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Abstract

Pre-trained large language models (LLMs) are a powerful platform for building
custom models for various applications. They have also found success in chemistry,
but typically need to be pre-trained on large chemistry datasets such as reaction
databases or protein sequences. In this work, we analyze whether one of the
largest pre-trained LLMs, GPT-3, can be directly used for chemistry applications
by fine-tuning on only a few data points from a chemistry dataset, i.e., without
pre-training on a chemistry-specific dataset. We show that GPT-3 can achieve
performance competing with baselines on three case studies (polymers, metal-
organic frameworks, photoswitches) with representations as simple as the chemical
name in both classification and regression settings. Moreover, we demonstrate that
GPT-3 can also be fine-tuned for inverse design tasks, i.e., to generate a molecule
with properties as specified in a prompt.

1 Introduction

Large language models (LLMs) are billion parameter neural networks also known as foundation
models.1 They are referred to as this because they can serve as the foundation for various downstream
tasks. This insight that models trained on large amounts of unlabeled data can be fine-tuned with only
a few data for specific tasks has led to a revolution in how machine learning systems are being built.
An archetypal example of such a foundation model is the Generative Pre-trained Transformer 3 (GPT-
3),2 a model trained by OpenAI.3,4 GPT-3 has 175 billion parameters, which were trained for months
on hundreds of billions of tokens of text mostly crawled from the Web. Since the release, GPT-3 was

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



i. Classification

ii. Regression

iii. Inverse design

“What is the CO2 Henry coefficient of catena[(µ3-N-
(Pyridin-4-ylmethyl)-L-threoninato)-acetato-zinc(ii)?”

“high”

“What is the logarithmic CO2 Henry coefficient of catena
[(µ3-N-(Pyridin-4-ylmethyl)-L-threoninato)-acetato-zinc(ii)?”

“What is a molecule with a pi-pi* transition wavelength 
of 324.0 nm and n-pi* transition wavelength of 442.0 nm”

ClC1=CC=C(\/N=N\/C2=CC=CC=C2)C=C1
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Figure 1: a) We used GPT-3 for three learning tasks: i) For classification, we discretize our target
variable and then fine-tune GPT-3 to predict the class label. ii) For regression, we round the target
value to two decimal points and then fine-tune GPT-3 to predict the target value. iii) For inverse
design, we prompt a model with a sentence containing the desired properties for a molecule. b) We
test our approach on three case studies; from extended crystals such as metal-organic frameworks,
over linear polymers that could be used as surfactants, to photoswitch molecules.

used as the foundation for the code-completion model Codex (powering GitHub’s Copilot),5 which
has already been tested for chemistry applications,3 or to even write newspaper articles.6

2 Background

Given that most molecules and materials science can be represented as text, there have also been ef-
forts to use LLM to predict their properties.7 One example of a text-based representation of chemistry
is the International Union of Pure and Applied Chemistry (IUPAC) name of chemicals (e.g., 1,3,7-
Trimethylpurine-2,6-dione). Although it allows chemists to uniquely identify compounds, it has not
been widely used for predictive models. More success has been found with using compacter line nota-
tions such as SMILES8 (e.g., CN1C=NC2=C1C(=O)N(C(=O)N2C)C), or more recently, SELFIES (e.g.,
[C][N][C][=N][C][=C][Ring1][Branch1][C][=Branch1][C][=O][N][Branch1][=Branch2]
[C][=Branch1][C][=O][N][Ring1][Branch2][C][C]),9,10 for sequence-to-sequence tasks
such as reaction prediction11,12 or protein design13 and also regression tasks such as molecular
property or yield prediction.14,15 However, all these applications require large datasets16 (even
though they can be unlabeled in some cases) and often also changes in the architecture or training
procedure (e.g., the addition of special regression heads or losses).
In this work, we show that GPT-3 can be easily—using simple string-based representations such as
the IUPAC name or a SMILES—fine-tuned to achieve performance competitive with strong baselines
on multiple chemistry and materials science tasks.

3 Methods

To use GPT-3 for chemistry and materials science regression and classification problems, we use
the language-interfaced fine-tuning (LIFT) framework proposed by Dinh et al.17 in which the tasks
are encoded in text prompts of the form of what is <property> of <material encoding>?
(Figure 1). Note that the actual prompt also contains special tokens to indicate the end of a prompt or
completion (###, @@). For all classification and regression predictions, we only considered the highest
probability output. We use the OpenAI API with default settings for all experiments shown in this
manuscript. In total, the computations used for this project consumed about 1.00 k$. All the code and
data used in this study can be found under MIT license at https://tinyurl.com/gpt3forchem.

