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Abstract

Besides increasing trust in the human-AI relationship, XAI methods have the
potential to promote new scientific insight. Graph neural networks (GNNs) have re-
cently established themselves as a valuable tool in chemistry and material sciences.
Various XAI methods have already been applied to gain new understanding of
real-world scientific questions in these application domains. To that end we propose
MEGAN, a multi-explanation graph attention network. Unlike common post-hoc
XAI methods, our model is self-explaining and features multiple explanation chan-
nels, which can be chosen independent of the task specifications. We first validate
our model on a synthetic graph regression dataset. We then apply our model to
the prediction of water solubility, as well as the single-triplet energy gap. The
explanations generated by our model reproduce commonly known rules of thumb,
supports previously hypothesized explanations and proposes novel explanatory
motifs.

1 Introduction

Explainable AI (XAI) methods aim to provide additional explanations for a model’s predictions
to make it’s complex inner workings more transparent to humans with the intention to improve
trust within the human-AI relationship, provide tools for model analysis, and comply with anti-
discrimination laws (Doshi-Velez and Kim, 2017). One important subclass of XAI methods are
attention-based models, which usually derive an attributional explanation from the internal attention
weights. In contrast to most post-hoc explainability procedures, the differentiable nature of attention
models offers the potential for explanation supervised training. Here the explanations generated
by the model are trained to match a given reference alongside the main prediction value. Recently
several successes for explanation supervision have been reported in the domains of natural language
processing (Fernandes et al., 2022; Stacey et al., 2022) and image processing (Linsley et al., 2019;
Qiao et al., 2018).

Attention is increasingly applied to graph neural networks as well (Veličković et al., 2018; Brody
et al., 2022; Pan et al., 2022). However, its potential to be used in explainable models is not fully
exploited yet, when compared to other state-of-the-art graph XAI methods such as GNNExplainer
(Ying et al., 2019) or Grad-CAM (Pope et al., 2019). We hypothesize that this is partly due to the
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limited expressiveness of attention-derived explanations. While Grad-CAM for example can generate
attributional explanations which feature positive and negative values for each output of a model
separately, attention-based models usually can only generate a single explanation with values in the
[0, 1] range. Considering a typical node attribution explanation for a regression model, which assigns
each node an importance value between 0 and 1: It highlights which nodes were important for the
model to make a given prediction, but it does not explain how the node correlates with the actual
numerical prediction. We show in this paper that a substantial gain in interpretability can be achieved
when using attention to generate multi-channel explanations.

We propose the multi-explanation graph attention network (MEGAN) architecture, which allows the
number of explanation channels to be chosen as an independent parameter. The network generates
multiple channels of node and edge attribution explanations, building on the recently proposed
GATv2 layer (Brody et al., 2022) for edge explanations and a weighted global pooling operation
for the node explanations. While the number of explanation channels is a free parameter, in this
work we first investigate the simple choice of two explanation channels for regression tasks: One
channel to capture positive evidence that points towards higher target values and another to capture
the negative evidence. To promote the channels to behave according to these intended interpretations,
we introduce an explanation co-training loss that tries to approximately solve the task by using only
the explanation channels.

We validate the functionality of our model on a synthetic graph regression dataset as well as real-
world datasets. We firstly show that the special single-explanation case of our model produces
explanations with quality similar to GNNExplainer. Switching to two explanations significantly
improves prediction performance and interpretability of explanations. We furthermore show that
explanation-supervised training produces explanations with the highest similarity to the ground truth
explanations as well as fidelity w.r.t. the intended interpretations of the respective channels. At last,
we demonstrate our model for two material science datasets, namely prediction of water solubility
for molecular graphs and the prediction of singlet-triplet energy splittings reported by the TADF
dataset Gómez-Bombarelli et al. (2016). Our model reproduces commonly known rules of thumb
about these tasks. Additionally, for the energy splittings task it provides supporting evidence for
explanations previously hypothesized by Friederich et al. (2021) and generates new hypotheses for
novel explanatory motifs.

2 Related Work

Graph explanations. Yuan et al. (2022) provides an overview of XAI methods that were either
adopted or specifically designed for graph neural networks (GNNs). Notable ones include GradCAM
(Pope et al., 2019), GraphLIME (Huang et al., 2022) and GNNExplainer (Ying et al., 2019). Jiménez-
Luna et al. (2020) presents another overview of XAI methods used for the application domain of
drug discovery. (Sanchez-Lengeling et al., 2020) evaluate many common graph XAI methods for
tasks of chemical property prediction. Henderson et al. (2021) for example introduce regularization
terms to improve GradCAM generated explanations for chemical property prediction. Most of the
approaches presented here are classified as post-hoc methods, which aim to explain the decision of
of existing models in hindsight. Our model on the other hand is self-explaining, as Jiménez-Luna
et al. (2020) describe it. Due to being based on an attention mechanism, this provides the potential
for explanation-supervised training.

Explanation supervision. During explanation-supervised training, the explanations generated by
the model are trained to match a given dataset of usually human-generated explanations alongside the
main prediction task. Linsley et al. (2019), Qiao et al. (2018) and Boyd et al. (2022) for example have
demonstrated promising results for explanation supervision in the image processing domain. Likewise,
Fernandes et al. (2022), Pruthi et al. (2022) and Stacey et al. (2022) for example demonstrate this
for the language processing domain. Recently, Gao et al. (2021) demonstrated a method to perform
GNN explanation supervision for GradCAM explanations. However, their implementation currently
does not support batching and the extent of the explanation is coupled to the task specifications. In
contrary, our MEGAN architecture supports batching and features a choice of explanation channels
independent of task specifications.

Scientific insight through XAI. Roscher et al. (2020) present a recent literature survey about the
emerging role of XAI for the development of new scientific insight in various application domains.
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For the domain of material sciences specifically, Kailkhura et al. (2019) for example use an ensemble
method of many simple and interpretable regression models instead of a more complex black box
model. This way they are able to provide explanations as well as asssess the uncertainty of each
prediction. Friederich et al. (2021) employ an interpretable decision tree approach on molecular
fingerprints to generate hypotheses for the influence of certain sub graph motifs on several molecular
properties. The explanations generated by our proposed model are able to reproduce commonly
known rules of thumb for two molecular properties, provide supporting evidence for previously
proposed hypotheses and suggest potentially novel explanatory sub graph motifs.

