
Neural Structure Fields with Application to Crystal
Structure Autoencoders

Naoya Chiba1 Yuta Suzuki2,∗ Tatsunori Taniai1 Ryo Igarashi1 Yoshitaka Ushiku1

Kotaro Saito3,4 Kanta Ono4

1OMRON SINIC X Corporation 2TOYOTA Motor Corporation 3Randeft, Inc.
4Osaka University

{naoya.chiba, tatsunori.taniai, ryo.igarashi, yoshitaka.ushiku}@sinicx.com
yuta_suzuki_ah@mail.toyota.co.jp

kotaro.saito@randeft.jp
ono@ap.eng.osaka-u.ac.jp

Abstract

Representing crystal structures of materials to facilitate determining them via neu-
ral networks is crucial for enabling machine-learning applications involving crys-
tal structure estimation. Here we propose neural structure fields (NeSF) as an
accurate and practical approach for representing crystal structures using neural
networks. Inspired by the concepts of vector fields in physics and implicit neural
representations in computer vision, the proposed NeSF considers a crystal struc-
ture as a continuous field rather than as a discrete set of atoms. Unlike existing
grid-based discretized spatial representations, the NeSF overcomes the tradeoff
between spatial resolution and computational complexity and can represent any
crystal structure. To evaluate the NeSF, we propose an autoencoder of crystal
structures. Quantitative results demonstrate the superior performance of the NeSF
compared with the existing grid-based approach.

1 Introduction

Representing crystal structures in a neural-network-familiar expression has promising utility in
machine-learning (ML)-assisted material development and materials informatics (MI). For exam-
ple, graph-based representations of crystal structures have allowed the encoding of crystal structures
via graph neural networks [1, 2, 3, 4] for high-throughput material property predictions. When this
type of task is viewed as the discovery of structure-to-property relationships among materials, there
is yet another important type of task, namely, the discovery of property-to-structure relationships,
which constitutes an inverse design problem [5, 6, 7, 8, 9]. Despite the great potential utility of
this inverse approach in developing materials, few studies have addressed this [5, 6, 7, 8, 9] or its
underlying problem [10, 11, 12], that is, the estimation of crystal structures under given conditions.
Regarding MI and ML, whether to input or output crystal structures (i.e., encode or decode crystal
structures in MI and ML terms) induces a crucial difference. Although encoding crystal structures
is suitably established using graph neural networks [1, 2, 3, 4], a technical bottleneck persists for
decoding crystal structures. We addressed the bottleneck in this study.

The crystal structure of an inorganic material is a regular and periodic arrangement of atoms in
a three-dimensional (3D) space. This arrangement is usually described by the 3D positions and
species of atoms in a unit cell and the lattice constants defining the translations of the unit cell in 3D
space. The atoms in a unit cell have no explicit order, and their quantity varies from one to hundreds
in number. Because ML models, including neural networks, generally accept fixed-dimensional

∗This work is mainly done in The Graduate University for Advanced Studies (SOKENDAI), Ibaraki, Japan.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Position field

z

x
y

vnbr = fP (x,y,z)

= (0.41, 0.12, 0.36)

Species =  fS (x,y,z)

= (0,..., 0.9, 0.1,...) = Fe
H Fe Co

 fP  fSSpecies field

vnbrquery
query

(a)

(b)
 fP

 fS

NeSF

Lattice decoder
Encoder

Latent 
vector

z

Input structure Decoded structure

Figure 1: NeSF and crystal structure autoencoder using the NeSF. a, The NeSF consists of
two vector fields, namely, position field fp and species field fs, which are defined in 3D space. b,
Network architecture of proposed NeSF-based crystal structure autoencoder.

and consistently ordered tensors for processing, treating crystal structures with ML models is not
straightforward [1], and determining crystal structures via the models is even more difficult.

In this paper, we propose a continuous vector-field-based crystal structure representation named
neural structure fields (NeSF). The proposed NeSF is inspired by the concepts of vector fields in
classical physics and implicit neural representations [13, 14, 15, 16, 17] in computer vision. Im-
plicit neural representations have recently been proposed to handle some representation issues in 3D
computer vision applications, such as 3D shape estimation [14, 15, 16] and free-viewpoint image
synthesis [13, 17]. The NeSF follows the basic idea of implicit neural representations and further
extends it to the estimation of crystal structures described by atomic positions and species.

