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Abstract

Insect-borne diseases kill >0.5 million people annually. Currently available re-
pellents for personal or household protection are limited in their efficacy, appli-
cability, and safety profile. Here, we describe a machine-learning-driven high-
throughput method for the discovery of novel repellent molecules. To achieve
this, we digitized a large, historic dataset containing 19,000 mosquito repellency
measurements. We then trained a graph neural network (GNN) to map molecular
structure and repellency. We applied this model to select 317 candidate molecules
to test in parallelizable behavioral assays, quantifying repellency in multiple pest
species and in follow-up trials with human volunteers. The GNN approach out-
performed a chemoinformatic model and produced a hit rate that increased with
training data size, suggesting that both model innovation and novel data collection
were integral to predictive accuracy. We identified >10 molecules with repellency
similar to or greater than the most widely used repellents. This approach enables
computational screening of billions of possible molecules to identify empirically
tractable numbers of candidate repellents, leading to accelerated progress towards
solving a global health challenge.

1 Introduction

Mosquitos and other blood-sucking arthropods carry and transmit diseases that kill hundreds of
thousands of people each year[33, 2]. To make continued progress on this global health issue, we
must discover, manufacture, and deploy more efficient molecules for pest control across a variety of
application spaces collectively termed vector control; this includes molecules that affect life history
traits, such as insecticides, and molecules that affect host-seeking behavior, e.g. topical repellents
for personal protection and spatial repellents applied to a home or room. Commonly used repellents
such as DEET (N,N-diethyl-meta-toluamide), Picaridin (Hydroxyethyl isobutyl piperidine carboxy-
late), and IR3535 (Ethyl butylacetylaminopropionate) require high concentrations of over 40% [1]
which limit their use to topical applications. Furthermore, they have undesirable properties and/or
safety profiles; for example, DEET is a plasticizer, precluding its use on synthetic clothing or shelter
surfaces, and it is toxic to some vertebrate wildlife[1]. Some commonly used repellents are species-
specific; for example IR3535 is effective against Aedes aegypti but is ineffective against Anopheles
mosquitoes and is therefore not recommended for use in malaria-endemic regions. Over the past few
decades, only a few dozen new repellent molecule candidates have been found and very few have
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reached the market; an approach to rapidly discover and validate large numbers of new candidates
is desperately needed.

Multiple strategies exist for identifying insect repellent candidates. Behavioral assays seek to di-
rectly test repellent activity in realistic conditions. Recognizing the devastating effect of insect-
borne diseases (including dengue fever) faced by the United States Army during the second world
war, the U.S. Department of Agriculture (USDA) tested 30,000 molecules for their effectiveness as
repellents and insects on mosquitos, ticks, and other insect species[18, 36]. In particular, 14,000
molecules were tested for their effectiveness as mosquito (A. aegypti and A. quadrimaculatus) repel-
lents using human volunteers; this effort led to the discovery of DEET. Structure-targeted modeling
of the obligatory insect olfactory co-receptor Orco led to discovery of picaridin[6] and VUAA1[21].
Scaffold-hopping techniques[35] can focus the molecular search space, and in combination with
arm-in-cage testing, led to the discovery of IR3535[26] and DEPA[22]. Chemoreceptor studies ex-
ploit the molecular mechanism of action: DEET and IR3535 modulate the activity of odorant and
gustatory receptors[12, 13] but may also affect cholinergic signaling[3, 28]. The exact molecular
details of their mode of action are not fully understood, and may be very species-specific (Afify and
Potter, 2019[4]). It is difficult to more broadly and systematically explore molecular space using
each of these approaches, as they can be labor-intensive.

The USDA dataset represents a wealth of information on the relationship between molecular struc-
ture and arthropod behavior. Small parts of this dataset have been used previously to train com-
putational models of mosquito repellency[38, 23, 5], typically on specific structural families of
molecules. Katritzky et al.[24] used an artificial neural network model trained on 167 carboxamides
and found 1 carboxamide candidate with high repellency activity. As modern deep learning models
show performance which scales in proportion to the volume of their training data[19], we hypothe-
sized that exploiting the f ull size of the USDA dataset would provide a strong starting point for a
new deep learning model. We selected a graph neural network architecture (GNN), as GNNs have
been shown to have superior performance to computable chemoinformatics descriptors in predicting
the properties of a molecule from its chemical structure, given a sufficiently large dataset[39, 16].
Notably, previous work demonstrated that a GNN-based human odor model outperforms standard
cheminformatics models even on insect behavior datasets.[38, 23, 5]

