
Open MatSci ML Toolkit: A Flexible Framework for
Machine Learning in Materials Science

Santiago Miret ∗†

Intel Labs
Kin Long Kelvin Lee ∗

Intel AXG
Carmelo Gonzales

Intel Labs
Marcel Nassar

Intel Labs

Krysztof Sadowski ‡

IP Rally Technologies

Abstract

The Open MatSci ML Toolkit is a flexible, self-contained and scalable Python-
based framework to apply deep learning models and methods on scientific data with
a specific focus on materials science and the OpenCatalyst Dataset. Our toolkit
provides: 1. Scalable MLOps of materials science machine learning experiments
leveraging PyTorch Lightning across different computation capabilities (laptop,
server, cluster) and hardware platforms (CPU, GPU, XPU) without sacrificing
performance in compute and modeling; 2. DGL support for rapid graph neural
network prototyping and development. By sharing this toolkit with the research
community via open-source release, we hope to: 1. Lower the entry barrier for new
machine learning researchers and practitioners that want get started on interacting
with the OpenCatalyst dataset, which currently makes up the largest computational
materials science dataset. 2. Enable the scientific community to apply advanced
machine learning tools to high-impact scientific challenges, such as modeling of
materials behavior for climate change applications. Experiments applying our
framework on OpenCatalyst tasks show promising results in compute scaling and
model performance.

1 Introduction

Catalysts are essential components in chemical systems that help accelerate the speed of chemical
reactions. Catalytic materials design, especially low-cost catalysts, remain an ongoing challenge
that will continue to become more important for a variety of applications, including renewable
energy and sustainable agriculture. The OpenCatalyst Project, jointly developed by Fundamental AI
Research (FAIR) at Meta AI and Carnegie Mellon University’s Department of Chemical Engineering,
encompasses one of the first large-scale datasets to enable the application of machine learning (ML)
techniques. The full dataset contains over 1.3 million molecular relaxations of 82 adsorbates on
55 different catalytic surfaces. The original release from 2019 has also been supplemented by
subsequent updates in 2020 and 2022 with the researchers also maintaining an active leaderboard
and annual competition [Chanussot* et al., 2021]. The significant effort of providing high-quality
data for catalytic materials is a major step forward in enabling ML researchers and practitioner to
innovate on materials design challenges as shown by the large variety of deep learning and high
performance computing features. This collection of data and software capabilities has already enabled

∗Equal Contribution
†Correspondence to: <santiago.miret@intel.com>
‡Work performed while at Intel Poland

36th Conference on Neural Information Processing Systems (NeurIPS 2022) AI4Mat Workshop.

the development of new geometric deep learning architectures ([Klicpera et al., 2020] [Gasteiger
et al., 2021]) trained with nearly billions of parameters [Sriram et al., 2022].

While the software framework of the original OpenCatalyst repository is very powerful, it contains a
significant amount of complexity due to various interacting pieces of software: model definitions,
functions for distributed training, and task abstraction are not always self-contained. This can make
it very challenging for new ML researchers to navigate and interact with the repository, create new
architectures or modeling methods, and run experiments on the dataset. To address the challenges of
usability and ease of use, we introduce the Open MatSci ML Toolkit, a flexible and easy-to-scale
framework for deep learning on materials science with focus on the Open Catalyst dataset.

2 Software Framework

The Open MatSci ML Toolkit software framework is designed with great emphasis on abstraction
and inheritance in order to maximize reusability and agility for machine learning researchers. These
ideas are achieved in part by present-day best practices in Python as a language, and through modern,
specialized frameworks such as PyTorch Lightning and DGL. We believe these design choices make
it significantly easier to apply novel model architectures and training techniques to scientific data,
in particular the OpenCatalyst dataset. In the following sections, we will discuss reabstractions and
refactors from the original OpenCatalyst implementation.

2.1 PyTorch Lightning Refactor

In modern AI/ML workflows, the concept of “MLOps” comprises the lifecycle from model conception
and implementation, to training and testing in a variety of software/hardware environments, to drawing
inferences on new data, and all of the iterative cycles in between. Thus, a non-negligible amount
of time spent by researchers for new workloads is typically in engineering: interfacing data with
new architectures, metric logging, performance profiling, and ensuring consistent functionality
when developing on a laptop to distributed training on multiple computing nodes, across multiple
accelerators. Because of the grand scale that OpenCatalyst aims and successfully achieves, a large
amount of the original codebase corresponds to performance and functionality; this goes to say that
complexity is necessary to be able to take advantage of data parallelism, to perform hyperparameter
optimization, and to support the various catalyst prediction tasks. This lays a significant amount of
responsibility on both developers and users: the former must create a comprehensive suite of tests
and rely heavily on CI/CD to ensure functionality, and the latter must navigate a maze of software
dependencies and documentation, which are also maintained by the developer.

