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Abstract

The proliferation of deep learning (DL) techniques in recent years has resulted
in the creation of progressively larger datasets and deep learning architectures.
As the expressive power of DL models has grown, so has the compute capacity
needed to effectively train the models. One such example is the OpenCatalyst
dataset in the emerging field of scientific machine learning, which has elevated the
compute requirements needed to effectively train graph neural networks (GNNs)
on complex scientific data. The extensive compute complexity involved in training
GNNs on the OpenCatalyst dataset makes it very costly to perform hyperparameter
optimization (HPO) using traditional methods, such as grid search or even Bayesian
optimization-based approaches. Given this challenge, we propose a novel method-
ology for effective, cost-aware HPO. By leveraging a multi-fidelity approach on
experiments with reduced datasets, we consider both hyperparameter importance
and computational budget to show speedups of over 50 percent when performing
the hyperparameter optimization of the E(n)-GNN model on OpenCatalyst.

1 Introduction

Over the last decade, machine learning has demonstrated the ability to significantly accelerate
scientific discovery, especially through surrogate models that mitigate the cost of complex physical
simulations. An exemplary case of this is speeding up quantum chemical calculations—ab initio
using density functional theory (DFT)—that are required for AI-enabled materials design. Model
architectural novelty, complexity, and scale have grown ambitiously, as evidenced by the OpenCatalyst
dataset [Chanussot* et al., 2021] which contains terabytes of DFT calculations of catalytic materials.
This project in particular has enabled the application of deep learning (DL) models for solid-state
materials design and has inspired the creation of novel DL architectures for the field of geometric
deep learning. Equivariant graph neural networks (GNNs), such as DimeNet [Klicpera et al., 2020],
GemNet [Gasteiger et al., 2021], SE3-Transformer [Fuchs et al., 2020] and E(n)-GNN [Satorras
et al., 2021] all strongly leverage physical inductive biases. The resulting geometric DL models
are theoretically more expressive and thus easier to train with less data. However, these models
require a significant amount of hyperparameter optimization (HPO) to obtain best performing
configurations Snoek et al. [2012]. This challenge remains pervasive amongst DL tasks, especially in
large computational scale tasks such as the OpenCatalyst dataset, whose models use a hyperparameter
grid search to identify good hyperparameters Tran et al. [2022]. While automatic HPO tools—such
as SigOpt, Optuna, and Weights and Biases—promise to increase the speed of HPO while abstracting
its complexity away from users, naively using them to perform HPO on large, complex models may
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Figure 1: A histogram of the number of training epochs with early stopping enabled, where the max
training epochs is thirty. We see that early stopping kicks in about 2/3 of the time and a time savings
of about 50 percent on average.

result in an experiment that takes multiple months to complete. This is unfeasible for large-scale
training runs, and this article details the procedures involved in completing the HPO of large scale
GNNs trained on the OpenCatalyst dataset in a more reasonable (order of days) amount of time.

Our paper proposes a hyperparameter optimization method for training models on large-scale materi-
als datasets, specifically the OpenCatalyst dataset, which are directly relevant to AI-Guided materials
design. As deep learning becomes more and more sophisticated and materials related datasets be-
come larger and larger in size, it will be increasingly important to leverage effective hyperparameter
optimization methods to effectively perform model training. This will be particularly relevant when
applying deep learning models in materials design frameworks that rely on deep learning based
predictions, where accuracy of the prediction becomes significantly more important.

To perform HPO of large-scale scientific tasks, we modulate the size of our optimization experiments
to generate cheaper data sources. We leverage these sources in multiple ways to inform the design of
larger scale experiments and reduce the time needed for HPO by over fifty percent. The key takeaway
here is no one method worked best “out-of-the-box” - only through a careful analysis of the model
and data were we able to achieve these results. In Section 2 we discuss the problem setup, in Section
3 we breakdown the methodology used to solve this HPO problem, and finally, in Section 4 we
discuss key results.

2 Problem Setup

The OpenCatalyst Project, jointly developed by Fundamental AI Research (FAIR) at Meta AI and
Carnegie Mellon University’s (CMU) Department of Chemical Engineering, encompasses one of the
first large-scale datasets to enable the application of machine learning (ML) techniques, containing
over 1.3 million molecular relaxations of 82 adsorbates on 55 different catalytic surfaces. The original
release from 2019 has also been supplemented by subsequent updates in 2020 and 2022 and maintains
an active leaderboard and annual competition [Chanussot* et al., 2021].