3 Multi-Explanation Graph Attention Network

3.1 Task Description

We assume a directed graph G = (V, E) is represented by a set of node indices V ⊂ NV and a set
of edges E ⊆ V × V ⊂ RE , where a tuple (i, j) ∈ E denotes an edge from node i to node j. Every
node i is associated with a vector of initial node features h(0)

i ∈ RN0 , combining into the initial node
feature tensor H(0) ∈ RV×N0 . Each edge is associated with a feature vector ui ∈ RM , combining
into the edge feature tensor U ∈ RE×M . We consider the problem of graph regression, i.e. real
output values yreg ∈ R.
In addition, MEGAN outputs node and edge attribution explanations alongside each prediction.
We define explanations as priority masks by assigning [0, 1] values to each node and each edge,
representing the importance of the corresponding element towards the outcome of the prediction.
We generally assume that any prediction may be explained by K individual importance channels.
The node explanations are given as the node importance tensor Vim ∈ [0, 1]V×K and the edge
explanations are given as the edge importance tensor Eim ∈ [0, 1]E×K .

3.2 Architecture Overview

To solve the previously defined task we propose the following multi-explanation graph attention
network (MEGAN) architecture. Figure 1 provides a visual overview of this architecture. The network
consists of L attention layers, where the number of layers L and the hidden units of each layer are
hyperparameters. Each of these layers consists of K individual, yet structurally identical GATv2
(Brody et al., 2022) attention heads, one for each of the K expected explanation channels. Assuming

Figure 1: Multi-explanation graph attention network (MEGAN) architecture overview. Rectangle
boxes represent layers; arrows indicate layer interconnections. Rounded boxes represent tensors.
Intermediate tensors are also named annotated arrows. Tuples beneath variable names indicate the
tensor shape, with batch dimension omitted, but implicitly assumed as the first dimension for all.
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the attention heads in the l-th layer have Nl hidden units, then each attention head produces it’s
own node embeddings H(l,k), where k ∈ {1, . . . ,K} is the head index. The final node embeddings
H(l) ∈ RV×Nl·K of layer l are then produced by concatenating all these individual matrices along
the feature dimension:

H(l) = H(l,1) ||H(l,2) || . . . ||H(l,K) (1)
This node embedding tensor will then be used as the input to each of the K attention heads of layer
l + 1. Aside from the node embeddings, each attention head also produces a vector A(l,k) ∈ RE of
attention logits which are used to calculate the attention weights

ααα(l,k) = (A(l,k)) (2)
of the k-the attention head in the l-th layer. The edge importance tensor Eim ∈ [0, 1]E×K is calculated
from the concatenation of these attention logit tensors in the feature dimension and summed up over
the number of layers:

Eim =

(
L∑

l=1

(
A(l,1) || A(l,2) || . . . || A(l,K)

))
(3)

Based on this, a local pooling operation is used to derive the pooled edge importance tensor Ep ∈
[0, 1]V×K for the nodes of the graph.
The final node embeddings H(L) are then used as the input to a dense network, whose final layer
is set to have K hidden units, producing the node importance embeddings Ṽim ∈ [0, 1]V×K . The
node importance tensor is then calculated as the product of those node importance embeddings
Ṽim ∈ [0, 1]V×K and the pooled edge importance tensor Ep ∈ [0, 1]V×K :

Vim = Ṽim ·Ep ·M. (4)
The mask M introduced in Fig. 1 is needed to compute the fidelity metric, which will be discussed
later.

At this point the edge and node importance matrices, which represent the explanations generated by
the network, are already accounted for, which leaves only the primary prediction to be explained. The
first remaining step is a global sum pooling operation which turns the node embedding tensor H(L)

into vector of global graph embeddings. For this, K separate weighted global sum pooling operations
are performed, one for each explanation channel. Each of these pooling operations uses the same
node embeddings H(L) as input, but a different slice V im

:,k of the node importance matrix as weights.
In that way, K separate graph embedding vectors

h(k) =

V∑
i=0

(
H(L) ·Vim

:,k

)
i,:

(5)

are created, which are then concatenated into a single graph embedding vector

h = h(1) || h(2) || . . . || h(K) (6)

where h ∈ RNL·K2

. This graph embedding vector is then passed through a generic MLP whose final
layer either has linear activation for graph regression or softmax activation for graph classification to
create an appropriate output

y = MLP(h) (7)

3.3 Explanation Co-Training

With the architecture as is it is up to this point, there is no mechanism to ensure that individual
explanation channels learn the appropriate explanations according to their intended interpretation.
We use a special explanation-only loss to ensure that each channel learns the appropriate explanations.
This is illustrated in Figure 2. Each overall train step of the model is split into two parts: The
explanation step and the prediction step. The explanation step is based only on the node importances
produced by the network. A global sum pooling operation is used to turn the importance values of
each separate channel into a single alternate output tensor Ŷ ∈ RB×K , where B is the training batch
size. This alternate output tensor is then used to solve an approximation of the original prediction
problem. This can be seen as a reduction of the problem into a set of K separate subgraph counting
problems, where each of those only uses the subset of training batch samples that aligns with the
respective channel’s intended interpretation.
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Regression For regression, we assume K = 2, where the first channel represents the negative and
the second channel the positive influences relative to the reference value yc. We select all samples
of the current training batch lesser and greater than the reference value and use these to calculate a
mean squared error (MSE) loss:

Lexp =
1

2 ·B

B∑
b=1

{
(Ŷb,0 − yc −Ytrue

b )2 if Ytrue
b < yc

(Ŷb,1 − yc −Ytrue
b )2 if Ytrue

b > yc
(8)

The total loss during each training step consists of a term for the main network prediction, the special
explanation term and an additional term for explanation sparsity:

Ltotal = Lpred + γLexp + βLsparsity (9)

where the coefficients γ and β are hyperparameters of the training process. Explanation sparsity
Lsparsity is calculated as L1 regularization over the node importance tensor. Based on this loss the
gradients are calculated and the model weights are updated.

3.4 Implementation

The model is implemented using KGCNN framework (Reiser et al., 2021) which implements graph
neural networks in TensorFlow and Keras. The source code is publicly available and can be found at
https://github.com/aimat-lab/graph_attention_student.

4 Computational Experiments

In this section we only give a brief overview of the used datasets and experiments. For more detailed
information, we refer to Appendix A and Appendix B, respectively.