To analyze the potential of using GPT-3 for chemistry and materials science applications, we consid-
ered tasks across multiple domains, from molecules, over polymers to extended crystal structures:

Dispersants We analyze the adsorption energy of linear copolymers onto a model surface. This
energy is relevant for dispersant applications where the polymer is supposed to prevent the flocculation
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of suspended particles, e.g., to increase the color brightness of pigments. We represent polymers with
a simple bead notation, e.g., ABAC.18

Photoswitches Photoswitchable molecules can be converted between its cis/trans form by the
irradiation with light.19,20 Photoswitches have various potential applications, e.g., in energy storage,
electronics, or photopharmacology. Key descriptors for the photoisomerization, and our learning
objectives, are the wavelengths for the π − π∗ and n− π∗ transitions. We represent the molecules
using SMILES strings, SELFIES, and IUPAC names (which we retrieved from the NCI/CADD
chemical identifier resolver).

Metal-organic frameworks Metal-organic frameworks (MOFs) are one of the most active fields of
chemistry as they promise to be designable materials across multiple scales.21–24 They have been the
focus of the design of gas separation processes such as carbon capture or methane storage, as well as
for the use in photocatalytic applications. Here, we use gas separation indicators (for carbon dioxide
and methane) computed using grand canonical Monte-Carlo simulations as well as band gaps, as
provided in the mofdscribe package.25–27 We represent MOFs with MOFid28 and chemical names
(as retrieved from the Cambridge Structural Database, CSD29).

4 Results and discussion

4.1 Classification

A common application of natural language models is classification. To test the applicability of
GPT-3 in this setting for chemistry problems, we converted all case studies into classification tasks
by binning our continuous targets into five equally sized bins. To compare with regression models
as baselines, apply the same binning procedure to the outputs of the regression models. In Table 1
(and Table 3) we compare the performance of our approach with baselines across our case studies.
Across all case studies, we find the fine-tuning of GPT-3 to be competitive with our baseline models
(in several cases achieving better predictive performance). This is in particular also the case for the
few-shot classification setting in which we provide the model only with ten examples of the particular
dataset in the training step. Interestingly, models trained on the chemical name outperform those
trained on more conventional line notations such as SELFIES and SMILES. One possible reason for
this is that the chemical name provides more meaningful chemical context than the line notations.

4.2 Regression

Given the good performance in the classification setting, we investigated if our approach can also be
used to directly solve the regression task, i.e., predict floating point numbers instead of classes. For
this, we use the same prompt and completion templates but replace the class label with the rounded
target values (to ensure that our training completions have a finite fixed number of two decimal
points). Note that we do not change the loss function (i.e., we still use the default cross-entropy
loss used for token prediction in language models) or the model architecture. Also in the regression
setting (see Table 2 and Table 4) we observe performance competing with or exceeding the one of the
baselines.

4.3 Inverse design

The perhaps ultimate goal of machine learning in chemistry is to create a model that can generate
molecules with a desired set of properties. This is also known as inverse design.33 A very convenient
input form for inverse design models might be natural language, such that the chemist can prompt the
model with an English prompt specifying the desired properties. Here, investigated this setting: Can
a fine-tuned GPT-3 propose valid molecules that satisfy the constraints in a prompt?

For this, we focus on the polymer and photoswitch case studies as we can use existing tools to verify
the predictions of the model (for the MOF design, there is currently no direct mapping between
MOFid or chemical name and the crystal structure, wherefore we cannot easily validate predictions
made by the model). In both cases, we still performed a train test split (0.9/0.1) to obtain independent
prompts for the test of the model that follows the same distribution as the data in the training set.
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Table 1: Classification metrics for the photoswitch case study. Values indicate the means and standard
deviation of at least three (typically ten) independent runs. The baseline is based on the GPR model
proposed by Griffiths et al. 19 The metrics for the MOF and dispersant case studies can be found in the
Appendix in Table 3. For the TabPFN30 baseline we used Morgan fingerprints with a bit size of only
100 as the current TabPFN model only has been pretrained for up to 100 features. For the MolCLR
baseline fine-tuned a graph-isomorphism network (GIN, ∼220 thousand parameters) pretrained by
Xu et al. 31 on ∼10 million unique molecules.

model accuracy (macro) F1 micro F1 macro

photoswitch few shot (10 training points)