Here we present a data-driven workflow for the discovery and validation of novel molecules for
behavioral modification in arthropods. The critical components underlying the success of this ap-
proach are 1) expanded training data made possible by a complete digitization of the USDA dataset;
2) high-quality validation data using a parallelizable membrane-feeding assay that does not require
human volunteers; and 3) a graph neural network model to learn the relationship between molecular
structure and these data. We iteratively use this model to propose candidates from a purchasable
chemical library, validate these candidates for repellency, and use these results to expand the train-
ing dataset and therefore improve the predictive accuracy of the behavior model (Figure 1). Through
this process we have discovered a chemically diverse set of molecules with effectiveness equal to or
greater than DEET, unlocking new potential capabilities in vector control.

2 Results

2.1 Digitizing a rich historical dataset

The USDA dataset is unmatched in size and scope, but for decades existed only in print. Google
Books scanned and made available the original work online[18], and for this work we subsequently
converted it into a machine-readable format. After some preprocessing to make the dataset easier
to read, we employed expert curators to transcribe the full records and provide canonical structures
for each listed molecule (Fig. 2A, Methods). We then focused our analysis on the four mosquito
repellency assays contained in this dataset: two mosquito species, Aedes aegypti and Anopheles
quadrimaculatus; and two repellency contexts, skin and cloth. Together these comprise 19,000
labeled data points on repellency of specific molecules (Fig. 2B), representing a broad range of
structural and functional classes (Fig. 2C). This large dataset served as training data for our modeling
efforts.
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Figure 1: Pipeline for active learning of new behavior repellent molecules. A large historical
dataset from the USDA (USDA data) was used to train a graph neural network to generate a fixed
vector representation of any candidate molecule (USDA learned representation, USDALR). To cre-
ate the transfer-learned assay model, molecules are first embedded with the USDA learned represen-
tation and fed to a dense neural network; this assay model is trained on the assay data. A large-scale
in silico molecular screen is applied to select candidate molecules for testing in a membrane feeder
assay for repellency. Resulting data are used to train the assay model. In subsequent iterations, the
assay results are used to improve the transfer-learning model, a form of active learning.

2.2 Assessment of repellent candidates

In order to test model predictions and iteratively expand the training data, we adapted a standard
membrane feeding assay (SMFA), commonly used in malaria research[7, 10], to evaluate the repel-
lency against Anopheles stephensi mosquitoes. Repellency was evaluated by prevention of blood
feeding relative to a vehicle (ethanol) control (Fig. 2D). The assay was used to evaluate each
molecules potency and duration of effect as exemplified for the reference molecule DEET in Fig
2E. We assessed the inherent inter-assay reliability by comparing repellency levels for a diverse set
of molecules from independent experiments (tested at 25 ţg/cm2, r=0.81, Fig. 2F). Using a cut-off of
75% repellency as measured 120 min after initial application, selected to include widely used repel-
lents (e.g. DEET, dimethyl phthalate, and indalone), approximately 3/4 of the molecules classified
as active in a first assay were confirmed to be active upon re-testing.

The USDA dataset was collected 70 years ago using arm-in-cage experiments, involving human
volunteers, while our assay was conducted with a surrogate target. We evaluated the relationship
between these two experiments by directly comparing the activity of 38 molecules with their repel-
lency reported in the USDA dataset. We found considerable concordance between the historical
USDA dataset and the membrane feeding assays (p<0.01 Mann Whitney U test, Fig. 2G), despite
differences in experimental setup. However, some disagreement was observed, highlighting the need
for additional data collection.

2.3 Modeling mosquito repellency behavior

Using the USDA dataset, we sought to create a representation of molecules specific to mosquito
repellency behavior. It has been previously demonstrated that graph neural networks (GNNs) are
particularly adept at creating task-specific representations[15, 39], and that representational power
extends to the domain of olfaction[31, 30]. We trained GNN models on the USDA dataset, observing
an AUC=0.881 on the cloth-Aedes aegypti task, the task with the largest dataset (Methods). We then
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use the output heads from the ensemble models on all four USDA tasks to create the USDA learned
representation (USDALR, Figure 1).

