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Abstract

Liquid-liquid phase separation (LLPS) is a fundamental cellular process that is1

driven by self-assembly of intrinsically disordered proteins (IDPs), protein-RNA2

complexes, or other bio-molecular systems which can form liquid droplets. Many3

natural materials including silk, elastin, and gels are a result of LLPS and thus4

rational design of such phase-separating peptides can have transformative im-5

pact, from designing new biologically inspired materials (e.g., clothing) to self-6

compartmentalized drug-delivery systems for biomedical applications. However,7

given the intrisinc complexity in the rules governing LLPS, rational design of LLPS8

undergoing peptides remains challenging. We posit that automation, foundation9

models integrated with reinforcement learning approaches and multiscale molecular10

simulations can drive the design of novel peptides that undergo LLPS. We describe11

our progress towards the goal of end-to-end design of phase separating peptides12

by summarizing current work at the Argonne National Laboratory’s Advanced13

Photon Source 8ID-I beamline, where a robotic set up in the laboratory is enabled14

via simulation and extensive testing of such bio-materials. Together, our approach15

enables the design of novel bio-materials that can undergo phase separation under16

diverse physiological conditions.17

1 Introduction18

Phase separation in biology is now being widely acknowledged as a fundamental mechanism of cellu-19

lar control, including cellular compartmentalization as well as in various diseases such as cancer Hy-20

man et al. [2014]. More importantly, several naturally available proteins such as elastin Rodríguez-21

Cabello et al. [2018], silk Lemetti et al. [2022], Parker et al. [2019], and others are known to undergo22

phase separation which is likely to influence their overall stability and function inside of cells. Given23

that phase separation within such proteins is dependent on their (polymer) length, sequence specific24

linear (amino-acid) motifs, and other factors, a natural question is then in engineering novel constructs25

of such phase separating peptides/proteins that can possess specific properties Hyman et al. [2014].26

Previous studies have examined how sequence composition and polymer length affect phase separation27

properties in elastin-like polypeptides (ELPs) Christensen et al. [2013]. However, given the diversity28

of such sequences and the specific linear motifs that they need to phase separate under physiological29

conditions (e.g., ELPs utilize -(VPXVG)n- motif interspersed with other amino-acid sequences),30

the combinatorial complexity of the design space entails that an exhaustive evaluation of even a31

single class of phase separating peptides can be daunting, tedious, and error-prone. Furthermore, the32

discovery of new phase separating peptides/proteins with diverse mechanisms of self-assembly, there33

is a need to develop robust experimental and computational workflows that can probe and quantify34

how phase separation leads to different behaviors under diverse physiological conditions.35
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Figure 1: An overview of our automated platform for de-
signing phase-separating proteins. Protein engineering is
enabled via liquid handling robots enabling screening of 103
peptides. These are fed into simulation and AI workflows
that automatically suggest new protein designs for subse-
quent rounds. Finally, a smaller set of protein designs (about
102) are characterized using X-ray scattering approaches.

We posit that robotics and automa-36

tion within the laboratory integrated37

tightly with artificial intelligence (AI)38

methods, including generative mod-39

els and reinforcement learning (RL)40

can provide an effective platform for41

not only characterizing phase separa-42

tion mechanisms, but also in design-43

ing novel peptides/proteins that un-44

dergo controlled phase separation un-45

der diverse conditions. As shown in46

Fig. 1, our automated design platform47

at Argonne National Laboratory inte-48

grates high-performance computing49

systems within the Argonne Leader-50

ship Computing Facility (ALCF) with51

the Advanced Photon Source (APS)52

beamline for characterizing phase sep-53

arating proteins using x-ray photon54

correlation spectroscopy (XPCS) and55

the Advanced Protein Characteriza-56

tion Facility (APCF) to clone, express,57

and purify protein samples at scale. At the heart of this self driving lab is a computational engine58

that consists of a suite of generative AI models that has been trained on diverse genome-scale data59

using large language models and fine-tuned on phase-separating protein databases. A RL approach60

is used to guide the precise modifications to the protein sequence that can predict specific phase61

separation properties. These are fed into a multiscale simulation framework that uses enhanced62

sampling techniques guided by AI approaches, namely, DeepDriveMD Brace et al. [2022], Casalino63

et al. [2021] to characterize molecular interactions that control phase separation. This approach lets64

us screen over 105 design candidates rapidly, while the APCF can automate the screening of 102-10365

sequence designs. The refined designs (about 102) are then characterized for phase separation at66