The challenge and dataset comprises three tasks. Here, we focus on the S2EF task, whereby an
abstract DL model uses the initial, unrelaxed structure to predict both the electronic energy of the
system and its first derivative with respect to atom positions (forces). We perform training experiments
using the Open MatSci ML Toolkit framework [Miret et al., 2022] and the OpenCatalyst data splits,
building from a 200K Training & 1M Validation split for the lowest fidelity, towards a 20M Training
& 1M Validation dataset for the large scale experiments. For this task we utilize the E(n)-GNN
architecture [Satorras et al., 2021]. E(n)-GNN is equivariant with respect to positions, which is useful
for the S2EF task, where the rotation of the entire compound does not affect its properties.

3 Hyperparameter Optimization

The hyperparameters of a network encode the architecture and design of a neural network. Hyperpa-
rameters impact performance of a model—often in significant and opaque ways—and identifying
performant hyperparameters is a crucial task during the model training process [Snoek et al., 2012].

In this section, we first outline some standard methods used to perform HPO. We then describe the
ensemble of HPO methods used to effectively reduce HPO time by over fifty percent.
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Figure 2: Above, we plot the importances of a 21-dimensional HPO search space (top) and a
restricted 12-dimensional search space (bottom) of the E(n)-GNN Satorras et al. [2021]. The
hyperparameters associated with training such as learning rate, gamma, or batch size are the most
important. Furthermore, the layer depth hyperparameters seem to matter very little, suggesting that
they ought to be fixed instead of selected for during the optimization process.

3.1 HPO Methods

Early Stopping: Early stopping is one of the standard mechanisms for saving wall clock time during
training. Essentially, if the loss does not decrease after a fixed number of iterations (five in our case),
training is terminated early. Note that early stopping incurs additional overhead because we must
compute the validation metric every few epochs. However this is typically a very low overhead. In
Figure 1, we found early stopping to decrease the total training time by about 50 percent on average
(not included in the time savings provided by our method).

Bayesian Optimization: Hyperparameter optimization (HPO) frames the identification of performant
model hyperparameters as the optimization problem minθ∈Θ f(θ), where Θ is the space of all
possible hyperparameter configurations to search over and each θ is one particular hyperparameter
configuration for which the optimization metric f(θ) may be computed post-training. Bayesian
optimization (BO) Snoek et al. [2012] has been recognized as one of the most reliable and efficient
ways of performing general HPO of an arbitrary machine learning model Turner et al. [2021].

Though BO is more efficient than other HPO methods, the problem of continuously training and
retraining a large neural network for a hundred or more iterations is still a very large overhead, and
makes it unsuitable for direct use in our situation.

Multi-fidelity Optimization: Multi-fidelity optimization [Forrester et al., 2007] introduces an
additional fidelity parameter s which trades off noise and cost. A low-fidelity evaluation will be noisy
but cheap, whereas a high-fidelity evaluation will be accurate but expensive.

In the context of this paper, fidelity parameters include the size of the training and validation sets or
the number of training epochs. The question of how to best use low-fidelity information to accelerate
optimization at higher fidelities is still a challenge at large in the optimization community. In general,
the idea is to accrue a large amount of cheap data at the lower fidelity to accelerate optimization at
the higher fidelity Li et al. [2017], Wu et al. [2020], Lee et al. [2020].
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Hyperparameter Importance: Before proceeding with HPO at all, the tuneable hyperparameters
must be selected. This decision controls the performance of the resulting model; there is a fundamental
trade-off between the dimensionality of the search space and the expressiveness of models found
in said search space. A high-dimensional search space is too large to search efficiently, and a low-
dimensional one may not contain a suitable model. The question then becomes how to select a
reasonable search space containing performant models that is not prohibitively large.

The analysis of variance (ANOVA), and its more efficient relative functional analysis of variance
(FANOVA) Hutter et al. [2014], measures the importance of a parameter on a measured probabilistic
outcome. In Figure 2, we show the FANOVA importances computed on different E(n)-GNN HPO
experiments.

Computing these importances requires a nontrivial amount of data over the full search space of
hyperparameter choices, but once we have these, we can rank hyperparameter importances and
truncate the search space to search over only the top few contenders.

3.2 Our Methdology

We opt for an ensemble of the above methods to accelerate the hyperparameter optimization process.
We fix two different fidelity levels: low and high (as opposed to a full continuum of fidelities). The
low fidelity uses smaller training and validations. We perform the following steps:

1. Run Bayesian optimization on a large search space and at a low fidelity with early stopping.

2. Use this low-fidelity information to compute hyperparameter importances (FANOVA).

3. Save the top k (we set k to five) hyperparameters found at the low fidelity, and train the
same k models at the high fidelity.