Figure 2: Overview of data sources. (A) The USDA dataset scanned into Google Books was digi-
tized and manually curated into a machine-readable table of repellency ratings for each compound
(King, WV 1954). (B) Digitized ratings from USDA dataset used here covered two assay types
and two mosquito species. (C) The USDA dataset covered a diverse range of chemical classes;
shown here is the distribution of some ClassyFire classes (Djoumbou-Feunang et al. 2016). Active
compounds are defined as class 4 or higher. (D) Our validation assay used warmed blood and an
odorant-coated netting; repellency was identified with a decrease in feeding behavior relative to a
control odorant (ethanol). (E) Repellency measured using the assay in (D); 100% indicates total
repellency (no feeding) and 0% matches behavior using the solvent alone. Data points (mean +/- SD
across replicates) show repellency using the indicated concentration of DEET as the odorant. Top:
Repellency of DEET at t=120 min. increases with concentration. Bottom: Repellency decreases
with time after initial application of the odorant (sigmoidal fit). (F) Repellency values are correlated
across independent replications of the assay. Trials 1 and 2 are not necessarily in chronological
order. Test-retest values of DEET are indicated in red. Dotted line indicates positive activity cutoff
at Repellency=0.75 for t=120min. (G) Repellency observed in the assay at t=2 min. at 1% concen-
tration using A. stephensi is concordant with repellency from the USDA dataset using A. aegypti on
cloth. Dotted line represents activity cutoff at Repellency=0.9 for t=2min. for feeder assay. DEETs
activity is represented by a red dot. Raw repellency % for USDA Class 1&2 vs Class 5: p<0.01
(Mann-Whitney U Test); Hit percentage: p<0.05 (Z-test of proportions).

We sought to build a model that was specific for the activity behavior in our membrane feeder assay.
We created an assay model by first using the fixed USDA learned representation to embed input
molecules, then adding a two layer, 256-node neural network to learn to predict the assay data.

We applied the assay model to make predictions on novel repellent candidate compounds from a
large library of purchasable molecules provided by the vendor eMolecules[17]. We filtered this
library for desirable qualities such as volatility and low cost, and we further screened out molecules
which did not pass an inhalation toxicity filter (Methods). From among those compounds passing
these filters (1̃0k molecules), we selected those which had sufficient predicted repellency and–to
ensure novelty–which were structurally distinct (Tanimoto similarity <0.8) from those in the USDA
dataset or previous candidate selections. Assay results from each batch of selections were added
to the assay dataset; for each subsequent batch of selections, the assay model was re-trained on the
expanded assay dataset. Detailed notes on the specific modeling setup for each batch are located in
the Supplementary section.
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Over several iterations, a total of 400 molecules were purchased and further screened empirically
according to a solubility criterion (Methods); those that passed (n=317) were then tested for repel-
lency with the membrane-feeder assay. Over the course of selections spanning over a year, some
adjustments were made to both the USDA model and the membrane-feeder assay. In particular,
our hit definition evolved with our dataset size and model capability: we initially defined a hit as
90% repellency using a dose of 25 ţg/cm2 as measured at T=2min (1 measurement), but in the fi-
nal batch of selections, we changed our definition to 75% repellency as measured at T=120min (3
measurements).

2.4 The hit rate improves with training data size

To evaluate the contribution of the training data to our performance, we retrospectively scored
high-repellency candidates in two phases: before the USDA dataset was available (pre-USDA)
and after we began using the USDA dataset to build and deploy the USDA learned representa-
tion (post-USDA). In the pre-USDA phase, instead of using the USDA learned representation to
embed molecules, we employed an odor-specific representation previously demonstrated to outper-
form standard cheminformatics representations on olfaction related tasks[30]. Further, at that time,
we only had assay data for 34 molecules, so we opted to use a k-nearest neighbors model (k=10)
to model assay activity. In the post-USDA phase, the assay dataset size for the first batch was 142
molecules, and grew to a size of 402 molecules for our final batch of selections (Supplemental Batch
Notes).

This large dataset made a huge difference; hit rates post-USDA measured on repellency time=2min
increased to 49% from the pre-USDA level of only 29% (Figure 3A). When we then raised the bar
for hit classification to require a longer duration of effect, hit rates dropped to 6% for predictions
from the post-UDSA phase and 3% for predictions from the pre-USDA phase. It is important to
note that only the last batch in the post-USDA phase was trained to find candidates meeting this new
repellent standard; further iterations may have continued to improve performance as they did under
the previous standard.