APS-8-ID-I beamline under physiological conditions and the observations are automatically ‘piped’67

through training the AI approaches (so that the design space can be constrained and conditioned68

appropriately). We provide an overview of progress in developing each of the areas highlighted.69

2 AI-enabled phase-separating protein design and multiscale simulations70

2.1 Reinforcement learning and generative sequence models71

We formulate the design of a single sequence x using reinforcement learning where a policy is trained72

to optimize a specific objective Sutton and Barto [2018], Silver et al. [2016]. We initialize a policy73

⇡ = ⇢, where ⇢ is a pretrained generative language model providing the conditional probability74

distribution to predict the next tokens in the sequence. The initialized policy ⇡ is then fine-tuned75

using RL to perform the protein sequence-specific generation task. Combination of RL and language76

models have been successful in the past, where RL models were applied to fine-tune pre-trained77

language models for tasks such as text continuation with positive sentiment or physically descriptive78

language and summarization Ziegler et al. [2019]. In our work, ⇢ is obtained using GPT-NeoX Black79

et al. [2022] trained on diverse protein sequence datasets and fine-tuned on the phase-separating80

protein databases containing ⇠6K sequences You et al. [2020].81

We employ the proximal policy optimization (PPO) algorithm Schulman et al. [2017] as the RL82

model. The PPO policy guides the agent’s actions which in this case is to insert an amino-acid token83

from the sequence model vocabulary. The vocabulary consists of 21 amino-acid tokens and other84

special tokens as part of the tokenization process. In the initial set of experiments for generating85

novel sequences, the reward structure is simplified such that the reward structure benefits insertion of86

(valid) amino-acid tokens and penalized for adding special tokens, with a maximum length of 51287

tokens. Our experiments suggest (Fig. 2) that the RL training results in generating novel sequences.88
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2.2 Multiscale Simulations89

A

B

Figure 2: RL-generated examples of
phase-separating proteins. (A) Returns
(expected sum of rewards) are shown to
improve with episodes suggesting that
the PPO policy in combination with the
GPT-NeoX model learns to generate pro-
tein sequences by guiding the agent’s ac-
tions to insert (valid) amino-acid tokens.
(B) Examples of novel protein sequences
generated after the training with a maxi-
mum sequence length of 512 tokens.

We conducted large-scale replica exchange molecular dy-90

namics (REMD) simulations of LLPS phase-separation in91

the generated peptides undergoing Dignon et al. [2019]92

to characterize the inter- and intra-molecular interactions93

that influence LLPS. We separately simulated (i) diffusion94

of the individual peptides through explicit solvent and (ii)95

closer-range interactions amongst multiple peptides(i.e.,96

peptide aggregation) in explicit solvent.97

The peptides consist of 70-150 amino acids and initially98

simulated in implicit solvent (see below) for 20ns to reach99

stable equilibrium conformations; equilibration of the100

RMSD and radius of gyration occurred within 20ns of101

simulation. Individual peptides were then simulated in an102

explicit solvent model (i.e., water and 150mM NaCl in a103

box providing � 2nm padding around the peptide). The104

peptide and explicit solvent contained roughly 105 atoms.105

Multiple peptides were similarly simulated in an explicit106

solvent model,pandas except they were arranged in a 3107

x 3 x 3 cuboid configuration with 10nm center-to-center108

distance between adjacent peptides. The multiple peptide109

systems contained roughly 106 atoms. These explicit sol-110

vent systems used the ff99sb.ILDN force field and TIP3P111

water model Lindorff-Larsen et al. [2010].112

Replica exchange simulations were carried at 64 tem-113

peratures between 279.15 and 450 K. Each replica used114

the Langevin integrator with 1.0ps�1 collision rate and115

0.004ps time-steps. The replicas were integrated for 2ps116

between each attempted exchange. The short-range elec-117

trostatic interactions and Lennard-Jones interactions were118

evaluated using a cutoff of 0.9nm. Particle-mesh Ewald summation was used to calculate the119

long-range electrostatic interactions with an Ewald error tolerance of 0.0005 and Hydrogen mass120

repartitioning to 1.5amu (to accelerate the integration). Preliminary benchmarking of the REMD give121

930ns/day of simulation for systems having 105 atoms on 8 GPU (NVIDIA A100 cards).122

3 Automated phase-separating protein engineering123

Figure 3: Example phase transition measurement
at the Advanced Protein Characterization Facility.

