challenging NiaH optimization219

problem. The ground truth "needle" materials with the lowest ν values are Li2NbF6 with ν ≈ −1.7220

and Na2CO3 with ν ≈ −1.2.221

Figure 4 illustrates the performance of ZoMBI in discovering the lowest ν-value material, compared222

to the SoTA TuRBO and MiP-EGO algorithms. The ZoMBI algorithm is run with each of the four223

acquisition functions: LCB, LCB Adaptive, EI, and EI Abrupt. In under 100 evaluated experiments,224

LCB and LCB Adaptive discover one of the needles within the dataset (Li2NbF6) and, similarly, EI225

Abrupt discovers the other needle (Na2CO3). The distribution of ν values for the final experiment226

across all ensemble runs is illustrated for each method to highlight the sampling density and general227

rate of success. LCB Adaptive and EI Abrupt are the first two implementations of ZoMBI to discover228

a ν < 0 material because of their ability to actively tune their sampling hyperparameters. After229
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Figure 4: Discovery of Rare Negative Poisson’s Ratio Materials. The optimization objective is to
find the material with the minimum Poisson’s ratio, νmin, in 100 experiments. The green, blue, red,
and orange lines indicate the median best running evaluated sample of ZoMBI using the LCB, LCB
Adaptive, EI, and EI Abrupt acquisition functions, respectively. The pink and black lines indicate
the median best running evaluated sample of the SoTA methods, MiP-EGO and TuRBO, respectively.
The median for each method is taken over the best 12 independent model runs. The shaded regions
indicate the variance between model runs. The crosshatched region indicates the space discovered by
standard BO methods, without the use of ZoMBI. The dashed black line indicates the ν = 0 inflection
point. The distribution of the final sampled ν value for each method at the 100th experiment is
shown as a kernel density estimation with a 0.5 smoothing factor. The materials formulae and unit
cells that have the closest evaluated ν value discovered by each ZoMBI method at the end of the 100
experiments are illustrated.

30 experiments, the ZoMBI search bounds have zoomed inward enough for the explorative LCB230

acquisition function to discover a region of the manifold containing highly negative ν material,231

eventually leading to the global minimum needle. These three implementations of ZoMBI: LCB,232

LCB Adaptive, and EI Abrupt, have a steep drop in the discovered ν value, allowing these methods233

to discover an optimum fast, in fewer experiments than both SoTA methods. Overall, LCB and234

LCB Adaptive implementations of ZoMBI discover the most optimum minimum ν ≈ −1.7, while235

the SoTA algorithms TuRBO and MiP-EGO only discover ν ≈ −0.55 and ν ≈ −0.20, respectively.236

These results demonstrate that with proper selection an acquisition function, ZoMBI achieves better237

performance and a higher success rate than SoTA on optimizing this real-world materials science238

NiaH problem.239

3.3 Thermoelectrics240

The ZT dataset exhibits a Needle-in-a-Haystack problem, similar to the ν dataset because very241

few materials have high ZT values [20, 10]. However, rather than ZT being a directly measurable242

mechanical material property like Poisson’s ratio, ZT must be computed using a combination of243

several thermal and electrical material properties [54]:244
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ZT =
S2σ

κ
T, (2)

where S is the Seebeck coefficient, σ is electrical conductivity, T is the average temperature, and245

κ is thermal conductivity. The ZT is computed for each material in the Materials Project database246

using BoltzTraP [55]. Of the initial 146k materials, 1k of them have the required thermal and247

electrical properties to compute a ZT value. ZT is a common figure of merit used to describe248

the thermal-to-electrical or electrical-to-thermal conversion efficiency of thermoelectric materials249

[56, 57, 58, 59]. A higher ZT indicates that the material is better able to convert a thermal gradient250

into an electrical current [54]. Materials with large ZT values have a range of applications from251

usage as solid-state cooling devices to being used as sensors that when heated up, will produce an252

electrical signal [17, 18, 19]. For this NiaH problem, the objective is to discover the material with253

the highest ZT value. Figure A.3 illustrates the spread of ZT values within the raw dataset as a254

hisitogram, as well as a manifold generated by an RF regression on the raw dataset using 500 trees.255

Similar to the ν manifold, the ZT manifold is noisy and non-convex with narrow basins of attraction256

[20, 55]. The ground truth "needle" materials with the highest ZT values are Na4Al3Ge3IO12 with257