This hit rate comparison across the two different experimental phases aggregates changes in both
representational approach and assay dataset size; how much did the USDA learned representation
specifically, and by extension the USDA dataset, improve our models performance?

To estimate the contributions of the USDA representation, we performed a retrospective analysis
comparing the USDA representation against two other chemical representation approaches: a chem-
informatics representation (using Mordred descriptors[29]) and the odor-based representation[30]
used in the pre-USDA phase. The same assay model architecture was used for the different rep-
resentations. We split the full assay dataset into two parts, a training set composed of molecules
from all batches of tests performed before the use of the USDA dataset (88 measurements) and an
evaluation set of all molecules selected in the post-USDA phase (170 measurements).

We observed that the USDA learned representation model significantly outperformed both alterna-
tives on this prediction task (Figure 3B; USDA model AUC=0.74 [0.68,0.81]; Chemoinformatics
model AUC=0.59 [0.50,0.67]; GNN Odor model AUC=0.60 [0.51,0.67]), suggesting that the histor-
ical dataset played a significant role in the elevated predictive performance. There is a selection bias
because the selection of molecules for evaluation was done by the assay model using USDA learned
representations. One effect of this bias is that it reduces the expected number of negative exam-
ples, reducing the contrast between predicted repellents and non-repellents, resulting in a negative
bias into all AUC measurements. However, the model used for selection should suffer the greatest
negative bias, suggesting that the performance difference we observed is an underestimate of the
true advantage that the USDA model has over its alternatives, as would have been observed under a
counterfactual unbiased selection of repellent candidates.

2.5 Selected hit molecules are chemically diverse

Training a model on a large pool of data containing a variety of molecules allows the model to
generalize to larger areas of chemical space. Figure 4 shows the distribution of molecules selected
by our post-USDA models, and compares them to the active molecules reported in the USDA dataset
itself. The candidate selections made by our model explore some of the same regions of the USDA
dataset, but find hits in some underexplored regions of the original dataset (Figure 4A). The ML-
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Figure 3: The table reflects experimental testing set up in pre-USDA phase, i.e. before the use of
the USDA dataset for modeling, and post-USDA phase, i.e. after the use of the USDA dataset.
(A) Active repellent compounds found at a much higher rate in post-USDA phase (49%) vs. pre-
USDA phase (29%). Hits are defined as compounds that showed >90% repellency in the feeder assay
at initial application (t=2 min) or >75% repellency after 2 hours of evaporation (t=120). Error bars
represent the standard error of jackknife estimated mean values. (B) In a retrospective prediction
task, USDA learned representation model (USDALR) outperforms models using cheminformatics
representation (Mordred, Moriwaki et al, 2018) and odor-based representation (Qian et al. 2022).
Models were trained on assay data collected before USDA modeling (88 data points), and evaluated
on post-USDA measurements (170 data points). Error bars represent 95% bootstrap-resampling
confidence intervals.

selected molecules were required to be a minimum of 0.2 Tanimoto distance from USDA molecules;
we observe an overall median Tanimoto distance of 0.52 from USDA molecules across all of our
selections, and a median distance of 0.48 from USDA molecules amongst active molecules (Figure
4B). Using ClassyFire[14] to annotate each molecule, we found that molecules selected by our model
are enriched in benzenoids, ethers, carboxylic acid derivatives, and organoheterocyclic molecules
when compared to the molecules measured by the USDA dataset (Figure 4C).

2.6 Top candidates show strong repellency in additional applications

While the membrane feeder assay provides a rapid measurement of repellency effectiveness, for real-
world applications it is necessary to consider the effect of odorants released by human skin. To assess
repellency of hit molecules in the context of host skin emanations, we tested a representative set of
our molecules in arm-by-cage experiments (Fig. 5A). To this end, we selected 31 hit molecules that
showed 75% repellency at a density of 25 ţg/cm2 at T=120 minutes at least once in the membrane
feeder experiments, and 4 molecules with lower repellency activities. When tested at a density of
13 ţg/cm2 in the arm-by-cage experiments, 43% of the tested molecules perform very well (75%
repellency) and 67% of those even outperform DEET (>84% repellency) (Fig. 5B). Overall, we
observed high correspondence between repellency as measured in the feeder vs. the arm-in-cage
assays (r=0.64), with 83% of hits from the former also reaching the hit threshold in the latter (Fig.
5C).

