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Abstract

Most chemical reactions result in numerous by-products and side-products, apart
from the intended major product. While chemists can predict many of the main
process impurities, it remains a challenge to enumerate the possible minor impu-
rities and even more of a challenge to systematically predict and track impurities
derived from raw materials or those that have propagated from one synthetic step
to the next. In this study, we developed an AI-assisted approach to predict and
track impurities across multi-step reactions using the main reactants, and optionally
reagents, solvents and impurities in these materials, as input. We demonstrated
the utility of this tool for a simple case of synthesis of paracetamol from phenol,
and provide a generalized framework that covers most chemical reactions. Our
solution can be applied to enable (1) faster elucidation of impurities, (2) automated
interpretation of data generated from high-throughput reaction screening, and (3)
more thorough raw materials risk assessments, with each of these representing key
workflows in small molecule drug substance commercial process development.

1 Introduction

Chemical process development, involving identification, development, optimization, and scale-up of
chemical synthetic routes, is a major activity required in the commercialization of small molecule
drug substance [1]. In conducting chemical process development, a priori prediction of possible
impurities would significantly accelerate the route selection and optimization processes [2]. For
example, this knowledge would help in eliminating synthetic routes that might lead to the production
of potential genotoxic and mutagenic impurities [3, 4].

However, computational impurity prediction done today, such as those presented by Coley and
co-workers as a part of the ASKCOS software suite [5], which uses graph-neural networks to predict
forward reaction products, and the Python-based workflow presented in Arun et al. [6], which uses
database matching to identify similar reactions and thus predict products, focus on primary reactants
and aim to selectively predict likely impurities for a single reaction. As such, these approaches
may miss some complexities seen in the real world, specifically around impurities propagated from
multi-step syntheses or impurities derived from minor components in reagents and solvents, which
are rarely perfectly pure. In an effort to be selective and only predict the most likely impurities to be
observed, the aforementioned approaches may miss impurities that result from subsequent reactions
or overreactions of formed impurities with other components of a complex reaction mixture. As a
result, the predictions from existing impurity predictors frequently miss the low-level impurities that
are critical to identify and control in drug substance development in the pharmaceutical sector.
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Figure 1: Overview of the AI-assisted impurity prediction approach. The tool takes in input in
the form of a *.csv file, with the reactants, reagents, solvent and products, and known impurities
in the aforementioned materials, processes the individual reactions using the AI model, and outputs a
*.csv file with the key impurities and additional impurities. Abbreviations: SM – Starting Material,
DSI – Drug Substance Impurity.

On the other hand, current experimental approaches for impurity identification involves analysis
of reaction characterization data, usually, liquid chromatography-mass spectrometry data (LC-MS)
[7, 8, 9, 10]. The post hoc analysis necessitates the involvement of subject matter experts from
process chemistry, mass spectrometry, and other fields to identify the impurities. This impurity
identification process can be significantly sped up and even automated if we can predict a candidate
set of impurities from which to select in structure elucidation from analytical data.

We propose a closed-loop approach combining AI-assisted plausible impurity prediction with inverse
structure elucidation from analytical data for automated impurity identification. Leveraging current
forward reaction predictors, we aim to obtain an inclusive set of impurities that might result from
a set of reactions, involving the primary reactants, reagents, solvent, and known impurities therein.
The inverse structure elucidation model will help in identifying structures from the analytical data,
for instance, identifying molecules from MS2 spectra [11]. Re-framing the impurity prediction
problem with the goal of predicting an inclusive set allows us to expand the inputs and relax the
selectivity in predicting low-level impurities, such as those from subsequent reactions of primary
process impurities. This approach comes at the cost of producing a large set of potential impurities,
many of which will not be observed in reality. Therefore, the impurity prediction strategy needs to be
coupled with an inverse structure elucidation model as a selection function to down-select molecules
in the large inclusive set.

In this work, we focus on the first part, and discuss the prediction of a plausible or inclusive set of
impurities for multi-step reactions, from both primary reactants and known impurities. We have used
phenol to paracetamol synthesis as a use-case to demonstrate the utility of our tool.

2 Results and Discussion

2.1 Input/output file system

The input file requires the user to specify the reactants and products, and optionally, the reagents,
solvent, and other known impurities. To keep track of the impurities being predicted further, the input
impurities have been classified into impurities from starting materials, drug substance, reagents and
solvent.

The output file notes the process or step impurities, propagated impurities, and additional raw-
material-derived impurities. Step impurities are by-products and side-products of the intended
reaction. Propagated impurities include the impurities derived from impurities formed in previous
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Figure 2: Impurity prediction in phenol to paracetamol chemical synthesis. The intended reaction
from phenol to paracetamol with major products, step impurities and propagated impurities is
shown. For each reaction step, the major step impurity and few propagated impurities are shown.

steps of the process that persist through purification. Additional impurities correspond to impurities
formed by reactions of known impurities in the input raw materials (reagents, solvents).