Our idea of representing crystal structures as continuous vector fields has been partially and implic-
itly explored by grid-based discretization (i.e., voxelization) in recent MI studies [5, 6, 12, 8, 10]. In
those studies, the 3D space within the unit cell is discretized into voxels, and each voxel is then as-
signed an electron density, which essentially represents the presence or absence of an atom around
the voxel. However, the discretization of 3D data considerably suffers from the tradeoff between
spatial resolution and computational complexity in terms of both computational time and memory
space. For instance, the ICSG3D method [10] based on 3D convolutional neural networks (CNNs)
uses a limited resolution of 32 × 32 × 32 voxels. The NeSF overcomes the limitation of voxeliza-
tion. Theoretically, NeSF can achieve infinitely high spatial resolution with compact (memory- and
parameter-efficient) neural networks in place of costly 3D CNNs.

2 Method

In this section, we first describe the key concept of the NeSF and the procedure for estimating crystal
structures using the NeSF. We then propose an autoencoder of crystal structures using the NeSF.

2.1 Crystal structure representation via NeSF

We propose the NeSF as a general representation of crystal structures that enables neural networks
to decode or determine such structures. The key concept underlying our approach is illustrated in
Fig. 1a, where a crystal structure is represented as a continuous vector field tied to 3D space rather
than as a discrete set of atoms. The NeSF uses two types of vector fields, namely, the position and
species fields, to implicitly represent the positions and species of the atoms in the unit cell of the
crystal structure, respectively.

To illustrate the concept of the NeSF, assume that we are given target material information as a
fixed-dimensional vector, z, and consider the problem of recovering a crystal structure from z.

2



In the NeSF, we use neural network f as an implicit function to indirectly represent the crystal
structure embedded in z instead of letting neural network f directly output the crystal structure as
f(z). Specifically, we treat f as a vector field on the Cartesian 3D coordinates, p, conditioned on
the target material information, z:

s = f(p, z) (1)

In the position field, network f is trained to output a 3D vector pointing from query point p to
its nearest atom position, a, in the crystal structure of interest. Thus, we expect output s to be
a − p. If the position field is ideally trained, we can retrieve position a of the nearest atom at
any query point p as p + f(p, z). The precise description of atomic positions in crystal structures
is of crucial interest in materials science. Thus, the NeSF outputs vectors pointing to the nearest
atoms to represent atomic positions more directly than existing implicit neural representations of
3D geometries [14, 15, 16]. Analogous to the position field, the species field is trained to output a
categorical probability distribution that indicates the species of the nearest atom. Thus, the output
dimension of the species field is the number of candidate atomic species.

The training procedure of NeSF is simple and similar to those for existing implicit neural represen-
tations [14, 18]. We randomly sample 3D query points {ps

i} in the unit cell and compute loss values
for the field outputs at these points, thus supervising fp(p

s
i , z) and fs(p

s
i , z) to indicate the posi-

tion and species of the nearest atom, respectively. To efficiently train the NeSF, we introduce two
sampling methods. 1) Global grid sampling considers 3D grid points that uniformly cover the entire
unit cell and samples the points with perturbations that follow a Gaussian distribution. 2) Local grid
sampling considers local 3D grid points centered at each atomic position and samples the points
with perturbations that follow a Gaussian distribution. To train the position field, we combine both
sampling methods. Hence, query points are sampled uniformly over the entire unit cell and densely
around the atoms. To train the species field, we use local grid sampling to concentrate training query
points in the neighborhood of atoms. See Appendix A for more details.

2.2 Crystal structure estimation using NeSF

Given the target material information as vector z, the estimation of the crystal structure from z
amounts to estimating the positions and species of the atoms in the unit cell along with the lattice
constants. The lattice constants are modeled as lengths a, b, and c and angles α, β, and γ, and
are estimated via simple multilayer perceptrons (MLPs) with input z. On the other hand, the atomic
positions and species are estimated by position field fp and species field fs of the NeSF, respectively.
These fields are also implemented as simple MLPs, each taking query position p and vector z as
input and predicting a field value (i.e., 3D pointing vector or categorical probability distribution).
An overview of the NeSF network architecture is illustrated in the right part of Fig. 1b.

Given vector z from the encoder, the estimation of the atomic positions and species using the NeSF
is summarized in the five steps:

1. Initialize particles. We first estimate the lattice constants via MLPs. Then, we regularly
spread initial query points {p0

i }, which we call particles, at 3D grid points within a bound-
ing box. The bounding box is common to each dataset and is given to loosely encompass
the atoms of all training samples.

2. Move particles. We update the position of each particle pt
i using the position field accord-

ing to pt+1
i = pt

i + fp(p
t
i, z). We iterate this process for all particles to obtain {pi} as

candidate atomic positions. Through this process, the particles travel toward their nearest
atoms.