Our primary assay assessed repellency against A. stephensi, but other pest species also carry dis-
ease, and there are some known species-specific differences in repellency of known molecules
(e.g. IR3535). To address this concern, we selected 16 molecules based on their activity against
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Figure 4: Analysis of the chemical space we explored. (A) The model-selected molecules are
distributed throughout the chemical space, with some active molecules found both near and far
from USDA clusters. Shown is a UMAP embedding of USDA active molecules (light blue), and
model selected molecules (dark blue), aligned with the eMolecules library (grey heatmap), using
Morgan fingerprint features (r=4, n=2048). The positions of a few high-repellency, model-selected
compounds and several known repellents are shown. (B) Tanimoto distance of ML-selected can-
didates to the USDA dataset; molecules were selected to be at least Tanimoto distance=0.2 away
from other USDA molecules, with active candidates having a lower median distance away from
the USDA dataset (median=0.48) compared to inactive candidates (median=0.54). (C) Distribution
of ClassyFire classes (Djoumbou-Feunang et al., 2016) in the USDA dataset and the TropIQ selec-
tions. TropIQ selections are enriched for organoheterocyclic compounds, ethers, benzenoids, and
carboxylic acid derivatives.

A. stephensi, 9 strong and 7 weak repellents. We then used the original assay to test them against
A. aegypti and a modified assay (Fig. 5D) to test against I. scapularis, the black-legged tick. We ob-
served significant generalization across pest species: 8 of the strong repellents (88%) demonstrated
good repellency (>50% repellency) at 25 ţg/cm2 against A. aegypti, and 12 (75%) molecules were
active (>75% repellency) at 540 ţg/cm2 against I. scapularis (ED50 of DEET 120 ţg/cm2, Fig. 5E).

3 Discussion

We developed and validated novel methods for identifying potential repellent molecules for vector
control of deadly human and animal diseases. First, we digitized a historic dataset rich with an
unprecedented volume of relevant repellency data covering thousands of molecules. Second, we
applied and refined a deep learning model architecture to learn the mapping between molecular
structure and repellency in this dataset. Third, we used a high-throughput experimental assay to
prospectively validate predictions from this model, and to conduct active learning to iteratively im-
prove model predictions. Finally, we showed that these predictions identify new repellent candidates
in underexplored regions of chemical space, and that some of these molecules show applicability
across real-life context and across pest species. This represents a promising approach to identify
next-generation repellents and help solve one of humanitys greatest global health challenges.
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Figure 5: Model-selected and feeder assay validated compounds show high performance across
context and species. (A) Experimental setup of arm-by-cage experiments on Anopheles stephensi.
(B) Arm-by-cage repellency of molecules previously determined to be repellent in the membrane
feeder assay. (C) Activities of repellents identified in the membrane feeding assay correlate well with
the activity in arm-by-cage assays. (D) Experimental setup of Ixodes scapularis (tick) repellency
assay. Ticks are placed in a repellent-impregnated ring on a heated bed and the number of ticks
that cross the ring are counted. (E) Repellency of molecules is correlated across species; one line
corresponds to one compound.

Despite containing a surprisingly large quantity of relevant repellency data, the USDA dataset has
remained underused, garnering only 200 citations in the last 50 years. This surely stemmed in
part from the limited visibility and accessibility of the data during most of this period, where it was
accessible only via paper handbooks in physical libraries. The Google Books digitization project
scanned these handbooks, making images of the data visible to anyone with an internet connection.
However, many of the chemical names contained there-in were archaic or ambiguous, and so could
not be effortlessly mapped to chemical structures; the repellency values themselves were also not
machine readable. The manual curation and digitization that we performed was the last step to
unlock the power of these historical records. The general pattern of connecting diffuse experimental
records to support larger modeling efforts and meta-analyses continues to bear fruit[32, 37].

How important were these data? Machine learning is data-driven, and frequently suffers from cold
start problems; deep learning models are especially data-hungry, and finding enough data to train
them to state-of-the-art performance can be a major challenge. The USDA dataset solved this prob-
lem by allowing us to train a draft model, which we were then able to build upon using data from a
modern experimental assay. Several previous efforts to identify new repellents using machine learn-
ing have used only several dozen similar molecules to train their models [38, 23, 5, 8]. A larger slice
of the historical dataset ( 2000 molecules) has been used to train a neural network model to both
predict repellency and verify the repellency of known repellents [11]. Recently, larger datasets are
becoming available for receptor-targeted QSAR (RT-QSAR)[27, 9], but until this current work, no
machine-readable large-scale datasets have been available for BT-QSAR.
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Most previous publications validated their repellency models only retrospectively by predicting
the activity of known repellents, rather than prospectively[25] by using the model to identify new
molecules with repellency behavior. This typically leads to overestimation of predictive performance
of new repellent candidates. By contrast, we collected assay data for prospective validation of the
model, and further used this data in an active learning loop to refine the model, showing continued
improvement in predictive performance as new data was collected.