One half of the conceptual changes in Open MatSci ML Toolkit—the other half being the primary
graph framework—is to offload MLOps related components to a well designed and maintained
framework, PyTorch Lightning [Falcon and The PyTorch Lightning Team, 2019]. By reusing certain
components in OpenCatalyst—both dataset and framework—and relying on PyTorch Lightning for
pipeline abstraction, we are required to maintain less of the codebase while providing more flexibili-
ty/extendibility, transparency, and functionality. Figure 1 illustrates the end-to-end pipeline/directed
acyclic graph for the Open MatSci ML Toolkit, whose elements should be somewhat familiar to those
who have used OpenCatalyst and/or PyTorch Lightning.

S2EFDGLDataModule
Lightning data module

S2EFLitModule
Lightning module Lightning Trainer

User loop control

Launch

Callbacks
Logger
Accelerator
Environment

Script / Lightning CLI / SlurmEGNN
Neural network backbone

Figure 1: Illustration of the Open MatSci ML Toolkit pipeline with concrete components using the
“S2EF” task. Dataset/task splits and configurations are specified through LightningDataModules.
Task specific LightningModules encode the logic for training, metric logging, and how data is
passed from dataset to an underlying abstract deep learning model. The Trainer interface provides
an the ability to control feedback (e.g. logging, progress bars), training flow (Callbacks), and XPU
usage without the need to modify the pipeline source code.

2

2.1.1 Data abstraction

In order to support future neural network research, we expanded the scope of the original OpenCatalyst
dataset to support graph and non-graph data structures, as well as implemented a number of quality of
life improvements to the general developer workflow. We refer the reader to the Appendix (i.e. Figure
4) for more details pertaining to the changes, and here we only briefly highlight the core differences
in user experience.

One of the core principles in the Open MatSci ML Toolkit is to have continuity from developing and
testing on local environments such as laptops, to using the pipeline in high performance computing
environments. In terms of data pipeline abstraction, on the one end the Open MatSci ML Toolkit
provides preprocessed, miniature (∼100 graphs) development or “devset”s: this circumvents the need
to download, extract, and preprocess the data on personal computers constrained by storage and by
computational power, while allowing researchers to prototype on the full pipeline. The development
sets are created by taking random subsplits of the 200K data splits from the OpenCatalyst dataset, and
the mechanism for creating other splits are provided with the Open MatSci ML Toolkit, facilitating
further research into data efficiency. To use the devsets for development, there is a convenient
mechanism for retrieving the DGL version of each task:

1 from ocpmodels.lightning.data_utils import S2EFDGLDataModule ,
IS2REDGLDataModule

2 # default settings optimized for local development; small batch , no
parallel loaders

3 devset_module = S2EFDGLDataModule.from_devset ()

On the other end of the spectrum, where one wishes to distribute the dataset across multiple workers
on multiple compute nodes, users can leverage the same data modules as the miniature case: the
DistributedDataParallel data sampling and loading is offloaded to PyTorch Lightning internals
as shown in Section 2.1.3. Moreover, the Open MatSci ML Toolkit data pipeline abstraction is
designed to facilitate exploration of other data representations of materials systems: an example of
this includes the use of geometric algebra on point clouds (see, for example, Spellings [2021]), which
do not use graph structures, but retain the advantages of model equivariance and invariance.

2.1.2 Model abstraction

The model abstraction, as seen in the bottom left nodes in Figure 1, comprises a neural network
backbone and a task-specific LightningModule. In the concrete example described in Section 3,
the EGNN model represents a subclass of an AbstractEnergyModel: a model that takes arbitrary
input, and predicts the energy. For instance, a graph-based model will process nodes and perform
some readout operation to regress to a scalar value for the energy. At a higher level, the task specific
S2EFLitModule is instantiated by passing an instance of EGNN, and implements the logic for training
(i.e. forward-backward passes), validation and testing, and logging. By conceptually separating
model (i.e. the neural network itself) from training mechanism, researchers only need to focus on
architecture development by subclassing AbstractEnergyModel, as the rest of the pipeline stays
the same barring changes in what data is required by the model.