3. Score particles. We score each particle pi and filter outliers. Since the norm of the output
of the position field, ∥fp(pi, z)∥, indicates an estimated distance from pi to its nearest
atom, we score each particle pi by ∥fp(pi, z)∥ and discard the particle if the score is above
a certain threshold (set to 0.9 Å in this study).

4. Detect atoms. Until this point, the particles are expected to form clusters around atoms.
Thus, we apply a simple clustering algorithm to detect each cluster position as an atomic
position, determining the number of atoms in the crystal structure. Here we employ a
well-known clustering algorithm in object detection, non-max suppression[19], with its
suppressing radius set to 0.5 Å.

3



5. Estimate species. Finally, we use species field fs(p, z) to estimate the atomic species at
each atomic position ai. For robust estimation against errors in ai, we spread new particles
intensively around each ai as queries to the species field. We select the most frequent
atomic species among them as the final estimate.

2.3 Crystal structure autoencoder

To demonstrate and evaluate the expressive power of the NeSF, we propose an autoencoder of crystal
structures. Similar to other common autoencoders, the proposed NeSF-based autoencoder consists
of an encoder and decoder. The encoder is a neural network that transforms an input crystal structure
(i.e., positions and species of the atoms in the unit cell and lattice constants) into abstract latent
vector z. The decoder, for which we use the NeSF, reconstructs the input crystal structure from
latent vector z. Autoencoders are typically used to learn latent vector representations of data via
self-supervised learning, in which the input data can supervise the learning via a reconstruction loss.

While we focus on decoding crystal structures, their encoding requires a specific type of neural-
network function called set functions [20, 21]. Among them, the family of graph neural net-
works [1, 2, 3, 4] serves as popular crystal-structure encoders. However, these networks implicitly
represent atomic positions as edges, encoding distances between atoms while discarding the exact
coordinates. Although this distance-based graph representation is key to ensure the invariance to
coordinate systems, its information loss in input may unintentionally hinder the reconstruction per-
formance. Thus, we adopt the basic encoder architecture from PointNet [20] and DeepSets [21].
This architecture not only represents the simplest type of set-function-based networks but can also
preserve the information of input crystal structures, thus being appropriate for the performance eval-
uation of the NeSF decoder. The proposed autoencoder architecture is detailed in Appendix B.

During training, the four types of outputs from the decoder (i.e., atomic positions, species, lattice
lengths, and angles) were evaluated using the following loss function:

L = λposLpos + λspeLspe + λlenLlen + λangLang (2)

Here, Lpos is the mean squared error between estimated and true atomic positions, Lspe is the cross-
entropy loss function for the atomic species distributions, and Llen and Lang are the mean square error
for the lattice lengths and angles, respectively. The total loss function, L, is given by the weighted
sum of these loss functions with weights (λpos, λspe, λlen, λang) = (10, 0.1, 1, 1). We optimized the
loss function using stochastic gradient descent with a batch size of 128. We used Adam [22] as
the optimizer with an initial learning rate of 10−3 decaying every 640 epochs by a factor of 0.5.
We conducted iterative training for 3200 epochs for all training samples in the dataset with early
stopping. These hyperparameters were chosen through the procedure described in Appendix C. To
reduce the performance variation owing to randomness, we repeated training and evaluation 10 times
with different random seeds and evaluated the average performance.

3 Results and Discussions

We compared the performance of the proposed NeSF-based autoencoder with the grid-based
ICSG3D baseline [10]. We reproduced the ICSG3D dataset [10] for training and evaluation by
curating 7897 material samples from the Materials Project [23] (see Appendix D for details).

The reconstruction performance was measured in terms of errors in the number of atoms, position,
and species. The error in the number of atoms is the rate of materials for which the number of atoms
in the unit cell is incorrectly estimated. The position error is the average error of the reconstructed
atomic positions. Depending on the denominator of the metric, we evaluated the position error in
two ways. An actual metric was used to evaluate the mean position errors at the actual atomic
sites of the crystal structure by computing their shortest distances to estimated atomic sites. By
contrast, a detected metric was used to evaluate the errors at the estimated sites by computing their
shortest distances to the actual atomic sites. The actual metric is more sensitive to errors related
to underestimation of the number of atoms, whereas the detected metric is more sensitive to errors
related to overestimation. The species error is the average rate of atoms with incorrectly estimated
species. Analogous to the position error, the species error was evaluated using actual and detected
metrics. Lower values of these metrics indicate better performance.

4



Table 1: Reconstruction results (mean ± standard deviation) on the ICSG3D dataset [10].