Prospective validation has been used in the past to discover new repellent molecules: Picaridin
was discovered at Bayer using pharmacophore modeling6, and a small set of acylpiperdines were
discovered using neural networks trained on a small subset of USDA data[5]. However, these
novel repellents have typically been structural near-neighbors of existing repellents. By contrast,
our model-selected candidates cover a much wider range of structural classes than previous repel-
lency discovery attempts, facilitating our discovery of molecules with repellency activity greater
than DEET even at 2 hours after application, and a subset that have repellency efficacy when tested
in the presence of attractive human skin emanations.

Machine learning, and particularly deep learning, is yielding impressive advances in applications
in chemistry. Several academic and industrial groups have used deep learning models to screen for
new molecules with desirable properties, such as antibiotic activity or protein binding affinity[27,
34, 40, 20]. The methods outlined in this paper can also be applied to other disease vectors, other
classes of behavior-modifying molecules, and more broadly to enable hit discovery in arbitrary
chemical applications. Future work will be required to impose additional filters or modeling steps to
satisfy additional criteria related to safety, biodegradability, odor, and skin-feel, in conjunction with
experimental data about these important factors.
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A Method

A.1 Mosquitoes and ticks

Both Anopheles stephensi and Aedes aegypti mosquitoes were maintained on a 5% sugar solution
in a 26 řC environment with 80% humidity, according to standard rearing procedures. Adult Ixodes
scapularis ticks were maintained in a 26 řC environment with 90% humidity. Mosquito behavioral
assays Before each membrane feeding assay, 10-20 female Anopheles stephensi or Aedes aegypti
mosquitoes (3-5 days old) were transferred to a paper cup covered with mosquito netting. The
mosquitoes were denied access to their normal sugar solution 4-6 hours prior to the feeding assay.
30 ţl of test molecule, dissolved in ethanol, was pipetted on a piece of mosquito netting (3x3 cm)
and allowed to dry. To ensure a regular and standardized airflow over the samples, a gastronorm
tray (¡ 200mm) equipped with a computer fan (80x80x25mm, 12V, 0.08A) was placed over the
samples. After a specified time of evaporation (e.g., 2 hours), the sample was placed on top of the
cup containing the mosquitoes. The cups were then placed under a row of glass membrane feeders
containing a pre-warmed (37 řC) blood meal. The mosquitoes were allowed to feed for 15 minutes.
The number of fed and unfed mosquitoes were then recorded.

For the arm-by-cage assays, 30-50 female Anopheles stephensi mosquitoes were transferred to an
acrylic cup (150x100mm) covered with mosquito netting. 1 mL of test molecule (0.5% w/v), dis-
solved in ethanol, was pipetted on a piece of cheesecloth (6x9 cm) and taped to an acrylic panel
(6mm thick) with a cutout and allowed to dry. A panel with an untreated piece of cloth was then
placed next to the acrylic cups containing the mosquitoes and a volunteer placed his hand against the
panel for 5 minutes. The mosquitoes were filmed and the maximum number of mosquitoes landing
simultaneously was recorded. This was then repeated with a piece of treated cloth and the number of
landings was normalized to the control, which is the ethanol solvent alone. All arm-by-cage assays
were designed and run by TropIQ.
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A.2 Tick behavioral assays

The setup of the tick repellency assay is shown in figure 5D. The assay consists of a heated (37žC)
aluminum plate (235 x 235 mm) that is painted white. Before the test, 750 ţl of test molecule,
dissolved in ethanol, is pipetted on a ring of filter paper (OD = 150 mm, ID = 122 mm). The ring
is then transferred onto the heated plate and 5 Ixodes scapularis ticks are placed in the center. The
ticks are monitored for 5 minutes and the number of ticks that cross the filter paper are counted.
Repellency is expressed as the percentage of ticks that did not cross the filter paper.