2.1.3 Training loop

The primary component relevant to the training process is the PyTorch Lightning Trainer class,
which orchestrates the components mentioned above and executes training, validation, testing, and
inference loops. The Trainer interface also configures performance oriented settings such as
accelerator usage, distributed compute, and mixed precision as shown in the example below:

1 trainer = pl.Trainer(
2 max_epochs =5,
3 callbacks =[...] , # configure callbacks
4 accelerator="gpu", # move between XPUs
5 precision="bf16", # use new data types
6 strategy="ddp", # 8 workers across 4 nodes
7 num_nodes=4,
8 devices =2
9)

3

The main advantage is being able to seamlessly navigate between development and training cycles:
the core pipeline remains unchanged, however with a simple change in configuration, the user
is able to take advantage of computational resources as they become available. Under the hood,
the Lightning abstractions handle data movement to devices, autocasting in correct contexts, and
orchestrate workers.

3 Experiments & Testing

Figure 2: Time per Epoch (s) for Multiple Devices on Single Node and 8-Device Multi-Node Setting
for the S2EF Task with various dataset sample splits

We applied the Open MatSci ML Toolkit to the OCP-20 [Chanussot* et al., 2021] S2EF task with
200K training samples and 1M validation samples, which is a common task amendable to studying
both the compute and task performance one can achieve using our framework. Single node scaling
to multiple GPUs shows a decreasing benefit as more GPUs get added, likely due to increasing
communication cost between the different devices outweighing the benefits of parallel computing
of batches. Epoch training throughput in the multi-node suggests close to linear scaling. While the
benefits of compute scaling increase with a more intensive task, the overall compute time, both in
core-time and in wall-clock time, also increases making the overall experiment more costly.

3.1 S2EF Task Performance

Figure 3: Training and Validation Loss for
S2EF Task (200K Training Samples & 1M
Validation Samples) on E(n)-GNN

We perform a training experiment using the Open
MatSci ML Toolkit framework for the S2EF 200K/1M
task on a single node with 8 GPUs on E(n)-GNN pro-
posed by Satorras et al. [2021] for 8 epochs recording
training loss at every step and validation loss at every
epoch. E(n)-GNN has the inductive bias of equivari-
ance with respect to positions, where general equivari-
ance for functions f(I), g(I) for an entity I is defined
as: f(g(I) = g(f(I)). Intuitively this means that the
features of an entity transform equally with a given
manipulation, such as a rotation. This is particularly
useful for property prediction in material compounds,
such as the S2EF task, where rotation of the entire
compound itself does not affect the properties of the
compound. The results in Figure 3 show that the val-
idation loss generally tracks the training loss. The
trend of the training loss also indicates a downwards
slope with recurring deviation pattern, suggesting that
the network may find particular data more challenging
than others.

4

References
Lowik Chanussot*, Abhishek Das*, Siddharth Goyal*, Thibaut Lavril*, Muhammed Shuaibi*,

Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary
Ulissi. Open catalyst 2020 (oc20) dataset and community challenges. ACS Catalysis, 2021. doi:
10.1021/acscatal.0c04525.

William Falcon and The PyTorch Lightning Team. PyTorch Lightning, 3 2019. URL https:
//github.com/Lightning-AI/lightning.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional
graph neural networks for molecules. Advances in Neural Information Processing Systems, 34:
6790–6802, 2021.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123, 2020.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pages 9323–9332. PMLR, 2021.

Matthew Spellings. Geometric algebra attention networks for small point clouds. arXiv preprint
arXiv:2110.02393, 2021.

Anuroop Sriram, Abhishek Das, Brandon M Wood, Siddharth Goyal, and C Lawrence Zitnick.
Towards training billion parameter graph neural networks for atomic simulations. arXiv preprint
arXiv:2203.09697, 2022.