GPT-3 on IUPAC names 0.82 ± 0.03 0.64 ± 0.06 0.34 ± 0.08
GPT-3 on SMILES 0.75± 0.03 0.34± 0.12 0.17± 0.07
GPT-3 on SELFIES 0.76± 0.04 0.33± 0.11 0.18± 0.07
GPR19 0.75± 0.04 0.40± 0.10 0.26± 0.15
TabPFN30 0.79± 0.03 0.44± 0.16 0.26± 0.10
MolCLR32, GIN31 0.71± 0.04 0.28± 0.10 0.09± 0.03

photoswitch (300 training points)

GPT-3 on SMILES 0.87± 0.05 0.66± 0.16 0.61± 0.12
GPT-3 on SELFIES 0.88± 0.01 0.70± 0.03 0.62± 0.11
GPR19 0.91 ± 0.02 0.78 ± 0.05 0.77 ± 0.07
TabPFN30 0.88± 0.02 0.71± 0.05 0.66± 0.10
MolCLR32, GIN31 0.90± 0.01 0.75± 0.03 0.69± 0.08

Table 2: Regression metrics for the photoswitch case study. Values indicate the means and standard
deviation of (typically ten) independent runs. The baseline is based on the GPR model proposed
by Griffiths et al. 19 We could not retrieve the IUPAC name for all molecules, wherefore there is no
metric for the model trained on IUPAC names for 350 training points. Metrics for the MOF and
dispersant case studies can be found in the Appendix in Table 4.

photoswitch few shot (50 training points)
model MAE / nm

GPT-3 on IUPAC names 27.23± 7.19
GPT-3 on SMILES 50.13± 6.58
GPT-3 on SELFIES 47.82± 1.03
GPR19 26.82± 4.04
MolCLR32, GIN31 94.52± 28.32

photoswitch (350 training points)
model MAE / nm

GPT-3 on SMILES 21.38± 4.58
GPT-3 on SELFIES 23.18± 3.07
GPR19 14.10± 3.13
MolCLR32, GIN31 22.55± 2.26

Dispersants We task the model to find monomer sequences that have specific adsorption energy as
well as a specific composition. Therefore, it is natural to evaluate the model by measuring i) how
many of the generated monomer sequences are valid, ii) how well they satisfy the composition prompt,
and iii) how far the adsorption energy for the generated polymer deviates from the desired one. We
find that the model succeeds in generating novel valid polymer strings that also closely satisfy the
constraints (Table 5). Only at high softmax temperatures it rarely generates invalid polymer sequences.
In the ?? we also show that the model can potentially be used to predict monomer sequences with
performance outside the training distribution.

Photoswitches For photoswitches, we also observe that the model can generate valid SMILES
strings (Table 6). Interestingly, we observe here a stronger influence on the softmax temperature. A
higher temperature leads the model to generate more novel molecules, that it has not seen before in
the training set, however, this also causes it to produce fewer valid ones. In addition, the errors on the
prompt agreement for the transition wavelengths tend to increase.
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Figure 2: Classification accuracy for different representations on the photoswitch dataset. In the
top row, we show accuracies from independent runs, and in the bottom row bootstrapped effect
sizes.35 The fragment representation refers to a simple listing of the SMILES of EFGs. The padded
representation pad the original SELFIES tokens with numerical encodings (“one-hot”) that are zero-
filled up to three and four places, respectively.

5 Discussion

Impact of representation An interesting finding of our experiments is that the IUPAC name is
frequently a more powerful representation than line notations such as SELFIES or SMILES. One
hypothesis for this is that the IUPAC names are a compact, structured, representation of meaningful
chemical building blocks. To investigate this hypothesis we created additional representations for
the photoswitch datasets. First, we used Extended Functional Groups (EFGs)34 for decomposing
molecules into fragments which we used both directly as tokens as well as in form of a categorical
encoding without any direct relation to their chemical identity. Second, we mapped the SELFIES
tokens to symbols without any relationship to the chemistry of the token (e.g., [C] → [1]). Third,
we padded the SELFIES with zero-filled numerical categorical encoding. In Figure 2 we find that
having large chunks of chemical building blocks bundled together (in fragments) helps the model, but
that also the chemical information in the tokens helps the model reason (compare one-hot encoded
performances).