Method Proposed ICSG3D [10]

Error in number of atoms [%] 0.53 ± 0.25 2.67± 0.84
Position error (actual) [Å] 0.0308 ± 0.0112 0.0877± 0.0306
Position error (detected) [Å] 0.0359 ± 0.0226 0.1057± 0.0284
Species error (actual) [%] 4.31 ± 0.39 64.39± 1.91
Species error (detected) [%] 4.36 ± 0.39 65.05± 1.85

Table 1 lists the reconstruction errors of the proposed NeSF-based autoencoder and ICSG3D base-
line on the test set. Overall, the proposed method consistently outperforms ICSG3D in all the
evaluation metrics, with substantial performance improvements for the species error. Meanwhile,
ICSG3D achieves good performance for the error in number of atoms and position error. The evalu-
ated dataset [10] consists of materials with limited crystal systems (i.e., cubic) and prototypes (i.e.,
AB, ABX2, and ABX3) and may thus offer relatively simple problem instances. Evaluating the
reconstruction performance on more diverse crystal structures is future work. We further discuss
potential negative societal impacts of this work in Appendix E.

We believe that the notable high performance of the proposed method is attributable to two reasons.
First, our method does not use discretization, being advantageous over the grid-based ICSG3D for
estimating crystal structures. In a grid-based method, the spatial resolution is limited by the cubi-
cally increasing computations and memory usage. The proposed NeSF is free from such a tradeoff
between resolution and computational complexity, and it can thus effectively represent complex
structures. Second, the model size of the proposed NeSF using MLPs is much smaller than that of
the 3D CNN architecture of ICSG3D. In general, the number of training samples required for an ML
model is correlated with the number of trainable parameters. Grid-based methods use layers of 3D
convolution filters that involve many trainable parameters. On the other hand, NeSF employs im-
plicit neural representations to indirectly describe the 3D space as a field instead of voxels. Thus, it
is efficiently implemented by MLPs with fewer parameters than a 3D CNN. Specifically, the NeSF-
based autoencoder has 0.76 million parameters, which is only 2.24% of the number of parameters
in the 3D CNN-based ICSG3D (34 million parameters).

4 Conclusion

We propose the NeSF to estimate crystal structures using neural networks. Determining crystal
structures directly using neural networks is challenging because these structures are essentially rep-
resented as an unordered set with varying numbers of atoms. The NeSF overcomes this difficulty
by treating the crystal structure as a continuous vector field rather than as a discrete set of atoms.
Unlike existing grid-based approaches for representing crystal structures [10], the NeSF is free from
the tradeoff between spatial resolution and computational complexity and can represent any crystal
structure. The NeSF was applied as an autoencoder of crystal structures and demonstrated its ex-
pressive power. A quantitative performance analysis showed a clear advantage of the NeSF-based
autoencoder over an existing grid-based method. Meanwhile, the present study is subject to the
following limitations. First, the NeSF does not explicitly consider space-group symmetry. Sym-
metry is an important concept in crystallography and incorporating the constraint of space-group
symmetry into NeSF is thus an important direction of future work. Second, we adopted the autoen-
coder architecture rather than generative models, such as variational autoencoders [11, 24, 1] and
generative adversarial networks [25, 24, 26, 12], for an evaluation purpose. While these generative
models are more suitable for novel structure discovery, the lack of ground-truth structures prevents
quantitative and reliable performance analysis. The NeSF should be applied to generative models
in future work with appropriate performance analysis. Such generative models for crystal structures
will be important for inverse design of materials, which is a major challenge in MI.

Acknowledgments

This work is partly supported by JST-Mirai Program, Grant Number JPMJMI19G1 and JST ACT-I
grant number JPMJPR18UE. Computational resource of AI Bridging Cloud Infrastructure (ABCI)
provided by National Institute of Advanced Industrial Science and Technology (AIST) was used.

5



References
[1] Xie, T. & Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Inter-

pretable Prediction of Material Properties. Phys. Rev. Lett. 120, 145301 (2018).

[2] Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph Networks as a Universal Machine Learning
Framework for Molecules and Crystals. Chem. Mater. 31, 3564–3572 (2019).

[3] Park, C. W. & Wolverton, C. Developing an improved crystal graph convolutional neural network frame-
work for accelerated materials discovery. Phys. Rev. Materials 4, 063801 (6 1, 2020).

[4] Cheng, J., Zhang, C. & Dong, L. A geometric-information-enhanced crystal graph network for predicting
properties of materials. Commun Mater 2, 1–11 (2021).

[5] Noh, J. et al. Inverse Design of Solid-State Materials via a Continuous Representation. Matter 1, 1370–
1384 (2019).

