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Abstract

Structure-based virtual screening (SBVS) of ultra-large chemical libraries has
led to the discovery of novel inhibitors for challenging protein targets. However,
screening campaigns of these magnitudes are expensive and thus impractical to
employ in standard practice. As the broad goal of most SBVS workflows is the
identification of the most potent molecules in the library, the task can be viewed as
an optimization problem. Previous work has demonstrated the ability for Bayesian
optimization to improve sample efficiency in SBVS using the MolPAL software.
In this tutorial, we provide a broad algorithmic overview of the MolPAL software
and a guide for its utilization in a prospective virtual screening task.

1 Introduction
Structure-based virtual screening (SBVS) is an important tool in drug discovery programs. Structure-
based simulations, such as computational docking, enable chemists to quickly search large compound
libraries for potential binders to a given protein. These simulations mimic the physical process
of drug binding and estimate the binding potency with a “docking score”. Early applications of
so-called “high-throughput docking” screened libraries containing hundreds of thousands molecules
[4]. Given the recent explosion in the sizes of publicly available enumerated compound libraries,
there is renewed interest in high-throughput docking for drug discovery. Recent examples include
the screening of more than 100M molecules to identify nano- and picomolar antibacterial and
anti-psychotic compounds, respectively [18], and the screening of 1.4B molecules to discover a
sub-micromolar anti-inflammatory compound [10].

Ultra-large SBVS is expensive to employ as its cost scales proportionally with the size of the library.
The large resource demands of these ultra-large screens also make them practically challenging,
requiring computational resources that are only accessible on select high-performance computing
clusters. These docking campaigns screen a massive number of molecules, but the end goal is
generally the identification of the top-k (k ≤ 100k) molecules in the library by docking score. This
view of SBVS allows it to be framed as an optimization problem, where the goal is to identify
a subset of molecules {xi}ki=1 in a library X that minimizes the summed docking scores, i.e.,
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Figure 1: Graphical depiction of the MolPAL workflow. A virtual library (circles) will be subjected
to multiple iterations of the optimization loop (grey ring), where molecules are selected for docking
(blue circles) and, optionally, pruned (§3.1; red circles). Upon termination of the optimization loop,
some number of molecules will remain undocked (grey circles).

{xi}ki=1 = argmin{xi}k
i=1⊆X

∑k
i=1 f(xi), where f(·) computes the docking score. We leveraged

discrete optimization techniques in the development of the MolPAL software, which improves the
sample efficiency of SBVS via model-guided optimization. This tutorial is intended to provide a
general summary of how to employ MolPAL in a virtual screening scenario, starting from library
preparation and setting up the distribution engine to choosing optimization parameters and analyzing
the results.

2 Software and Methods

MolPAL (“molecular pool-based active learning”) is a software that accelerates SBVS using Bayesian
optimization (BO) (Figure 1). Broadly, MolPAL accepts three main inputs: (1) a virtual library, (2)
a docking protocol, and (3) optimization hyperparameters, such as the surrogate machine learning
(ML) model architecture and acquisition function. As the MolPAL program runs, it will use the
input optimization hyperparameters (described in further detail below) to adaptively select a batch of
molecules from the library to dock. Upon completion, MolPAL outputs a CSV file containing the
SMILES string of each compound docked and the docking score of its best pose. The software is
open source and available under the MIT license at [11]. It is invoked from the command line like so:

$ molpal run --library LIBRARY -o docking \
--objective-config OBJECTIVE_CONFIG [optimization hyperparameters]

At a high level, MolPAL operates via (1) docking a random batch of n molecules from the library,
(2) training a surrogate machine learning model f̂ on these docking data, (3) predicting the docking
score and (optionally) the uncertainty for all remaining molecules in the library (4) calculating the
“acquisition utility” of all undocked molecules using these predictions and an acquisition function α,
(5) docking the top-n points by acquisition utility, and (6) repeating steps (2)–(5) for some number
of iterations T . For a more detailed review of Bayesian optimization we refer a reader to [25] and
[8]. MolPAL pipelines the entire optimization from model training and prediction to running the
docking simulations and parsing the results. It requires no input from a user once the program starts.
In addition, MolPAL is able to use distributed resource allocations to parallelize each of these steps
across large resource allocations.