Limitations and outlook Although fine-tuning of pre-trained large language models such as GPT-3
shows encouraging results, there are still many questions that our work did not address. For instance,
we found in preliminary experiments that the generalization performance depends on fine-tuning
hyperparameters, such as the number of epochs that we did not optimize. Moreover, it is well known
that prompt engineering can lead to drastically improved predictive performance,3,36 which we also
did not systematically explore in this work (Appendix A.7). Additionally, the use of the OpenAI API
limits the types of analyses we can perform on the model. For instance, it is impossible to analyze the
fine-tuned models’ embeddings. For this reason, we are in the process of replicating our experiments
with the open-source GPT-J model (which will also allow us to customize the tokenization).37

Societal impacts While our research might be used to accelerate the discovery of new materials
and drugs that can have a wide range of applications, it could also be used for malicious purposes
such as the development of chemical agents or weapons.
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6 Conclusions

We showed that fine-tuned GPT-3 models can show performance competing with, or even surpassing,
baselines in both classification and regression settings after fine-tuning with little data. Moreover, this
approach also shows encouraging results for the inverse design of materials. After fine-tuning with
only a few examples, we could generate valid SMILES strings and monomer sequences that show
good agreement with the desired properties specified in the prompt. Overall, this paradigm of using
large pre-trained LLMs might democratize access to machine learning for the discovery of materials
as competing performance can be achieved without any customization of the architecture or training
procedure and without the development of specific featurization approaches—in our case, the IUPAC
name could sometimes beat the performance of hand-crafted features.
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A Appendix

A.1 MOF and dispersant case studies

We report metrics in Table 3 and Table 4.

Table 3: Classification metrics for the MOF and dispersant case studies. Values indicate the means
and standard deviation of (typically ten) independent runs. For the baseline runs indicated with stars
(*), hyperparameter optimization fails because not all classes occur in all splits. For the ones with † it
did not finish within the allocated computational budget. In those cases, we report the performance
without hyperparameter optimization.

model accuracy (macro) F1 micro F1 macro

dispersants (2000 training points)

GPT-3 fine tuned 0.93± 0.00 0.81± 0.02 0.77± 0.08
baseline (XGBoost) 0.91± 0.00 0.79± 0.00 0.79± 0.00

MOF bandgap (3000 training points)

chemical name 0.92± 0.01 0.66± 0.06 0.79± 0.02
MOFid 0.91± 0.02 0.77± 0.04 0.61± 0.04
baseline (XGBoost†) 0.81± 0.01 0.53± 0.02 0.49± 0.05

MOF CO2 Henry coefficient few shot (10 training points)

chemical name 0.78± 0.01 0.42± 0.05 0.13± 0.01
MOFid 0.76± 0.04 0.39± 0.05 0.16± 0.03
baseline (XGBoost*) 0.74± 0.02 0.34± 0.04 0.20± 0.02

MOF CO2 Henry coefficient (1000 training points)

chemical name 0.84± 0.02 0.54± 0.01 0.33± 0.10
MOFid 0.80± 0.01 0.51± 0.03 0.30± 0.04
baseline (XGBoost†) 0.82± 0.00 0.55± 0.01 0.41± 0.02

MOF CH4 deliverable capacity few shot (10 training points)

chemical name 0.72± 0.01 0.29± 0.03 0.15± 0.03
MOFid 0.75± 0.04 0.32± 0.02 0.12± 0.03
baseline (XGBoost*) 0.72± 0.01 0.31± 0.03 0.23± 0.02

MOF CH4 deliverable capacity (1000 training points)

chemical name 0.77± 0.01 0.43± 0.02 0.36± 0.03
MOFid 0.76± 0.01 0.39± 0.02 0.31± 0.03
baseline (XGBoost†) 0.89± 0.00 0.72± 0.01 0.71± 0.01

A.2 Dispersant inverse design

We report metrics in Table 5.

We also investigated the more challenging case of completely excluding one class (e.g. very large
adsorption energy, Figure 3) from training. A virtual screening approach could, by design, never
outperform a generative model in this setting.

A.3 Photoswitch inverse design

We report metrics in Table 6.