4.1 Datasets

RbMotifs. We create a synthetic graph regression dataset consisting of 5000 randomly generated
graphs, where each node has three node features representing a RGB color value. Edges are undirected
and unweighted. Some of these randomly generated colored graphs are additionally seeded with
specific subgraph motifs, which consist of pre-defined color combinations and are associated with a
constant value. When a motif appears in a graph, the associated value is added to that graph’s overall
value.

Solubility. Approx. 8000 molecular graphs of the AqSolDB dataset (Sorkun et al., 2019). The target
value for each graph is the measured logS value representing water solubility of the corresponding
chemical compound. Node and edge features are generated by RDKit (Landrum, 2010).

Singlet-Triplet Energy Splittings. Approx. 500000 molecular graphs of the TADF dataset Gómez-
Bombarelli et al. (2016). We use the singlet-triplet energy splittings ∆EST as target value, which is

Figure 2: Illustration of split training procedure for the regression case. The explanation-only train
step attempts to find an approximate solution to the main prediction task, by using only a globally
pooled node importance tensor. After the weight update for the explanation step was applied to the
model, the prediction step performs another weight update based on the actual output of the model
and the ground truth labels.
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Figure 3: Examples for experiments with synthetic dataset RbMotifs and MEGANK
γ . (a) Single-

explanation case, where GNNExplainer and MEGAN reproduce ground truth explanation consisting
of a single motif, while explanation-supervised version finds both motifs (b) Dual-explanation case,
where baseline MEGAN model finds the correct motifs, but assigns them to the wrong channels w.r.t
to the intended channel interpretations. Models with γ ̸= 0 and the explanation-supervised version
find the motifs and assign them to the correct channels.

one of two primary parameters to assess thermally activated delayed fluorescence (TADF) properties
of molecules. Molecules with such TADF character are promising candidates for a novel, low-cost
OLED materials Endo et al. (2011); Zhang et al. (2012).

4.2 Metrics

We measure similarity to the ground truth explanations using AUROC, as it is done by McCloskey
et al. (2019). We measure sparsity on binarized explanations, which are generated by thresholding
the model’s continuous attributions. We also measure explanation fidelity as described in Yuan et al.
(2022) and additionally provide the fidelity of random explanations for comparison. More details can
be found in Appendix B.2.

For the multi-explanation models, we define the Fidelity∗ metric: Considering regression as an
example, we argue that the positive explanation channel is faithful to the predicted output, exactly if
the model output becomes significantly more negative when the positive channel is withheld from the
model, as it is then missing all supposedly positive information about the graph. The same applies
for the negative channel, which when withheld, should produce a more positive output. In this sense
we calculate a deviation ∆yk for each channel by supplying a corresponding binary importance
mask Mk (see Figure 1) which completely blocks channel k. A channel’s deviation then contributes
positively to the overall value if that deviation is along the expected direction as defined before:

Fidelity* =
1

K

K∑
k=1

{
+∆yk if direction of deviation as expected for channel k
−∆yk if direction of deviation not as expected for channel k

(10)

Consequently, positive values of Fidelity* show good alignment of explanations with their respective
channel’s intended interpretation, while low and negative values indicate misalignment.

4.3 Synthetic Dataset - Single Explanations

We demonstrate the base capabilities of our model for the special single-explanation (K = 1) case.
The experiment is conducted on the synthetic RbMotifs graph regression dataset. We compare
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Table 1: Results for computational experiments with synthetic graph regression dataset. We report
the median value for 50 independent experiment repetitions in black, as well as the 75th percentile
(upper) and 25th percentile (lower) of the distribution in gray. We underline the best result for each
column. The first section of the table shows results for the single-explanation experiments and the
second section shows the results for the dual-explanation experiments.

(S) Model trained explanation-supervised with ground truth explanations.
(*) Multi-explanation case measures Fidelity∗ metric introduces in Section 4.2.

Model MSE R2 Node AUC Edge AUC Sparsity Fidelity Fidelityrand

GNNXGCN 1.11
∣∣ 1.26
0.93 0.62

∣∣ 0.69
0.57 0.76

∣∣ 0.81
0.73 0.76

∣∣ 0.79
0.73 0.14

∣∣ 0.21
0.08 0.14

∣∣ 0.24
0.06 0.33

∣∣ 0.55
0.17

MEGAN1
0.0 0.25

∣∣ 0.32
0.20 0.92

∣∣ 0.93
0.89 0.84

∣∣ 0.87
0.79 0.80

∣∣ 0.82
0.76 0.15

∣∣ 0.30
0.09 1.77

∣∣ 3.08
0.77 0.91

∣∣ 1.69
0.45

MEGAN1,(S)
0.0 0.25

∣∣ 0.33
0.20 0.91

∣∣ 0.93
0.89 0.97

∣∣ 0.97
0.97 0.99

∣∣ 0.99
0.99 0.16

∣∣ 0.24
0.11 1.42

∣∣ 2.37
0.67 0.91

∣∣ 1.57
0.52

MEGAN2
0.0 0.21

∣∣ 0.25
0.18 0.93

∣∣ 0.94
0.91 0.74

∣∣ 0.91
0.59 0.70

∣∣ 0.81
0.58 0.06

∣∣ 0.10
0.04 1.20(*)

∣∣ 10.6
−5.1 -

MEGAN2
0.1 0.23

∣∣ 0.28
0.18 0.92

∣∣ 0.94
0.91 0.93

∣∣ 0.94
0.92 0.88

∣∣ 0.93
0.85 0.12

∣∣ 0.17
0.08 2.63(*)

∣∣ 3.33
1.93 -

MEGAN2
1.0 0.25

∣∣ 0.29
0.21 0.92

∣∣ 0.93
0.90 0.94

∣∣ 0.95
0.93 0.92

∣∣ 0.94
0.87 0.10

∣∣ 0.15
0.07 2.64(*)

∣∣ 3.23
2.20 -

MEGAN2,(S)
0.0 0.19

∣∣ 0.23
0.16 0.93

∣∣ 0.94
0.92 0.98

∣∣ 0.99
0.98 0.99

∣∣ 0.99
0.98 0.08

∣∣ 0.12
0.05 2.94(*)

∣∣ 3.92
2.33 -

explanations of a baseline MEGANK=1
γ=0.0 model, an explanation-supervised MEGANK=1,(S)

γ=0.0 model
and the explanations of GNNExplainer based on a simple GCN network with similar layer structure.
The experiment is repeated independently 50 times, where a new random dataset split is chosen each
time. We report our results in Table 1 and show examples in Figure 3.