5

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

A Hyperparameters

Example hyperparameters for E(n)-GNN

Table 1: Hyperparameters for E(n)-GNN
Hyperparameter Value

MLP hidden dim 32
MLP output dim 32
of EGNN layers 3
Node MLP dim [48, 48]
Edge MLP dim [16, 16]
Atom position MLP dim [64, 64]
MLP activation ReLU
Graph read out Sum
Node projection block depth 2
Node projection hidden dim 128
Node projection activation ReLU
Output block depth 3
Output hiddem dim 64
Output activation ReLU

Optimizer parameters
Learning Rate 0.003626
Gamma 0.6878
Batch Size 8

Example hyperparameters for MegNet

Table 2: Hyperparameters for MegNet
Hyperparameter Value

Edge MLP dim 2
Node MLP dim 5
Graph variable MLP dim 9
MLP projection dim 11
MegNet blocks 4
MLP hidden dims [128, 64]
MegNet convolution dims [128, 128, 64]
of S2S layers 5
of S2S iterations 4
Output projection dims [64, 16]
Dropout 0.1

Optimizer parameters
Learning Rate 0.0001
Gamma 0.2
Batch Size 8

Example hyperparameters for Gala

B Development Example

A self-contained python script running the full pipeline on one of our dev-sets is shown below:

1 """ Sample Python Script Without Imports """

6

Table 3: Hyperparameters for Gala
Hyperparameter Value

Input dimension 200
Hidden dimension 100
Merge function concat
Join function concat
Rotation-invariant mode full
Rotation-covariant mode full
Rotation-invariant value norm momentum
Rotation-equivariant value norm momentum layer
Value function normalization layer
Score function normalization layer
Block-level normalization layer

Optimizer parameters
Learning Rate 0.001
Gamma 0.8
Batch Size 1

2

3 # Define Parameters
4 BATCH_SIZE = 8
5 NUM_WORKERS = 4
6 REGRESS_FORCES = False
7 epochs = 5
8

9

10 # Model configuration for MegNet
11 model_config = {
12 "edge_feat_dim": 2,
13 "node_feat_dim": 5,
14 "graph_attr_dim ": 9,
15 "dim": 1,
16 "num_blocks": 4,
17 "hiddens": [128, 64]
18 "conv_hiddens": [128, 128, 64]
19 "s2s_num_layers": 5,
20 "s2s_num_iters": 4,
21 "output_hiddens": [64, 16],
22 "is_classification": False ,
23 "dropout": 0.1,
24 }
25

26 # use default settings for MegNet
27 megnet = MegNet (** model_config)
28

29

30 # use the GNN in the LitModule for all the logging , loss computation ,
etc.

31 model = S2EFLitModule(megnet , regress_forces=REGRESS_FORCES , lr=1e-3,
gamma =0.1)

32 data_module = S2EFDGLDataModule.from_devset(
33 batch_size=BATCH_SIZE , num_workers=NUM_WORKERS
34)
35

36 # alternatively , if you don’t want to run with validation , just do
S2EFDGLDataModule.from_devset

37 data_module = S2EFDGLDataModule(
38 train_path=s2ef_devset ,

7

39 val_path=s2ef_devset ,
40 batch_size=BATCH_SIZE ,
41 num_workers=NUM_WORKERS ,
42)
43

44 trainer = pl.Trainer(accelerator="gpu", strategy="ddp", devices=2,
max_epochs=epochs)

45 trainer.fit(model , datamodule=data_module)

Listing 1: Self-Contained Example Script With Scalable Devices

As can be seen in the definition of trainer, this short script already performs training on two GPUs
with users being able to change the devices variable to adjust the numbers of GPUs they want to
leverage for distributed training on a single node.

8

C Data pipeline abstraction

PyTorch Dataset

BaseOCPDatasetImplements
.lmdb logic

Graph Abstraction

DGLDataset Interprets .lmdb as
graph representations

S2EFDGLDataset IS2REDGLDataset Extracts task specific
keys and labels

Tensor Abstraction

PointCloudDataset

S2EFDGLDataModule

IS2REDGLDataModule

PointCloudDataModule

Coordinates splits, collating,
and data loading

PyTorch Lightning Data Modules

Base Dataset

Wraps task specific
datasets to extract
point clouds

User Interaction

Figure 4: Inheritance diagram for the data abstraction in Open MatSci ML Toolkit. The main user
interaction layer is presented at the bottom, corresponding to subclasses of LightningDataModule.
Arrows denote directional relationship between the classes; the dashed line indicates that the
PointCloudDataset wraps the task specific datasets, whereby the user is provided with a sampled
point cloud representation of the original graphs.

9

	Introduction
	Software Framework
	PyTorch Lightning Refactor
	Data abstraction
	Model abstraction
	Training loop

	Experiments & Testing
	S2EF Task Performance

	Hyperparameters
	Development Example
	Data pipeline abstraction