[6] Noh, J., Gu, G. H., Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic solid materials:
Promises and challenges. Chem. Sci. 11, 4871–4881 (2020).

[7] Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models.
Nat. Mach. Intell 3, 76–86 (2021).

[8] Long, T. et al. Constrained crystals deep convolutional generative adversarial network for the inverse
design of crystal structures. npj Comput Mater 7, 1–7 (2021).

[9] Fung, V., Zhang, J., Hu, G., Ganesh, P. & Sumpter, B. G. Inverse design of two-dimensional materials
with invertible neural networks. npj Comput Mater 7, 1–9 (2021).

[10] Court, C. J., Yildirim, B., Jain, A. & Cole, J. M. 3-D Inorganic Crystal Structure Generation and Property
Prediction via Representation Learning. J. Chem. Inf. Model. 60, 4518–4535 (2020).

[11] Hoffmann, J. et al. Data-driven approach to encoding and decoding 3-d crystal structures. arXiv preprint
arXiv:1909.00949 (2019).

[12] Kim, S., Noh, J., Gu, G. H., Aspuru-Guzik, A. & Jung, Y. Generative Adversarial Networks for Crystal
Structure Prediction. ACS Cent. Sci. 6, 1412–1420 (2020).

[13] Mildenhall, B. et al. NeRF: Representing scenes as neural radiance fields for view synthesis. arXiv
(2020). 2003.08934.

[14] Park, J. J., Florence, P., Straub, J., Newcombe, R. & Lovegrove, S. Deepsdf: Learning continuous signed
distance functions for shape representation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019).

[15] Chen, Z. & Zhang, H. Learning implicit fields for generative shape modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019).

[16] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S. & Geiger, A. Occupancy networks: Learning 3d
reconstruction in function space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2019).

[17] Xie, Y. et al. Neural fields in visual computing and beyond. Computer Graphics Forum (2022).

[18] Duan, Y. et al. Curriculum deepsdf. In Vedaldi, A., Bischof, H., Brox, T. & Frahm, J.-M. (eds.) Computer
Vision – ECCV 2020, 51–67 (Springer International Publishing, Cham, 2020).

[19] Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2014).

[20] Charles, R. Q., Su, H., Kaichun, M. & Guibas, L. J. Pointnet: Deep learning on point sets for 3d classifi-
cation and segmentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2017).

[21] Zaheer, M. et al. Deep sets. In Neural Information Processing Systems (2017).

[22] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In The International Conference on
Learning Representations (ICLR) (2015).

[23] Jain, A. et al. The Materials Project: A materials genome approach to accelerating materials innovation.
APL Materials 1, 011002 (2013).

[24] Goodfellow, I. J., Bengio, Y. & Courville, A. Deep Learning (MIT Press, Cambridge, MA, USA, 2016).
http://www.deeplearningbook.org.

[25] Goodfellow, I. et al. Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. & Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27
(Curran Associates, Inc., 2014). URL https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

6

2003.08934
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


[26] Nouira, A., Sokolovska, N. & Crivello, J.-C. CrystalGAN: Learning to Discover Crystallographic Struc-
tures with Generative Adversarial Networks. arXiv:1810.11203 [cs, stat] (2019). 1810.11203.

Appendix

A Sampling parameters

For the training of the NeSF, we use the global and local grid sampling with the following parame-
ters.

• For the position field:
– Global grid sampling:

* Grid interval: 1 Å
* Perturbation scale σ: 0.5 Å

– Local grid sampling:

* Grid interval: 0.3 Å
* Grid range for each axis: 1.2 Å

* Perturbation scale σ: 0.5 Å
• For the species field:

– Local grid sampling:

* Grid interval: 0.1 Å
* Grid range for each axis: 0.5 Å

* Perturbation scale σ: 0.5 Å

B Network architecture

The proposed network architecture is specified as follows, where N is the number of atoms in the
input crystal structure, A is the number of atomic species in the dataset, FC stands for fully connected
layers, and numbers in layers represent their feature dimensions.