The DNA fragments encoding the selected pep-124

tide repeats were generated by the overlap-125

extension rolling circle amplification (OERCA)126

method Amiram et al. [2011]. The generated127

clones were sequenced and those with repeats128

of 20 or more peptides were selected for charac-129

terization. The N-terminal His6-tagged proteins130

were purified using immobilized metal-affinity131

chromatography and used without the removal132

of the purification tag. The phase transition of133

the proteins was measured by either monitoring134

absorbance at 350nm in a plate reader or mon-135

itoring interaction with a fluorescent dye via a136

real-time PCR detection system (Fig. 3). The137

phase transition temperature was lower for polypeptides with fewer repeats. Similarly, lower pro-138

tein concentration, the addition of NaCl or PEG-8000 to the solution also resulted in lower phase139

transition temperatures. A fully automated system, driven by a Python API, can be used to assemble140

the various combinations or polypeptides and additives. Current efforts focus on the development of141

a fully automated closed-loop system capable not only measuring phase transition of a given input142
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sample without human intervention, but eventually also carry out the synthesis, cloning, and protein143

purification steps of the workflow.144

4 Robotic pendant drop enabled small-angle scattering experiments145

Robotic pendant drop setup was developed in the adjacent chemistry laboratory of beamline 8-ID-I of146

Advanced Photon Source and robot programs were implemented on a simulation software RoboDK147

[2022]. To perform the pendant drop experiments Bera and Antonio [2016], UR3e collaborative robot148

arm from Universal Robots was utilized as the liquid handling robot. UR3e robot was ideal to operate149

in tight workspaces such as the beamline, due to its compactness and small footprint. In order to150

create precise droplets and eliminate the vibration factor, the experimental setup was designed with a151

pipette docking location. Furthermore, a tool changer (ATI QC-11) was attached to both the end joint152

of the robot and an Opentrons Single Channel P300 GEN2 electronic pipette. The tool changer lets153

us lock and unlock its Master and Tool sides with air compression to pick and place the pipette. The154

pipette was driven to accurately control the volume of the liquid aspirated and dispensed inside the155

tips and ejecting the tips when needed. An optical microscope was placed by the sample location to156

provide live video feed of the sample via the reflection of the 45-degree mirror. The mirror has a 1157

mm through-hole at its center, allowing x-ray beam to pass through so that optical inspection and158

x-ray measurements can be performed simultaneously.159

Figure 4: Robotic Setup in The Chemistry Labora-
tory of Beamline 8-ID-I of APS/Argonne.

RoboDK allows the users to create robot tra-160

jectories in the simulation environment as well161

as execute them on the real robot. The pipette,162

tool changer and optical microscope were con-163

trolled via the DOE light source software164

(EPICS) Kraimer et al. [2012]. Droplet experi-165

ment was simulated in multiple steps by using166

the 3D CAD drawing of the beamline 8-ID-I of167

Advanced Photon Source. The experiment starts168

by locating the robot to the home base, followed169

by picking up the pipette from the docking lo-170

cation. Subsequently, robot attaches a tip to the171

pipette from the tip bin and prepares the sam-172

ple on the 96 well plate by driving the pipette.173

To obtain the measurements with the prepared174

sample, the pipette was placed on to the docking175

location and a droplet is formed by dispensing176

the sample. Lastly, the pipette is picked up from177

the docking location to eject the tip to the trash178

bin and placed back to the docking location, re-179

spectively. Fig. 4 shows RoboDK is executing the program on the UR3e, and the robot is performing180

liquid handing and sample exchange.181

5 Summary182

We have highlighted our progress in developing a self-driving laboratory for designing phase sep-183

arating proteins. Our approach uses robotics integrated in a functioning beamline (to characterize184

size and dynamics of phase separation) with AI/ML techniques and high-throughput molecular185

simulations. The approach also highlighted some important lessons that we learned, including the186

challenges involved in integrating diverse robotic systems and how such ecosystems of commercial187

off-the-shelf robotic systems integration can be carried out across at a user facility. Further, it also188

highlighted the importance of building robust, automated workflow systems that can be used to enable189

high-throughput bio-materials characterization. Finally, it also helped us reduce the time-to-solution190

for design cycles of phase separating proteins from several months to about weeks – thus allowing a191

much rapid exploration of the design space of such materials.192
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