A.3 Historical dataset preparation

The scanned versions of the USDA datasets, available from Google Books, were converted into a
machine-readable format. Chemical structures (Simplified Molecular-Input Line-Entry System, or
SMILES) 40 were assigned to each single molecule entry in the dataset. The raw PDFs of the two
repellency handbooks41,42 used to create the USDA dataset are available on Google Books. For
this study, the PDFs were converted to png files, then sliced by rows according to bounding boxes
drawn by curators. The row sliced images and the full page images were provided to a third-party
curation service, who transcribed the chemical names as SMILES and corresponding assay results.
Post-processing analysis and evaluation of a random sample of 150 entries suggest an error rate of
<5% in the chemical structures. The final dataset resulted in 18,886 data points on 14,187 molecules.
This includes the results on two assay setups, one testing the effectiveness of the candidates on cloth,
the other on human skin, and also two different mosquito species (Aedes aegypti and Anopheles
quadrimaculatus); all four combinations of these two species and conditions were used in this study.
USDA dataset labels in the source material were repellency ratings given as integers from 1 (worst)
to 5 (best).41

A.4 USDA Dataset Modeling and Representation Learning

Each of the USDA tasks was split into a 70:15:15 train/validation/test split such that molecules were
assigned to the same split across all tasks; in particular, if a molecule is in the training set for one task,
it was also in the training split for the other tasks for which there was a measurement. Molecules
in the USDA dataset that were also used in the pre-USDA phase (Batches 1-3, see Supplementary
Batch notes) were excluded from the USDA training sets. Iterative stratification over the label
classes across each task was applied to balance the labels in the training/validation/test splits for
each task.

Graph neural network models (GNNs) were trained on each of the four mosquito repellent tasks from
the USDA dataset. Each model provided predicted probabilities of the class label and combination
class labels; specifically, the model predicted the probability of the class label being: [1], [2], [3],
[4], [5], [1 OR 3 OR 4 OR 5], [3 OR 4 OR 5], [1 OR 4 OR 5]. AUROC performance on the [3 OR
4 OR 5] label objective was used to optimize the models. The graph neural network used message
passing layers (MPNN44), with a max atom size of 45, 30 atom features, and 6 bond features.
Hyperparameter selections were made using the Vizier43 default Bayesian optimization algorithm
over 300 trials.

The USDA learned representation was constructed from the outputs of the frozen ensemble model
of the best 50 models from hyperparameters trained on the USDA dataset. For the last batch of
selections, the models used to create the ensemble model ranged in AUROC performance from
0.872 to 0.881.

A.5 Model Training on Membrane Feeding Assay Data

To train the models for activity in membrane feeding assays, assay results were binarized: a positive
label for repellency activity was defined as >90% at T=2min at 25 ţg/cm2, and >75% for T=120min.
For model evaluation and hyperparameter selection, the dataset was split into a 70:30 train/test split,
using iterative stratification to balance the label classes. The model trained on the USDA dataset was
used to generate specialized representations for the molecules. A two-layer neural network model
with 256 nodes was used to predict the binarized activity label given the molecule; the hyperparam-
eters of this model were selected with grid search. At inference time, to make predictions on new
candidates, the model was retrained using the entire dataset.
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A.6 Molecule Selection

We began by filtering molecules listed in the eMolecules catalog – which contains 1 million commer-
cially available molecules – for atom composition (C/N/O/S/H only), price (<$1000 per 10 grams),
purity (>95%), and availability (<4 weeks lead time). We utilized a toxicity filter to remove poten-
tially harmful molecules, according to a toxicologist-recommended protocol. In this protocol, we
classified molecules by their mutagen / Cramer class using ToxTree, calculated their vapor pressure
at room temperature, and then compared the likely exposure air volume to OSHA daily exposure
limits for the corresponding toxicity class. We removed likely odorless molecules according to
water-soluble (cLogP < 0) and nonvolatile (boiling point > 300 C) criteria. We manually removed
molecules that were likely to degrade or react under our experimental conditions. After training
the assay model, molecules were selected such that they had a prediction score above an f1 opti-
mized cutoff score, and then selected such that they had a Tanimoto similarity of <0.8 from other
selected molecules and the USDA dataset. A minimum solubility threshold of 10 mg/ml in absolute
ethanol was used as a last criterion. Molecules with an ethanol solubility below the threshold were
abandoned. Detailed selection criteria for batches are reported in the Supplemental section.
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