• Encoder
– Atom position encoder

* Input: Atom positions: [Nx3]
* Shared MLP: [Nx3] -> [Nx128]

· Layers: 3, 64, 128, 128
· Activation function: ReLU
· Using batch normalization
· No dropout

* Output: Atom position features: [Nx128]
– Atom species encoder

* Input: Atom species with one-hot encodings: [NxA]
* Shared MLP: [NxA] -> [Nx128]

· Layers: A, 128, 128
· Activation function: ReLU
· Using batch normalization
· No dropout

* Output: Atom species features: [Nx128]
– Crystal structure encoder

* Input: Atom position features and atom species features: [Nx128], [Nx128]
* Concatenation of atom position features and atom species features: [Nx128],

[Nx128] -> [Nx256]
* Shared MLP: [Nx256] -> [Nx512]

7

1810.11203


· Layers: 256, 512
· Activation function: ReLU
· Using dropout with 0.3 dropout probability

* Max-Pooling (along the atoms): [Nx512] -> [512]
* Concatenation with lattice parameters (length and angles): [512], [6] -> [518]
* MLP: [518] -> [192]

· Layers: 518, 256, 256, 192
· Activation function: ReLU
· Using batch normalization
· Using dropout with 0.3 dropout probability

* Output: Latent vector: [192]
• Decoder

– Lattice lenght parameter decoder
* Input: Latent vector: [192]
* MLP: [192] -> [3]

· Layers: 192, 128, 3
· Activation function: ReLU
· No batch normalization
· No dropout

* Output: Lattice length parameter: [3]
– Lattice angle parameter decoder

* Input: Latent vector: [192]
* MLP: [192] -> [3]

· Layers: 192, 128, 3
· Activation function: ReLU
· No batch normalization
· No dropout

* Output: Lattice angle parameter: [3]
– Position field decoder:

* Input: Latent vector and query position: [192], [3]
* Concatenation of Latent vector and query position: [192], [3] -> [195]
* FC: [195] -> [256]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [256], [3] -> [259]
* FC: [259] -> [128]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [128]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [128]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [128]

· Activation function: ReLU
· Using batch normalization

8



· No dropout
* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [128]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [128]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [128]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [3]

· Activation function: None
· No batch normalization
· No dropout

* Output: Position field value of the query position: [3]
– Species field decoder:

* Input: Latent vector and query position: [192], [3]
* Concatenation of Latent vector and query position: [192], [3] -> [195]
* FC: [195] -> [256]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [256], [3] -> [259]
* FC: [259] -> [128]

· Activation function: ReLU
· Using batch normalization
· No dropout

* Concatenation of above output and query position: [128], [3] -> [131]
* FC: [131] -> [A]

· Activation function: None
· No batch normalization
· No dropout

* Output: Species field value (class likelihood) of the query position: [A]

C Hyperparameter search

We searched hyperparameters by the procedure summarized as the eight steps below. In each step,
we evaluated multiple configurations of certain hyperparameters by training and validating models
on a dataset and chose the best configuration among them for the next step. We evaluated the error
in the number of atoms as the primal performance indicator. When the performance was the same
by this metric, the position error (actual) was used as the secondary performance indicator.

Since the ICSG3D dataset [10] is restricted to certain material classes and prototypes, conducting
the hyperparameter search on it may result in a model with limited generalizability despite the huge
computational effort. We thus prepared a more general dataset, named Limited Cell Size (6 Å)
(LCS6Å), for the hyperparameter search. The LCS6Å dataset is a collection of the material samples
in the Materials Project whose unit cell sizes are 6 Å or less along the x, y, and z axes. The dataset
amounts to 6005 material samples (4.31 % of the Materials Project database) and was split into the
training (5418 samples), validation (286 samples), and test (301 samples) sets.

9



The training of a NeSF model on the LCS6Å dataset took approximately 9 h using a single NVIDIA
RTX8000 GPU (48GB VRAM). The hyperparameter search was carried out on a single NVIDIA
DGX-1 system (NVIDIA V100 GPU 32GB VRAM x8), taking approximately 10 days in total.

0. Target parameters and the initial configuration

• Weights of loss functions: loss_weight.pos=1.0, loss_weight.spec=1.0, loss_weight.abc=1.0, loss_weight.angle=1.0
• The dimension of the latent vector: latent_size=256
• The learning rate of the Adam optimizer: training.lr=0.001
• Layers of the position field decoder: decoder.pos.channels=[256,128,128,128,128,128,128,128,128]
• Layers of the species field decoder: decoder.spec.channels=[256,128,128,128,128,128,128,128,128]
• Layers of the atom position encoder: encoder.smlp_pos.channels=[64,128]
• Layers of the atom species encoder: encoder.smlp_spec.channels=[128]
• Layers of the crystal structure encoder: encoder.smlp_mix.channels=[512], encoder.mlp.channels=[256]
• Batch size: batch_size=64