The results show that both MEGAN models greatly outperform the GCN baseline in terms of the
main predictions (MSE, R2). The baseline MEGAN1

0.0 and GNNExplainer perform comparably in
terms of similarity to ground truth, while the explanation-supervised MEGAN1

0.0 clearly outperforms
both, nearly achieving a perfect match. We also point out, that explanations of MEGAN models show
noticeably larger median fidelity than the random baseline, while explanations of GNNExplainer
don’t, indicating that explanations produced by MEGAN actually faithfully reflect the model’s pre-
dictive behavior.
Generally, in the single-explanation case, we often observe that that with samples where the graph
contains two opposing motifs (red and blue) the explanations of baseline MEGAN1

0.0 and GN-
NExplainer usually focus only on either of the motifs, as it can be seen in Figure 3(a). Only the
explanation-supervised MEGAN1,(S)

0.0 correctly highlights both motifs.

4.4 Synthetic Dataset - Multi Explanations

In the second experiment, we demonstrate our model’s capability to learn dual explanations (K = 2).
The experiment is conducted on the synthetic RbMotifs graph regression dataset. We compare
multiple architecturally identical MEGANK

γ models and vary the value of the explanation training
hyperparameter γ, including a baseline model with γ = 0, which performs no additional explanation
training step at all, and an explanation-supervised version MEGAN2,(S)

0.0
Each experiment is independently repeated 50 times, where a new random dataset split is chosen
each time. We report our results in Table 1 and show an example in Figure 3.

The results show that the baseline MEGAN2
0.0 model achieves the lowest similarity to the ground

truth explanations, with MEGAN2,(S)
0.0 showing the highest value, achieving a near perfect match

for nodes and edges. For the prediction performance on the other hand there is no clear difference
between the models, all of them achieving nearly identical R2 values. The Fidelity∗ is also the highest
for the explanation-supervised model MEGAN2,(S)

0.0 , while the models with γ ̸= 0 result in similarly
high median values, although the distributions show higher deviation for lower values of γ. The
baseline model MEGAN2

0.0 shows the lowest median Fidelity∗ value with the highest fluctuations.
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Figure 4: Selected examples for the prediction of water solubility for molecular graphs. Darker
highlights for nodes and edges indicate higher predicted importance values. Examples generally show
an association of long carbon chains and carbon rings with low water solubility. Groups including
nitrogen and oxygen are associated with higher solubility.

We firstly conclude that explanation-supervision can be applied effectively to train a MEGAN model
to emulate pre-defined explanations. Secondly, the proposed modified training procedure also leads
to the development of explanations which have high similarity to ground truth and are faithful to the
intended channel interpretations when compared to the baseline. In this context it is also important to
note that the baseline model MEGAN2

0.0 does not perform significantly differently on the prediction
task. In fact, we generally observe that this model learns the correct explanations as well, but
without any additional guidance the alignment of these explanations with the two available channels
is arbitrary. This often leads the correct explanations to develop in the wrong channels (w.r.t their
intended interpretation) as it can be seen in Figure 3.

4.5 Real-World Datasets

In addition to the synthetic datasets, we conduct experiments with real world datasets, namely the
prediction of water solubility and the prediction of singlet-triplet energy splittings for molecular
graphs. For more details on hyperparameter configurations in both cases, we refer to Appendix B.

For the solubility dataset, some illustrated examples can be found in Figure 4 (more in Appendix C.1).
The overall predictivity is high (r2 correlation coefficient of 0.91 on test set). We observe that the
negative channel usually highlights large carbon structures, while the positive channel is usually
associated with functional groups including oxygen and nitrogen atoms. This is consistent with
chemistry intuition, as non-polar carbon chains and rings are associated with low water solubility,
while polar chemical groups including O and N atoms increase water solubility.

Examples for the singlet-triplet dataset are illustrated in Figure 5. For this task the model also achieves
high predictivity (r2 correlation coefficient of 0.90 on test set). We firstly observe that the model is
able to reproduce chemical knowledge, one example being triphenylamines consistently highlighted
in the negative explanation channel as indicative of low singlet triplet gaps. These triarylamine
bridges cause the necessary twist angles between the fragments, decoupling electron donating and
electron accepting parts of a molecule to reduce the exchange interaction between the frontier orbitals
which would otherwise lower the triplet state compared to the singlet state, thus preventing undesired
singlet triplet splittings.
Additionally, we find evidence for hypotheses about structure property relationships previously
suggested by Friederich et al. (2021). One example is conjugated bridges consistently highlighted
as a positive influence in our model, as they have hypothesized as well. Furthermore, by analyzing
samples of the test set and identifying repeating patterns within the respective explanation channels,
we propose new hypotheses for structure-property relationships shown in Figure 5(c). For example
we find silane groups and phosphine oxides to be consistently highlighted as positive influence on
∆Est across all independent training repetitions. We provide more examples for a total of 5 new
hypothesized explanatory motifs in Appendix C.2.
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Figure 5: Selected examples for the prediction of singlet triplet splitting energy for molecular graphs.
Darker highlights for nodes and edges indicate higher predicted importance values. (a) Explana-
tions consistent with chemical knowledge. (b) Explanations in support of hypotheses published by
Friederich et al. (2021). (c) New hypotheses generated by MEGAN.

5 Limitations

Despite the encouraging experimental results, there are limitations to the proposed MEGAN archi-
tecture: Firstly, there is no guarantee that each channel’s explanations align correctly according to
their predetermined interpretations. This alignment is mainly promoted through an additional loss
term during training, whose influence on the network is dependent on the hyperparameter γ. We
observed "explanation leakage" and "explanation flipping" on rare occasions even with reasonable
values of γ. In those cases explanations of one channel may faintly appear in the opposite channel
or a particularly disadvantageous initialization of the network causes explanations to develop in the
exact opposite channel relative to their assigned interpretation. The second limitation is in the design
of the explanation co-training procedure itself, which essentially amounts to reducing the problem to
a subgraph detection / counting task. While there are important real-world applications that can be
approximated as such, it still presents an important limit to the expressiveness of our model.