ZT ≈ 1.4 and Sr4Al6SO12 with ZT ≈ 1.9.258

Figure 5: Discovery of Rare Positive Thermoelectric Merit Materials. The optimization objective
is to find the material with the maximum thermoelectric merit, ZTmax, in 100 experiments. The
green, blue, red, and orange lines indicate the median best running evaluated sample of ZoMBI using
the LCB, LCB Adaptive, EI, and EI Abrupt acquisition functions, respectively. The pink and black
lines indicate the median best running evaluated sample of the SoTA methods, MiP-EGO and TuRBO,
respectively. The median for each method is taken over the best 12 independent model runs. The
shaded regions indicate the variance between model runs. The crosshatched region indicates the
space discovered by standard BO methods, without the use of ZoMBI. The distribution of the final
sampled ZT value for each method at the 100th experiment is shown as a kernel density estimation
with a 0.5 smoothing factor. The materials formulae and unit cells that have the closest evaluated ZT
value discovered by each ZoMBI method at the end of the 100 experiments are illustrated.

Figure 5 illustrates the performance of ZoMBI in discovering the highest ZT -value material, compared259

to the SoTA TuRBO and MiP-EGO algorithms. Initially, we see TuRBO outperform all other algorithms,260

but then it is unable to accelerate its sampling towards the needle basins of attraction. Similarly,261
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MiP-EGO gets trapped in a local minimum and is unable to escape. Conversely, after 50 evaluated262

experiments, ZoMBI LCB Adaptive and EI Abrupt supersede TuRBO and quickly discover high ZT263

materials, illustrating the advantage of active learning acquisition functions. Although the active264

learning acquisition functions prove to be more successful than the SoTA algorithms, none of the265

tested algorithms are able to discover the maximum global needle, Sr4Al6SO12, only the second best266

needle, Na4Al3Ge3IO12. This result is likely due to the data imbalance being too extreme that far out267

on the tail of the ZT dataset, in turn, generating an RF manifold complexity too high, even for ZoMBI.268

Hence, indicating that there are limitations in the manifold complexity that ZoMBI can optimize, and269

further illustrating that convergence on the global optimum needle is not guaranteed using this method.270

However, for the ZT dataset, the LCB Adaptive implementation of ZoMBI discovers the second271

best needle, Na4Al3Ge3IO12 with ZT ≈ 1.4, while the SoTA algorithms TuRBO and MiP-EGO only272

discover ZT ≈ 0.65 and ZT ≈ 0.45, respectively. Thus, LCB Adaptive demonstrates the highest273

performing optimization results across both of the real-world NiaH datasets, discovering the most274

optimal materials the fastest for both the ν and ZT datasets.275

4 Summary & Conclusion276

In this paper, we proposed the [Zo]oming [M]emory-[B]ased [I]nitialization (ZoMBI) algorithm277

that builds on the principles of Bayesian optimization to accelerate the discovery of rare materials278

by two-fold, firstly by requiring fewer experiments to achieve a better optimum than state-of-the-279

art, and secondly by pruning the memory of low-performing historical experiments to speed-up280

compute time. The ZoMBI algorithm exceeds state-of-the-art performance on optimizing Needle-in-281

a-Haystack datasets by (1) using the values of the m best performing previously sampled memory282

points to iteratively zoom in the search bounds of the manifold uniquely on each dimension and283

(2) implementing two custom acquisition functions, LCB Adaptive and EI Abrupt, that actively284

learn information about the manifold during optimization to tune the sampling of new experimental285

conditions from a surrogate. The main contributions of this algorithm solve three fundamental286

challenges of optimizing non-convex Needle-in-a-Haystack problems: (1) the challenge of locating287

the hypervolume region of the manifold containing the narrow global optimum basin of attraction288

[28, 29, 11] is alleviated by introducing iterative search bounds based on learned knowledge of the289

manifold; (2) unwanted pigeonholing into local minima [30, 31, 5, 6] is avoided by both the zooming290

mechanics of ZoMBI as well as using the two acquisition functions developed in his paper, LCB291

Adaptive and EI Abrupt, that tune their hyperparameters through active learning; (3) the challenge292

of polynomially increasing compute times of BO using a GP surrogate [33, 34, 35, 5, 6, 36, 37] is293

addressed by actively pruning the retained memory of the algorithm after each activation, α, in turn,294

reducing the time complexity from O(n3) to O(1) as α, n→∞. By developing the ZoMBI algorithm295

to solve these challenges, it becomes possible to quickly and efficiently find optimal solutions to296

complex Needle-in-a-Haystack problems in fewer experiments. Hence, this tool can be applied to rare297

material discovery, a class of data imbalanced Needle-in-a-Haystack problems, to enable widespread298

discovery of new materials with important technical applications from designing high-performance299

medical devices to engineering ubiquitous solid-state cooling systems.300
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