2.2 Forward prediction model

We used the reaction product prediction model present in the ASKCOS software suite, specifically
the model trained on Pistachio dataset, to develop our impurity predictor [5, 12]. Pistachio dataset
consists of reactions published in the literature, and US Patents and Trademarks Office (USPTO)
database, until 17th Nov 2017. To obtain an inclusive set of products - major product and plausible
impurities, we increased the top-k predictions to 10 from the default 3 and decreased the threshold
probability from the default 0.1 to 0.01. This approach helped us increase the number of model
predictions under consideration, extending it from the original purpose of major product prediction,
to prediction of impurities.

The ASKCOS suite was hosted on an AWS EC2 instance with default configuration, and was queried
through API from a 4-core Intel i7 system. For the demonstrated 3-steps reaction, we clocked 4 min
of wall time and 719 ms of CPU time to obtain the results.

2.3 Impurity prediction and propagation

Impurity prediction was done per reaction step in a sequential manner, starting with the intended
reaction, followed by the reaction with the reagents, solvent, and impurities from preceding steps.
For each step, the model was queried with specific reactants, reagents, solvent and products as input,
and all products, excluding the major product of the reaction, were noted as impurities. To categorize
the impurities resulting from the intended reaction, we denoted them as step impurities (Figure 2,
structures in blue).

Impurity propagation was tracked by predicting the products for the reaction of step impurities with
the reagents and solvent of the succeeding step(s). To avoid a combinatorial explosion, we limited
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Figure 3: Reaction products predicted by including known impurities in reagents in phenol to
paracetamol chemical synthesis. The intended reaction from phenol to paracetamol with major
products, and additional impurities is shown. Impurities in reagents for the concerned steps are
noted below the reagents.

the number of propagating steps to 1, by default, and extendable to n or all subsequent steps. These
impurities were denoted as propagated impurities (Figure 2, structures in red).

The model missed predicting ortho-nitrophenol in the first step, nitration of phenol. This impurity has
been seen in multiple works [13, 14, 15]. We believe that the model having been trained on reaction
schemes with majority products has not seen such examples in the training dataset.

To improve on results from existing single-step predictors, we added the functionality to include
known impurities from primary starting materials in the prediction workflow. This functionality
helps in assessing the risk posed by low-level impurities in raw materials—as purchased, reaction
intermediates, and API starting materials. Apart from the aforementioned impurities, there is added
functionality to include impurities from individual unit operations in the chemical process, such as
those arising from addition of anti-solvent in the crystallization step. In the paracetamol synthesis
example, we observed no new impurities coming from reactions with trace metal impurities (Hg, As,
Pb, Cd) in nitric acid (HNO3), multiple impurities from reactions with ammonia (NH3), formaldehyde
(HCHO), formic acid (HCOOH), carbon monoxide (CO), and carbon dioxide (CO2) in hydrogen
gas (H2), and the lone impurity formed by reaction with acetic acid (CH3COOH) impurity in acetic
anhydride (Ac2O) (Figure 3, structures in green). Known impurities in the reagents were obtained
from the literature [16, 17, 18].

3 Limitations, Future Work and Conclusion

The limitations of our impurity prediction approach are intrinsically linked to the following factors -
nature of the training datasets, predictive accuracy of the forward prediction model, known impurities
in the starting materials, and rank-ordering of impurities.

The training datasets act as a limitation in the prediction pipelines. For impurity prediction, the
datasets, both from Reaxys and Pistachio, mostly comprise reactions with major products [12].
In these datasets, side products, and minor impurities, are not mentioned as a part of the scheme.
This information is occasionally discussed within the manuscript text or moved to supplementary
information. Thus, obtaining a training dataset focused on additional products remains a significant
challenge, limiting the prediction of impurities for new reactions.
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To improve the predictions, we suggest extending the current method using a model ensemble
approach. Specifically, we can include predictions from forward reaction predictors with different
model architectures, such as language-based models in IBM-RXN, along with the current graph-
based model in ASKCOS [19]. We believe that this approach will help expand the chemical space of
impurities, while ensuring the prediction of plausible impurities.

To help in predicting low-level impurities and perform raw materials risk assessments, we propose
building a database of known impurities in reagents, solvents and starting materials. This database
can be built by collecting information from safety data sheets of chemical suppliers [20, 16], and then
adding the functionality to automatically include these impurities to the prediction workflow.

The current rank-ordering of impurities based on similarity to major product is not well-suited for
impurity prediction. This ordering can be improved by using predictions of activation energy barriers
or reaction kinetics for specific reactions which lead to production of impurities [21, 22, 23, 24].
Energy- or kinetics-based ranking is expected to be significantly more chemistry-informed than using
similarity to the major product.

Apart from the improvements to impurity prediction, we aim to extend our approach to include more
types of chemical reactions. In the current state, our approach is suitable only for process chemistry
with conventional chemicals. We would like to build out functionality to cater to chemical synthesis
involving biological steps, such as enzyme mediated reactions.

4 Conclusion

In conclusion, our method demonstrates how an AI-assisted approach can enable impurity prediction
and propagation for multi-step chemical reactions. Our tool provides the functionality to include
impurities from reagents, solvent and starting materials. We envision that AI-assisted impurity
prediction in conjunction with inverse structure elucidation from analytical data will help in faster
impurity identification, and ultimately accelerate chemical process development.
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