6 Conclusion

In this paper we present MEGAN, a multi-explanation graph attention network architecture.
Our model uses attention mechanisms to produce node and edge attribution explanations along
multiple channels for graph regression tasks. Thereby, the number of explanations can be chosen
independently of the task specifications. This may be an important step in developing richer
and more interpretable explanations for graph neural networks in the future. In this work, we
investigate one specific choice of explanation channels first: For graph regression tasks we use two
explanation channels to capture explanations that explain positive and negative influences relative to
a value of reference. We promote the individual explanation channels to behave according to those
predetermined interpretations by applying a modified training procedure which includes an additional
self-supervised explanation-only training step in each iteration.
We validate our model on a synthetic graph regression dataset and show that it produces explanations
with quality similar to GNNExplainer for the single-explanation case. We furthermore demonstrate
that our model can successfully be used for explanation supervision to achieve superior results for
similarity to ground truth and faithfulnes w.r.t to the prediction value. Finally, we demonstrate the
capabilities of our model on two real-world datasets: The prediction of water solubility and the
prediction of singlet-triplet energy splittings for molecular graphs. We show that the explanations
generated by our model are coherent with human intuition for both tasks. Additionally, we are able to
propose new hypotheses for explanatory sub-graph motifs for the singlet-triplet task based on the
explanations of our model.
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A Dataset Details

A.1 RbMotifs

RbMotifs (red & blue motifs) is a synthetic graph regression dataset. It consits of 5000 randomly
generated graphs with node counts between 10 and 40. Each node is associated with three node
feature values in the range [0, 1], which represent RGB color values. Node colors are randomly
sampled from a predefined set of 7 colors. Edges are undirected and unweighted. Additionally to
the random nodes, graphs may be seeded with one of four subgraph motifs, each associated with a
constant value. The target value for each graph is then calculated as the sum of all the motif-specific
values of all motifs which are contained in the graph and a random component δ ∼ U(−0.5, 0.5):

ytrue =
∑
m

ym + δ (11)

where ym is the constant value associated with the m-th motif contained in the graph. The four
subgraph motifs consist of specifc combinations of colored nodes, where two motifs form a similar
pair, whose nodes are either dominated by red or blue nodes. This means there are two possible red
motifs and two blue motifs. The red motifs are associated with a positive constant value, while the
blue motifs are associated with negative values. Figure 6 illustrates this and shows some examples
graphs from the dataset. Figure 7 shows the distribution of color values as well as the distribution of
how many motifs are contained within the graphs.

Figure 6: (a) The subgraph motifs used in the RbMotifs dataset and their associated values. (b)
Example graphs from the dataset annotated with their target value
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Figure 7: (a) Distribution of target values for the RbMotifs dataset. The limits −3 and +3 were
imposed as hard limits during the generation process. (b) The distribution of the number of motifs
contained within graphs. For 2 motifs, any combination exists.

12



A.2 Solubility

We use the AqSolDB dataset introduced by Sorkun et al. (2019), which consists of 9982 chemical
compounds, annotated with measurements of water solubility (logS) at room temperature. The dataset
was created by merging multiple existing datasets. We follow the instructions in (Sorkun et al., 2021)
and and use all of the 1290 compounds originally contained within the so-called Huuskonen dataset
(Huuskonen, 2000) as the test set for all experiments. For the remaining elements we apply the same
pre-processing steps:

• Remove all compounds which do not contain a carbon atom

• Remove adjoined mixtures

• Remove compounds that contain charged atoms

After the application of these pre-processing steps, that leaves approx. 7000 molecules in the training
dataest. We process all of the SMILES strings into molecular graphs using RDKit (Landrum, 2010).

A.3 MovieReviews

MovieReviews is a real world text classification datasets consisting of 2000 movie reviews from
IMDB. Each movie review is to be classified into one of the two sentiment classes "positive" and
"negative". Within the dataset, both classes are represented equally. We take this dataset from the
ERASER benchmark (DeYoung et al., 2020) and process it in a similar way as it was done in Rathee
et al. (2022) as well.

First, the strings are converted into token lists, where tokens are individual words and other sentence
elements such as punctuation. In this step we remove punctuation and capitalization. The string
tokens are then converted into a 50 dimensional numeric feature vector by using a pre-trained GLOVE
(Pennington et al., 2014) model. We convert the token lists into graphs by interpreting every token
as a graph node and connecting each node with it’s neighboring nodes (according to the order of
the token list / sentence order) using a sliding window of size 2. This means that every word is
connected to the 2 neighboring words in both directions. Edges are undirected and unweighted. For
all experiments we use the canonical train-test split as defined by DeYoung et al. (2020).

A.4 Singlet Triplet Energy Splittings

The datasets consists of approx. 500000 molecular graphs. Annotations were created during a
high-throughput virtual screening experiment conducted by Gómez-Bombarelli et al. (2016) with the
objective to discover novel materials for an application in OLED technology. Specifically, the authors
aimed to discover materials which show a specific characteristic of thermally activated delayed
fluorescence (TADF). This class of materials are a promising approach to avoid the high cost of
typically used phosphorescent OLED materials (Endo et al., 2011; Zhang et al., 2012).
In their work the authors use a virtual screening approach to identify particularly promising
candidates. From an initial library of almost 2 million compounds they use a neural network to
predict an estimate for the delayed fluorescent rate constant (kTADF). Candidates with especially
promising values were subjected to quantum chemical simulations to obtain more accurate values.
Through this process approx. 500000 compounds were annotated with the results from quantum
chemical simulations. In the end, the top results were presented to human experts which selected 4
molecules that were experimentally assessed.
Along the delayed fluorescent rate constant property kTADF, the dataset also contains annotations for
the singlet-triplet gap ∆Est and the oscillator strength f , which are the main properties from which
kTADF is calculated.

In our work we train our network to predict the singlet-triplet energy gap ∆Est because there already
exists some chemical knowledge about some structure-property relationships regarding it. Moreover,
previous work by Friederich et al. (2021) already investigates this property using an interpretable
decision tree approach.

13



B Experiment Details

B.1 Explanation Pre-processing

We pre-process all explanations of MEGAN an GNNExplainer by normalizing the attribution values
to a [0, 1] value range. This is done w.r.t to all explanation channels, which means that the relative
differences between the explanation channels remain the same.