1. Weights of loss functions

• loss_weight.pos=0.1, loss_weight.spec=0.1, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=0.1, loss_weight.spec=1.0, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=0.1, loss_weight.spec=10.0, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=1.0, loss_weight.spec=0.1, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=1.0, loss_weight.spec=1.0, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=1.0, loss_weight.spec=10.0, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=10.0, loss_weight.spec=0.1, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=10.0, loss_weight.spec=1.0, loss_weight.abc=1.0, loss_weight.angle=1.0
• loss_weight.pos=10.0, loss_weight.spec=10.0, loss_weight.abc=1.0, loss_weight.angle=1.0

2. Size of latent vector

• latent_size=64
• latent_size=92
• latent_size=128
• latent_size=192
• latent_size=256
• latent_size=384
• latent_size=512
• latent_size=1024

3. Learning rate

• training.lr=1.0
• training.lr=0.1
• training.lr=0.01
• training.lr=0.005
• training.lr=0.001
• training.lr=0.0005
• training.lr=0.0001
• training.lr=0.00001

4. Decoder MLP

• decoder.pos.channels=[256,128,128,128,128,128,128,128], decoder.spec.channels=[256,128,128,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128,128,128], decoder.spec.channels=[256,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128,128,128], decoder.spec.channels=[256,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128,128,128], decoder.spec.channels=[256,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128,128,128], decoder.spec.channels=[256,128]
• decoder.pos.channels=[256,128,128,128,128,128], decoder.spec.channels=[256,128,128,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128], decoder.spec.channels=[256,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128], decoder.spec.channels=[256,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128], decoder.spec.channels=[256,128,128,128]
• decoder.pos.channels=[256,128,128,128,128,128], decoder.spec.channels=[256,128]
• decoder.pos.channels=[256,128,128,128,128], decoder.spec.channels=[256,128,128,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128], decoder.spec.channels=[256,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128], decoder.spec.channels=[256,128,128,128,128]
• decoder.pos.channels=[256,128,128,128,128], decoder.spec.channels=[256,128,128,128]
• decoder.pos.channels=[256,128,128,128,128], decoder.spec.channels=[256,128]
• decoder.pos.channels=[256,128,128,128], decoder.spec.channels=[256,128,128,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128], decoder.spec.channels=[256,128,128,128,128,128]
• decoder.pos.channels=[256,128,128,128], decoder.spec.channels=[256,128,128,128,128]
• decoder.pos.channels=[256,128,128,128], decoder.spec.channels=[256,128,128,128]
• decoder.pos.channels=[256,128], decoder.spec.channels=[256,128,128,128,128,128,128,128]
• decoder.pos.channels=[256,128], decoder.spec.channels=[256,128,128,128,128,128]

10



• decoder.pos.channels=[256,128], decoder.spec.channels=[256,128,128,128,128]
• decoder.pos.channels=[256,128,128,128], decoder.spec.channels=[256,128]
• decoder.pos.channels=[256,128], decoder.spec.channels=[256,128,128,128]
• decoder.pos.channels=[256,128], decoder.spec.channels=[256,128]

5. Encoder MLP

• encoder.smlp_pos.channels=[64,128], encoder.smlp_spec.channels=[128]
• encoder.smlp_pos.channels=[64,128], encoder.smlp_spec.channels=[128,128,128]
• encoder.smlp_pos.channels=[64,128,128], encoder.smlp_spec.channels=[128]
• encoder.smlp_pos.channels=[64,128,128], encoder.smlp_spec.channels=[128,128]
• encoder.smlp_pos.channels=[64,128,128], encoder.smlp_spec.channels=[128,128,128]
• encoder.smlp_pos.channels=[64,128,128,128], encoder.smlp_spec.channels=[128]
• encoder.smlp_pos.channels=[64,128,128,128], encoder.smlp_spec.channels=[128,128]
• encoder.smlp_pos.channels=[64,128,128,128], encoder.smlp_spec.channels=[128,128,128]
• encoder.smlp_pos.channels=[64,128], encoder.smlp_spec.channels=[128,128]

6. Crystal structure encoder

• encoder.smlp_mix.channels=[256], encoder.mlp.channels=[512]
• encoder.smlp_mix.channels=[256], encoder.mlp.channels=[512,512,256]
• encoder.smlp_mix.channels=[256,256], encoder.mlp.channels=[512]
• encoder.smlp_mix.channels=[256,256], encoder.mlp.channels=[512,512]
• encoder.smlp_mix.channels=[256,256], encoder.mlp.channels=[512,512,256]
• encoder.smlp_mix.channels=[256,256,512], encoder.mlp.channels=[512]
• encoder.smlp_mix.channels=[256,256,512], encoder.mlp.channels=[512,512]
• encoder.smlp_mix.channels=[256,256,512], encoder.mlp.channels=[512,512,256]
• encoder.smlp_mix.channels=[256], encoder.mlp.channels=[512,512]