A.4 Fine-tuning hyperparameters

We performed all experiments shown in the main text with the default fine-tuning settings of the
OpenAI API and the smallest model (ada) as, in preliminary experiments, we did not find a per-
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Table 4: Regression metrics for the MOF and dispersant case study. Values indicate the means and
standard deviation of (typically ten) independent runs.

model MAE

dispersants few shot (10 training points)

GPT-3 fine tuned (3.13± 0.37) kBT
baseline (12.32± 0.00) kBT

dispersants (2000 training points)

GPT-3 fine tuned (0.52± 0.03) kBT
baseline (1.16± 1.30) kBT

MOF bandgap (few shot) (10 training points)

MOFid (1.11± 0.03) eV
chemical name (1.34± 0.33) eV
baseline (1.64± 0.00) eV

MOF bandgap (1000 training points)

MOFid (0.58± 0.06) eV
chemical name (0.54± 0.03) eV
baseline (1.11± 0.08) eV

Table 5: Prompt agreement and training set similarity for dispersant inverse design. We measure
the maximum common subsequence with respect to all sequences in the training set and normalize
it by the sequence length. Composition mismatch is computed with respect to each component
and then aggregated by computing the mean. Mean absolute error is computed with respect to the
performance of the XGBoost baseline model (see Table 4) because of the high computational cost of
the simulations. Kullback-Leibler (KL) divergence is computed between the feature set distributions
of the training set and the generated molecules.

temperature fraction
valid

fractional
novel

KL diver-
gence

maximum
common
subse-
quence

composition
mismatch

MAE /
kBT

0.0 1.0± 0.0 0.90±0.02 0.73±0.01 0.45±0.02 0.24±0.01 3.11±0.05
0.25 1.0± 0.0 1.0± 0.0 0.97±0.01 0.46±0.01 0.24±0.01 3.10±0.03
0.5 1.0± 0.0 1.0± 0.0 0.95±0.01 0.47±0.01 0.24±0.01 3.08±0.02
0.75 1.0± 0.0 1.0± 0.0 0.93±0.01 0.47±0.01 0.32±0.21 3.07±0.03
1.0 1.0± 0.0 1.0± 0.0 0.91±0.01 0.47±0.02 0.53±0.60 3.08±0.02
1.25 0.99±0.01 1.0± 0.0 0.90±0.02 0.48±0.01 1.66±1.20 3.10±0.02
1.5 0.96±0.02 1.0± 0.0 0.90±0.01 0.50±0.02 3.52±0.15 3.14±0.05

test set 1.00 1.00 0.99±0.00 0.55±0.00 0.00 3.10±0.02

formance increase that would justify the high cost of the largest model (davinci). In preliminary
experiments, we found that for optimal predictive performance the number of fine-tuning epochs
should be optimized as a function of the number of training points. However, due to limitations in
computational resources, we did not optimize this. For all classification and regression experiments,
we only considered the zero temperature, i.e., argmax output.

A.5 Baselines

For the case studies in the main text we also used hand-tuned baselines in addition to the fine-tuning
of MolCLR32(regression and classification) and TabPFN30 (only classification).

Polymers As a baseline for the polymer case studies we used gradient-boosted decision tree
classifiers and regressors (as implemented in XGBoost38), respectively. We use the feature set
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Figure 3: Predicting monomer sequences with unseen properties. For this experiment we fine-tuned
GPT-3 on monomer sequences with adsorption energies smaller than −7.50 kT and then used the
compositions and adsorption energies of the remaining polymers in the dataset to prompt GPT-3.

Table 6: Prompt agreement and validity metrics for photoswitch inverse design. The mean absolute
errors (MAEs) are computed with respect to the predictions of a Gaussian Process Regression as
reported by Griffiths et al. 19 (compare baselines in Table 1). The mean similarity is the mean
Tanimoto similarity to RDKit fingerprints in the training set.

temperature fraction valid fraction in
training set

mean similar-
ity

π − π∗ MAE
/ nm

n− π∗ MAE
/ nm

0.0 1.00± 0.00 0.81± 0.32 0.33± 0.01 32.61± 4.71 21.76± 4.39
0.25 1.00± 0.01 0.80± 0.19 0.32± 0.01 36.20± 4.67 20.44± 3.68
0.5 0.99± 0.02 0.65± 0.11 0.31± 0.01 41.76± 5.10 19.98± 3.41
0.75 0.97± 0.03 0.55± 0.06 0.30± 0.01 44.67± 6.52 20.05± 3.80
1.0 0.79± 0.07 0.44± 0.08 0.28± 0.01 46.38± 9.58 20.21± 4.47
1.25 0.49± 0.07 0.32± 0.11 0.28± 0.01 45.69±13.76 18.66± 4.14
1.5 0.18± 0.05 0.20± 0.14 0.22± 0.04 45.43±17.47 18.29±10.16

reported in Jablonka et al. 18 that includes statistics of the monomer sequence (composition, statistics
of clusters of monomers, Shannon entropy of the sequence). We optimize the hyperparameters (using
5-fold cross-validation) of the model for 100 trials using the tree-structured Parzen estimators39

strategy implemented in Optuna.40 We considered the hyperparameter ranges listed in Table 7 and
Table 8.