B.2 Evaluation Metrics

Explanation Accuracy. For cases where definite ground truth explanations are available, we
measure the accuracy of the generated explanations by computing the are under the ROC curve
(AUROC), as it is done in McCloskey et al. (2019), for the entire validation set. The AUROC value is
in range [0, 1], where 1.0 indicates a perfect classifier and 0.5 indicates a random classifier.

Sparsity. We calculate the sparsity as the percentage of nodes / edges contained in the binary
version of the predicted node / edge importance vector. The binary version of these vectors is
calculated with a threshold at 0.5.

Fidelity. For single-explanation cases, we calculate Fidelity as described in Yuan et al. (2022): The
Fidelity value is the deviation of the predicted output when the given binary explanation is removed
from the input of a particular sample. In this case removal means setting all the feature values of the
corresponding input elements to zero. The binary version of the explanation vectors is calculated
with a simple threshold at 0.5.

Since changes in a regressed value are harder to put into context than for a normalized classification
output, which is always in the [0, 1] value range, we also provide Fidelityrand as a reference. This
is the Fidelity value which results from a randomly generated explanation mask, which has the
same sparsity value as the original explanation mask. Consequently, regression explanations can be
considered faithful if their Fidelity values are significantly higher than the Fidelityrand baseline.

B.3 Synthetic Dataset Experiments

The first experiment on the RbMotifs dataset compares GNNExplainer with MEGAN models, which
only use a single explanation channel (K = 1). In this experiment, the ground truth explanations are
considered to consist of the union of all subgraph motifs that appear in the respective graph. The
individual model and training parameters are reported in Table 2.
The GNNExplainer explanations are based on a standard multi-layer GCN (Kipf and Welling, 2017)
network. The GCN network is trained on the same train set as the MEGAN models. Afterwards a
GNNExplainer optimization is performed for each element of the test set to obtain the explanations.
We note that we use a slightly modified implementation of GNNExplainer contained in KGCNN
library Reiser et al. (2021).
The MEGAN models used in this first experiment use only the one explanation channel. Since the
K = 1 case is not covered in Section 3.3, these models do not use any additional explanation step at
all (γ = 0).

The second experiment compares different MEGAN configurations for the dual-explanation case
K = 2. In this case, ground truth explanations are split into two channels. The first channel contains
all blue (negative) motifs that appear in the graph and the second channel contains all red (positive)
motifs. The individual model and training parameters are reported in Table 2.

The results of 50 independent repetitions of these experiments can be found in Table 1.

B.4 Real-World Dataset Experiments

Additional to the experiments for the synthetic dataset we also perform experiments with two
real-world datasets: The prediction of water solubility for chemical compounds and the sentiment
classification of movie reviews. For both experiments we only report one configuration of the MEGAN
architecture. The model and training parameters can be found in Table 3. For each experiment we
briefly optimize the hyperparameters manually. Most importantly, we find that dropout regularization
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Table 2: Hyperparameters for synthetic dataset experiments. The columns from left to right are:
The model name, the learning rate, the batch size, the number of training epochs, the number of
convolutional layers used for the network, the hidden units used for each of the convolutional layers,
the hidden units used for the MLP layers, the sparsity coefficient and the total number of parameters
of the model.

Model LR BS Epochs Depth Conv. Units MLP Units β # Param.

GCN 0.004 512 250 3 (9, 9, 9) (3, 1) - 2343

MEGAN1 0.004 512 250 3 (9, 9, 9) (3, 1) 0.0 723

MEGAN2 0.01 512 250 3 (3, 3, 3) (3, 1) 0.1 413

GNNExplainer 0.1 1 100 - - - 0.1 0

Table 3: Hyperparameters for real-world dataset experiments. The columns from left to right are:
The model name, the learning rate, the batch size, the number of training epochs, the number of
convolutional layers used for the network, the hidden units used for each of the convolutional layers,
the hidden units used for the MLP layers, the sparsity coefficient and the total number of parameters
of the model. The specified dropout percentages indicate the dropout which is applied after each
layer.

Dataset LR BS Epochs Depth Conv. Units MLP Units β # Param.

Solubility 0.001 512 250 5 (45, 40, 35, 30, 25)
20% Dropout

(30, 20, 10, 1)
0% Dropout

0.1 80907

MovieR. 0.001 50 100 5 (45, 40, 35, 30, 25)
20% Dropout

(30, 20, 10, 2)
0% Dropout

0.1 71558

TADF 0.001 1024 25 5 (50, 50, 50, 50, 50)
0% Dropout

(50, 20, 10, 2)
0% Dropout

1.0 130000

proves increasingly useful for increasing numbers of node features and layers. The given dropout
percentages are applied after each layer.

The results of 50 independent repetitions of the solubility experiment can be found in Table 4. We
also report the results of Sorkun et al. (2021) for the same test set.
Over all repetitions, our model performs consistently well in terms of predictivity (R2 = 0.91),
although the results are slightly worse than those achieved by the consensus model employed by
Sorkun et al. (2021). However, we especially point out the high Fidelity∗ value for our model. On the
one hand this indicates that the explanation train step effectively promotes the learned explanations to
remain truthful to the intended interpretations of the respective channels. On the other hand this also
indicates that the explanations which are found by the model can indeed be interpreted as positive
and negative influences for the concept of solubility in general.

Table 4: Results for computational experiments with solubility dataset. We report the median value
for 50 independent experiment repetitions in black, as well as the 75th percentile (upper) and 25th
percentile (lower) of the distribution in gray.

Source Model RMSE R2 Node Sparsity Edge Sparsity Fidelity∗

Sorkun et al. (2021) Consensus 0.54 0.93 - - -

ours MEGAN2
0.5 0.59

∣∣ 0.60
0.58 0.91

∣∣ 0.91
0.91 0.29

∣∣ 0.42
0.18 0.25

∣∣ 0.37
0.18 7.15

∣∣ 8.37
5.13
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The results of 50 independent repetitions of the MovieReviews experiment can be found in Table 5.
We also report the results of DeYoung et al. (2020), who use a BERT encoder and LSTM network,
and Rathee et al. (2022), who use the same pre-processing steps to provide a baseline for a simple
GCN network.
Overall, DeYoung et al. (2020) clearly show the best classification performance. We believe this is due
to their usage of a state-of-the art BERT language model, which has recently proven very powerful
for multiple language processing tasks. To our surprise however, our results are only marginally
better than those of a GCN baseline model reported by Rathee et al. (2022). We hypothesize that this
is due to our usage of a 50 dimensional GLOVE model instead of the full 300 dimensional version
used by Rathee et al. (2022). In the future, we want to investigate different language encoder models
in junction with our model.