7. Batch size

• batch_size=2
• batch_size=4
• batch_size=8
• batch_size=16
• batch_size=32
• batch_size=64
• batch_size=128
• batch_size=256

8. Total verification2

• latent_size=192, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=192, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=192, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=192, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=192, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=192, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=192, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=192, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=192, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=10.0
• latent_size=192, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=192, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=192, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=192, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=192, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=192, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=192, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=192, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=192, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=10.0
• latent_size=192, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=192, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=192, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=192, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=192, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=192, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=192, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=192, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=192, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=10.0

2We performed this step to try to further tune hyperparameters, although no configuration evaluated in this
step was adopted as the final result after all.

11



• latent_size=256, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=256, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=256, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=256, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=256, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=256, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=256, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=256, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=256, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=10.0
• latent_size=256, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=256, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=256, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=256, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=256, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=256, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=256, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=256, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=256, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=10.0
• latent_size=256, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=256, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=256, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=256, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=256, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=256, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=256, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=256, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=256, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=10.0
• latent_size=384, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=384, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=384, training.lr=0.01, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=384, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=384, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=384, training.lr=0.01, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=384, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=384, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=384, training.lr=0.01, loss_weight.pos=10.0, loss_weight.spec=10.0
• latent_size=384, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=384, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=384, training.lr=0.001, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=384, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=384, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=384, training.lr=0.001, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=384, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=384, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=384, training.lr=0.001, loss_weight.pos=10.0, loss_weight.spec=10.0
• latent_size=384, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=0.1
• latent_size=384, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=1.0
• latent_size=384, training.lr=0.0001, loss_weight.pos=0.1, loss_weight.spec=10.0
• latent_size=384, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=0.1
• latent_size=384, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=1.0
• latent_size=384, training.lr=0.0001, loss_weight.pos=1.0, loss_weight.spec=10.0
• latent_size=384, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=0.1
• latent_size=384, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=1.0
• latent_size=384, training.lr=0.0001, loss_weight.pos=10.0, loss_weight.spec=10.0

For ICSG3D, we also tuned the default hyperparameters provided by the authors for the LCS6Å
dataset, by searching for the best configuration from the list below.

• batch_size=10, latent_size=1024

• batch_size=10, latent_size=128

• batch_size=10, latent_size=256

• batch_size=10, latent_size=512

• batch_size=10, latent_size=64

• batch_size=1, latent_size=1024

12



• batch_size=1, latent_size=128

• batch_size=1, latent_size=256

• batch_size=1, latent_size=512

• batch_size=1, latent_size=64

• batch_size=20, latent_size=1024

• batch_size=20, latent_size=128

• batch_size=20, latent_size=256

• batch_size=20, latent_size=512

• batch_size=20, latent_size=64

• batch_size=40, latent_size=1024

• batch_size=40, latent_size=128

• batch_size=40, latent_size=256

• batch_size=40, latent_size=512

• batch_size=40, latent_size=64

• batch_size=5, latent_size=1024

• batch_size=5, latent_size=128

• batch_size=5, latent_size=256

• batch_size=5, latent_size=512

• batch_size=5, latent_size=64

D ICSG3D Dataset Reproduction

We reproduced the dataset used for ICSG3D [10] by curating crystal structure data from the Ma-
terials Project [23], a public online database distributed under Creative Commons Attribution 4.0
License. Unfortunately, the authors of ICSG3D do not provide specific material IDs used for their
experiments. Therefore, by following the procedures in the paper, we crawled the three mate-
rial classes having cubic structures, namely, binary alloys (AB), ternary perovskites (ABX3), and
Heusler compounds (ABX2), from the Materials Project. We consequently obtained 7896 material
samples, which were split into the training (7194 samples), validation (342 samples), and test (360
samples) sets.

E Potential Negative Societal Impacts

We are aware of some potential negative societal impacts of our work. Since our work proposes a
fundamental idea for the decoding of 3D structures consisting of atoms, it may be broadly related
to ML-based approaches for the discovery of novel materials and chemical substances. Therefore,
misuses of our idea may lead to the designing of substances that are harmful to humans.

13


	Introduction
	Method
	Crystal structure representation via NeSF
	Crystal structure estimation using NeSF
	Crystal structure autoencoder

	Results and Discussions
	Conclusion
	Sampling parameters
	Network architecture
	Hyperparameter search
	ICSG3D Dataset Reproduction
	Potential Negative Societal Impacts