MOFs As the baseline model for the MOF case studies we used gradient-boosted decision tree
classifiers and regressors (as implemented in XGBoost), respectively. We used the default feature set

Table 7: Hyperparameter ranges for the XGBoost classification baselines.

name range sampling

n_estimators 4–10000 uniform
max_depth 4.00–100.00 uniform
learning_rate 0.00–0.05 log uniform
colsample_bytree 0.20–1.00 log uniform
subsample 0.00–1.00 log uniform
alpha 1.00× 10−6–10.00 log uniform
lambda 1.00× 10−8–10.00 log uniform
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Table 8: Hyperparameter ranges for the XGBoost regression baselines. We fixed the number of
estimators to 10000.

name range sampling

max_depth 4.00–12.00 uniform
learning_rate 0.01–0.05 log uniform
colsample_bytree 0.20–0.60 log uniform
subsample 0.40–0.80 log uniform
alpha 0.01–10.00 log uniform
lambda 1.00× 10−8–10.00 log uniform
gamma 1.00× 10−8–10.00 log uniform
min_child_weight 10.00–1000.00 log uniform

provided via mofdscribe25 (including persistent homology features,41,42 pore shape descriptors,43

and atomic property-labeled radial distribution functions44). We optimize the hyperparameters (using
5-fold cross-validation) of the model for 100 trials using the tree of Parzen estimators strategy
implemented in Optuna.40 We considered the hyperparameter ranges listed in Table 7 and Table 8.

Photoswitches For the photoswitch case study, we use the model proposed by the original au-
thors19,20: We describe molecules using the fragprints (Morgan fingerprints45 augmented with
85-dimensional fragment descriptor computed with RDKit46) proposed in the original work and train
Gaussian process regressors (GPR) with a Tanimoto kernel47 (as implemented in GPflow48). We
reproduce the performance metrics reported in the original work.

A.6 SMILES randomization as data augmentation

We also investigated the use of data augmentation via SMILES randomization49–51 on the photoswitch
case study using 10 random enumerations. As shown in Table 9, we do not observe significant changes
in predictive performance.

A.7 Prompt engineering

We also tested prefixing the prompts with strings as “I’m an export polymer chemist” but did not
observe increases in predictive performance. Further, systematic analyses will be the subject of future
work.
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Table 9: Classification metrics for the photoswitch case study using SMILES randomization as data
augmentation.

no. training points accuracy (macro) F1 micro F1 macro

no augmentation

10 0.75± 0.03 0.34± 0.12 0.17± 0.07
50 0.80± 0.03 0.46± 0.14 0.29± 0.10
100 0.82± 0.04 0.51± 0.17 0.40± 0.14
200 0.86± 0.02 0.61± 0.19 0.55± 0.18
300 0.87± 0.05 0.66± 0.16 0.61± 0.12
350 0.88± 0.07 0.69± 0.23 0.63± 0.23

augmentation without including canonical SMILES

10 0.77± 0.01 0.38± 0.15 0.28± 0.12
50 0.83± 0.02 0.34± 0.32 0.28± 0.26
100 0.84± 0.06 0.45± 0.34 0.44± 0.33
200 0.86± 0.09 0.61± 0.30 0.58± 0.28
300 0.88± 0.08 0.68± 0.26 0.64± 0.25
350 0.89± 0.08 0.72± 0.26 0.67± 0.27

augmentation including canonical SMILES

10 0.77± 0.03 0.31± 0.22 0.22± 0.16
50 0.83± 0.02 0.50± 0.23 0.47± 0.22
100 0.86± 0.02 0.62± 0.18 0.59± 0.18
200 0.88± 0.04 0.62± 0.28 0.59± 0.27
300 0.89± 0.05 0.62± 0.34 0.57± 0.32
350 0.91± 0.03 0.76± 0.07 0.76± 0.11

13


	Introduction
	Background
	Methods
	Results and discussion
	Classification
	Regression
	Inverse design

	Discussion
	Conclusions
	Appendix
	MOF and dispersant case studies
	Dispersant inverse design
	Photoswitch inverse design
	Fine-tuning hyperparameters
	Baselines
	SMILES randomization as data augmentation
	Prompt engineering