Table 5: Results for computational experiments with solubility dataset. We report the median value
for 50 independent experiment repetitions in black, as well as the 75th percentile (upper) and 25th
percentile (lower) of the distribution in gray.

Source Model F1 Node Sparsity Edge Sparsity Fidelity∗

DeYoung et al. (2020) BERT+LSTM 0.97 - - -

Rathee et al. (2022) GLOVE+GCN 0.85 - - -

ours MEGAN2
1.0 0.86

∣∣ 0.87
0.84 0.01

∣∣ 0.01
0.00 0.00

∣∣ 0.00
0.00 1.00

∣∣ 1.00
1.00

The results of 3 independent repetitions of the TADF experiment can be found in Table 6. For this
experiment we conducted only 3 independent repetitions due to the drastically increased computation
time for the larger dataset. We are not able to provide a direct comparison from the literature because
the original authors Gómez-Bombarelli et al. (2016) only publish their results for the prediction of
the kTADF property. Using a neural network they achieve R2 = 0.92 for the prediction of kTADF.

In regards to our own results, we can summarize that we are able to achieve overall good predictivity
for the main prediction task as well. The network generates explanations which are sparse and
faithful to the respective channel’s intended interpretation, as it can be seed by the positive value of
Fidelity∗. One thing of note is that the Fidelity∗ value is much lower when compared to the solubility
experiment (see Table 4). This is most likely due to the overall different value ranges of the two tasks.
While the effective target value range of the solubility dataset is [−16, 2] the value range for the
singlet-triplet energy gap is much smaller with [0, 3]. Thus, deviations caused by masking individual
importance channels are generally expected to have smaller absolute values.

Table 6: Results for computational experiments with TADF dataset. We report the median value
for 50 independent experiment repetitions in black, as well as the 75th percentile (upper) and 25th
percentile (lower) of the distribution in gray.

Source Model RMSE R2 Node Sparsity Edge Sparsity Fidelity∗

ours MEGAN2
1.0 0.13

∣∣ 0.14
0.13 0.90

∣∣ 0.90
0.89 0.08

∣∣ 0.11
0.05 0.08

∣∣ 0.11
0.06 0.67

∣∣ 0.98
0.39
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C Additional Examples

C.1 Solubility

Figure 8: Examples which show that the model learns to associate carbon groups with a negative
influence on the solubility value and oxygen functional groups (especially OH groups) with positive
influences on the solubility value.

Figure 9: Examples which show that in the absence of any atoms carbon hydrogen, the positive
channel is usually not activated at all, further supporting the assumption that the model learns to
associate carbon structures with low solubility. We point out that although the model provides a
heuristical explanation consistent with chemistry knowledge here, this still shows a limitation of
simple attributional explanations: Despite being explained in a similar fashion, the samples shown
here still vary considerably in their actual solubility value. We argue that in such cases two simple
attributional explanations as used here are not sufficient to accurately communicate the underlying
reason for those differences in value.
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Figure 10: Examples which show that the model learns to associate nitrogen functional groups with
positive influences on the solubility value aswell.

Figure 11: Examples which show that the quality of the explanations can be inconsistent within as
well as in between independent repetitions of model training. The first sample is taken from the 30th
repetition of the solubility experiment, from which all the good examples of the previous figures have
been drawn from as well. It incorrectly shows a strong activation of the negative channel and a weak
activation of the positive channel, even though there are many characteristic oxygen and nitrogen
functional groups present. In this case, the faulty explanation is actually reflected in the relatively
large error in the model’s prediction as well. The other three samples were drawn from the 10th
repetition, which shows worse explanations overall. Despite the relatively accurate predictions, all
three samples show very indiscriminate explanations, that feature a lot of similar activations in both
channels.
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C.2 Singlet Triplet Energy Splitting

Figure 12: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that triarylamine bridges are consistently highlighted in the negative explanation
channel as evidence for lower target values. We find these explanations consistent with chemical
knowledge: "Low singlet-triplet splittings in TADF molecules are typically achieved by decoupling
electron donating and accepting parts of a molecule to reduce the exchange interaction between the
frontier orbitals which would otherwise lower the triplet state compared to the singlet state and open
an undesired singlet-triplet splitting. The decoupling of the fragments can be achieved by introducing
twist angeles close to 90° between the fragments. One way to accomplish this are trialymine bridges
between the fragments" to quote Friederich et al. (2021)

Figure 13: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that carbonyl groups are consistently highlighted in the negative explanation channel
as evidence for lower target values. These explanations of our model directly support the hypothesis
previously published by Friederich et al. (2021), who used an interpretable decision tree approach to
generate their hyphotheses.
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Figure 14: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that conjungated bridges are consistently highlighted in the positive explanation
channel as evidence for higher target values. These explanations of our model directly support the
hypothesis previously published by Friederich et al. (2021), who used an interpretable decision tree
approach to generate their hyphotheses.

Figure 15: Selected examples, which illustrate the structure-property explanations generated by
our model. We find that thiophene and thiazole rings are consistently highlighted in the positive
explanation channel as evidence for higher target values. These explanations of our model directly
support the hypothesis previously published by Friederich et al. (2021), who used an interpretable
decision tree approach to generate their hyphotheses.
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Figure 16: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that silane groups are consistently highlighted in the positive explanation channel as
evidence for higher target values. We propose this as new hypothesis for a possible structure-property
relationship.

Figure 17: Selected examples, which illustrate the structure-property explanations generated by
our model. We find that phosphine oxides are consistently highlighted in the positive explanation
channel as evidence for higher target values. We propose this as new hypothesis for a possible
structure-property relationship.
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Figure 18: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that cyano groups are consistently highlighted in the negative explanation channel as
evidence for lower target values. We propose this as new hypothesis for a possible structure-property
relationship.