4. Pick the most important k hyperparameters, and perform hyperparameter optimization over
those on the full fidelity.

The idea is to first identify promising candidate points in a large space quickly through low-fidelity
optimization and early stopping, then to perform FANOVA testing to identify a smaller search
space, and lastly perform high-fidelity optimization in this restricted search space with k promising
candidates. The hope is that time savings achieved in the high-fidelity optimization will far exceed
the overhead of obtaining the low-fidelity information. Certainly more extensive methods might
accelerate the hyperparameter optimization further, but we found this ensemble to work well for our
purposes.

4 Results & Discussion

4.1 Experimental Set Up

We consider the hyperparameter optimization and neural architecture search of the E(n)-GNN Satorras
et al. [2021] models trained and validated on the OpenCatalyst dataset Chanussot* et al. [2021]. The
low and high fidelities we consider are OpenCatalyst training sets of size 50k and 200k, respectively,
with the same validation set. We performed all experiments using the Open MatSci ML Toolkit
[Miret et al., 2022] on a cluster of GPUs.

We considered three experiments: a reference experiment in a large 21 dimensional space at medium
fidelity which we use as a baseline, a low-fidelity, data-gathering experiment in a smaller 12 dimen-
sional search space, and a high-fidelity experiment which uses our ensemble HPO methods. We refer
to these as the "Reference-Baseline", "Low-Data", and "High-Method" experiments, respectively.
See Appendix A.1 for the full search spaces of these experiments.

In Figure 1, we determined that the average number of epochs before early stopping kicked in
was 18. We used this information by setting the number of training epochs to this number in the
"High-Method" experiment, in the hopes of achieving a significant time savings without needing to
early stop using a higher epoch count.
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Figure 3: We compare 200 iterations of the Low-Data experiment (orange), which uses standard
Bayesian optimization, with five iterations of the High-Method experiment (blue), which uses a
more data-driven approach to HPO. We draw a horizontal line to indicate the best loss achieved by
High-Method; observe that the Low-Data experiment never achieves a comparable loss even after
200 iterations, demonstrating the utility of our HPO method.

4.2 Results

We ran the Low-Data (low-fidelity) experiment as an information gathering step and then ran the High-
Method (high-fidelity) experiment using the method described in Section 3.2. We then compared the
results of this experiment with those in the Reference-Baseline experiment.

The Reference-Baseline experiment was able to achieve a best loss of about 65.5 in twelve iterations
of HPO. In comparison, the High-Method experiment was able to achieve a best lost of 62.8 in only
five iterations. We also need to measure the overhead of the Low-Data experiment, which ran 200
iterations of HPO on a training set of size 50k. We found training time to be roughly proportional to
the size of the training set, and therefore the entire overhead of the Low-Data experiment was roughly
equivalent to one iteration of the High-Method experiment. We conclude that our method was able to
save more than fifty percent of real-world wall clock time in the optimization process. This does not
include early stopping, which we estimate to further reduce cost by a factor of two. The real-world
wall clock time saved on these experiments was significant: the High-Method experiments took two
to three hours per iteration on average, while the Low-Data experiments took 61 minutes on average,
see Tables 4, 5. This results in time savings on the order of days per experiment; had we used the
training set with 20 million samples these savings may be even greater.

5 Concluding Thoughts

We have presented a case study of a simple hyperparameter optimization applied to the E(n)-GNN
model for the OpenCatalyst Dataset task. We note that this case study is neither a comprehensive
study of hyperparameter optimization (and neural architecture search) methods, nor a careful analysis
of the challenges involving prediction of expensive DFT calculations. This case study instead is a bit
of both, and though it lacks the depth of either the former or latter, we believe it provides valuable
insight into the process of developing and optimizing for large-scale neural networks (without the
need to make any specific claims or arguments).

The key takeaway from this case study is that a careful analysis of the dataset, the model, hyper-
parameter search space, and the optimization algorithm is required to identify a good model in a
short amount of time —we believe no hyperparameter optimization method will generically work
out-of-the-box without applying these principles.
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A Appendix

A.1 Experiment configurations

Tables in this section detail the three experiment configurations.

Table 1: Search space for Experiment Reference-Baseline; “grid” values in square brackets correspond
to possible discrete values, while those separated by en dashes refer to minimum and maximum
boundary values.

Parameter name Values

Backbone parameters
MLP hidden dim [64, 128]
MLP output dim [64, 128]
# of EGNN layers 2–5
Node MLP depth 2–3
Node MLP dim [64, 128]
Edge MLP depth 2–3
Edge MLP dim [64, 128]
Atom position MLP depth 2–3
Atom position MLP dim [64, 128]
Residual term [False, True]
Edge normalization [False, True]
Edge tanh activation [False, True]
Output activation [False, True]
Graph read out [Sum, Mean, Weighted sum, Max]
Node projection block depth 2–3
Node projection hidden dim [64, 128]
Output block depth 2–3
Output hidden dim [64, 128]

Optimizer parameters
Adam LR 0.0001–0.01
Exponential LR scheduler decay 0.1–0.9
Batch size 8–16

Table 2: Search space for Experiment Low-Data; “grid” values in square brackets correspond to
possible discrete values, while those separated by en dashes refer to minimum and maximum boundary
values.

Parameter name Values

Backbone parameters
MLP hidden dim [16, 32, 48, 64, 96, 128]
MLP output dim [16, 32, 48, 64, 96, 128]
# of EGNN layers 2–5
Node MLP depth 2–4
Node MLP dim [16, 32, 48, 64, 96, 128]
Edge MLP depth 2–4
Edge MLP dim [16, 32, 48, 64, 96, 128]
Atom position MLP depth 2–4
Atom position MLP dim [16, 32, 48, 64, 96, 128]
Output activation [False, True]
Graph read out [Sum, Mean, Weighted sum, Max]

Optimizer parameters
Adam LR 0.0001–0.01
Batch size [4, 8, 16, 24, 32]
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Table 3: Search space for Experiment High-Method; “grid” values in square brackets correspond
to possible discrete values, while those separated by en dashes refer to minimum and maximum
boundary values. This search space was selected through by picking the seven most important
hyperparameters as determined by FANOVA importance testing. We also restricted the search
space for each of these parameters by checking previous experiments and determining a tighter
bounding box for the top quantile of all hyperparameter configurations. Finally, we fixed all other
hyperparameters to have value equal to the best performing configurations in the Reference-Baseline
and Low-Data experiments.

Parameter name Values

Backbone parameters
MLP hidden dim [16, 32, 48, 64]
MLP output dim [16, 32, 48, 64, 96, 128]
Node MLP dim [16, 32, 48, 64, 96, 128]
Edge MLP dim [16, 32, 48, 64, 96, 128]

Optimizer parameters
Adam LR 0.0001–0.006
Exponential LR scheduler decay 0.1–0.7
Batch size [4, 8, 16, 24, 32]

Fixed parameters
# of EGNN layers 3
Node MLP depth 2
Edge MLP depth 2
Edge normalization 0
Atom position MLP depth 64
Atom position MLP dim 2
Residual term True
Edge tanh activation False
Output Activation True
Graph read out Sum
Node projection block depth 2
Node projection hidden dim 128
Output block depth 3
Output hidden dim 64

A.2 Timings

In this section we provide some timing information associated with our experimentation. All timings
are based off training with multi-GPU acceleration and the Miret et al. [2022] library.

Table 4: Below we list the average experiment time, average epoch time and their respective standard
deviation across the 200 experiments in the Low-Data experiments. Note that early stopping is used
in this experiment resulting in a high experiment time variance. Additionally, experiment time is also
highly dependent on the hyperparameter configuration which explains the high epoch time variance.
Each experiment was run on a single node containing 8 GPU’s.

Epoch Time (m) Experiment Time (m)

4.892 ±3.177 61.367 ±52.344
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Table 5: Below we list the average validation time per batch, average validation time per epoch, aver-
age training time per batch, average training time per epoch, and total training time for five different
hyperparameter configurations in the High-Method experiment. Units are given in parenthesis: either
seconds (s), minutes (m), or hours (h). Each experiment was run using 6 nodes with 8 GPU’s each.
Note that the times greatly depend on the hyperparamter configuration; the purpose of this table is to
simply to communicate the timings involved with experimentation.

Valid. Batch (s) Valid. Epoch (m) Train Batch (s) Train Epoch (m) Total Train (h)

0.018 0.765 0.153 7.168 2.380
0.016 1.903 0.091 8.970 3.262
0.016 1.713 0.099 9.242 3.286
0.016 1.648 0.112 9.779 3.428
0.017 1.975 0.161 12.078 4.216
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