Figure 19: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that benzotriazole derivatives are consistently highlighted in the positive explanation
channel as evidence for higher target values. We propose this as new hypothesis for a possible
structure-property relationship.
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Figure 20: Selected examples, which illustrate the structure-property explanations generated by our
model. We find that triazole bridges are consistently highlighted in the positive explanation channel as
evidence for higher target values. We propose this as new hypothesis for a possible structure-property
relationship.
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C.3 Movie Reviews

Table 7: Example for movie review which contains positive and negative sentences, which are
correctly sorted into the respective channels. However, this example also shows some sort of a bias by
including the first sentence as a negative explanation. Objectively the first sentence does not contain
any sentiment. The false explanation of the model is supposedly caused by the word "criminals"
which is presumably often used in junction with negative adjectives.

Negative Positive

a couple of criminals mario van peebles and loretta

devine move into a rich family house in hopes of

conning them out of their jewels however someone else

steals the jewels before they are able to get to them

writer mario van peebles delivers a clever script with

several unexpected plot twists but director mario van

peebles undermines his own high points with haphazard

camera work editing and pacing it felt as though the

film should have been wrapping up at the hour mark

but alas there was still 35 more minutes to go daniel

baldwin i ca n’t believe i ’m about to type this gives

the best performance in the film outshining the other

talented members of the cast

a couple of criminals mario van peebles and loretta

devine move into a rich family house in hopes of

conning them out of their jewels however someone else

steals the jewels before they are able to get to them

writer mario van peebles delivers a clever script with

several unexpected plot twists but director mario van

peebles undermines his own high points with haphazard

camera work editing and pacing it felt as though the

film should have been wrapping up at the hour mark

but alas there was still 35 more minutes to go daniel

baldwin i ca n’t believe i ’m about to type this gives

the best performance in the film outshining the other

talented members of the cast

Table 8: Example for an exclusively positive review. Due to the overall lack of negative adjectives,
the negative channel isn’t activated at all.

Negative Positive

this three hour movie opens up with a view of singer

guitar player musician composer frank zappa rehearsing

with his fellow band members all the rest displays a

compilation of footage mostly from the concert at the

palladium in new york city halloween 1979 other

footage shows backstage foolishness and amazing clay

animation by bruce bickford the performance of titties

and beer played in this movie is very entertaining with

drummer terry bozzio supplying the voice of the devil

frank guitar solos outdo any van halen or hendrix i ’ve

ever heard bruce bickford outlandish clay animation is

that beyond belief with zooms morphings etc and

actually it does n’t even look like clay it looks like

meat

this three hour movie opens up with a view of singer

guitar player musician composer frank zappa rehearsing

with his fellow band members all the rest displays a

compilation of footage mostly from the concert at the

palladium in new york city halloween 1979 other

footage shows backstage foolishness and amazing clay

animation by bruce bickford the performance of titties

and beer played in this movie is very entertaining with

drummer terry bozzio supplying the voice of the devil

frank guitar solos outdo any van halen or hendrix i ’ve

ever heard bruce bickford outlandish clay animation is

that beyond belief with zooms morphings etc and

actually it does n’t even look like clay it looks like

meat
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Table 9: Example which shows that the model currently doesn’t understand negations and sarcasm.
We point out that the partial sentence "never a bad thing" in the middle of the review is sorted into the
negative channel. Another example is the first sentence: The praise it features is meant sarcastically,
but it is still sorted into the positive channel.

Negative Positive

burnt money is the perfect festival film it will show

once or twice and then no one thankfully will ever

have to hear from it again this film from the seattle

international film festival 2001 emerging masters series

is easily one of the year worst billed as a gay ‘ bonnie

and clyde this gritty film from director marcelo pi eyro

has its only highlight in a well designed title sequence

two gay lovers get involved in a bank robbery that

makes a gang leader whose plan they screwed up angry

this causes the gang leader to send his boys out to get

the gay guys one of whom may not actually be gay

hiding out in a prostitute apartment the two men must

fight off police and gang members in a very long

showdown for the movie conclusion if caught they risk

losing all the money and their love as an added

emotional bonus one of the gay men is dying or

something like that everything that happens is so quick

and confusing i was completely lost clarity is n’t

exactly this movie striving virtue so it was a little hard

to pick up not much could have really happened though

the main events in this long two hour film are explicit

homosexual and heterosexual sex graphic drug use

extreme violence and strong language lots of explicit

material is never a bad thing when there a reason but

there no purpose to anything in this film most of the

sex and violence scenes come off as silly while the

heavy drug use comes off as ridiculous and depressing

it appears pi eyro who co wrote with marcelo figueras

from a novel by ricardo piglia purposefully adds more

blood and lovemaking for his own amusement he makes

the actors as sweaty and dirty as possible makes them

snort cocaine gives them guns and condoms and lets

them go burnt money is pointless the performances are

bad it tries to thrill and shock but only causes boredom

god forbid it will ever get a distributor another

disappointing film from this year so called emerging

masters series pass on by

burnt money is the perfect festival film it will show

once or twice and then no one thankfully will ever

have to hear from it again this film from the seattle

international film festival 2001 emerging masters series

is easily one of the year worst billed as a gay ‘ bonnie

and clyde this gritty film from director marcelo pi eyro

has its only highlight in a well designed title sequence

two gay lovers get involved in a bank robbery that

makes a gang leader whose plan they screwed up angry

this causes the gang leader to send his boys out to get

the gay guys one of whom may not actually be gay

hiding out in a prostitute apartment the two men must

fight off police and gang members in a very long

showdown for the movie conclusion if caught they risk

losing all the money and their love as an added

emotional bonus one of the gay men is dying or

something like that everything that happens is so quick

and confusing i was completely lost clarity is n’t

exactly this movie striving virtue so it was a little hard

to pick up not much could have really happened though

the main events in this long two hour film are explicit

homosexual and heterosexual sex graphic drug use

extreme violence and strong language lots of explicit

material is never a bad thing when there a reason but

there no purpose to anything in this film most of the

sex and violence scenes come off as silly while the

heavy drug use comes off as ridiculous and depressing

it appears pi eyro who co wrote with marcelo figueras

from a novel by ricardo piglia purposefully adds more

blood and lovemaking for his own amusement he makes

the actors as sweaty and dirty as possible makes them

snort cocaine gives them guns and condoms and lets

them go burnt money is pointless the performances are

bad it tries to thrill and shock but only causes boredom

god forbid it will ever get a distributor another

disappointing film from this year so called emerging

masters series pass on by
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