We have previously studied the ability of MolPAL to accelerate a variety of different SBVS tasks
across various virtual chemical libraries, docking software, and protein targets, and we refer a reader
to [14] for the complete results. In these studies, we found an improvement in sample efficiency
between 40- and 80-fold over random selection on an ultra-large virtual screening task of 100M
molecules docked against AmpC with DOCK3.7 from Lyu et al. [18] (Figure 2). While MolPAL is
also effective in settings with smaller virtual libraries, the cost savings are both more pronounced and
more impactful as the size of the library increases.

3 General workflow

A typical MolPAL run is broken up into five steps: (1) connecting compute resources with a
Ray cluster, (2) preparing the virtual library of candidate ligands, (3) (optional) pre-computing
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Figure 2: MolPAL performance on the AmpC library (100M) with greedy acquisition and the
specified surrogate model architecture. Plot title represents the fraction of the pool acquired in each
batch. RF: random forest; NN: feedforward neural network; MPN: directed message passing neural
network; random: random acquisition from the library. Figure reproduced using data from [14].

featurizations of the library molecules, (4) defining parameters of the docking and optimization
protocols, (5) running the MolPAL software, and (6) analyzing the results. In the following paragraphs,
we will describe each of these steps in detail, and for an interactive version, a reader may utilize the
tutorial notebook [11].

1. Utilizing distributed resources MolPAL can utilize large and distributed hardware allocations to
parallelize each step in the optimization loop (e.g., model training, inference, and docking) using the
Ray [19] distributed computing framework. Before running any MolPAL commands or scripts below,
a Ray cluster must be started: ray start --head. The previous command is sufficient for utilizing
local resources (i.e., a single node), but for more involved settings, such as starting a Ray cluster
over multiple nodes, the details will depend on a user’s specific system. The MolPAL repository
and supplemental notebook [11] both include an example using Slurm, and the Ray documentation
includes examples for starting clusters on other HPC schedulers or cloud-based platforms like GCP. A
typical use-case for MolPAL is to search a library of 50-100M molecules and docking approximately
2M of them. These runs typically finish within 48 hours across 400-600 CPUs. Because the vast
majority of costs in a MolPAL run are docking-related, we generally find GPUs unnecessary to
accelerate surrogate model training and inference in the case of NN and MPN models.

2. Preparing the virtual library A key input to a MolPAL run is the virtual chemical library to
explore in the form of a text file containing the SMILES string of each compound. We recommend
that the library contain no duplicated molecules to avoid one batch containing the same molecule
multiple times. Note also that MolPAL accepts a library as-is and performs no further modifications.
It is possible that some molecules in a library possess multiple states corresponding to the same
SMILES string (e.g., tautomeric, ring-conformation, ionization states, etc.), some of which dock
more favorably than others. Enumeration of these states with tools such as RDKit [1] or Gypsum-DL
[23] during library preparation can avoid missing these molecules. Some ultra-large libraries, such
as the Enamine REAL Database [7], are provided in several shards. Provided that each shard has
the same format, simply pass each one to the --library argument to mimic searching the full,
unsharded library.

3. Featurizing the library In cases where the surrogate model expects vector inputs, such as
random forest (RF) or feedforward neural network models (NN), the vector representations of library
members can be precalculated to save time during the actual run. To do so, use the fingerprints.py
script to generate an HDF5 file containing these vectors:

$ python fingerprints.py -o OUTPUT -l LIBRARY \
--fingerprint FINGERPRINT --radius RADIUS --length LENGTH
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Note that the fingerprint, radius, and length values must match those supplied to MolPAL. Typical
values are pair, 2, and 2048, respectively, and these produce an output file that is approximately
200G per 100M SMILES strings. Next, supply this HDF5 file, OUTPUT, to MolPAL via the --fps
argument. This script requires a Ray cluster to be started before running, so please refer to the 1.
Utilizing distributed resources paragraph above for details on setting one up. This script also outputs
the indices of any invalid SMILES strings in the provided library. Providing these indices to MolPAL
via the --invalid-idxs argument will skip the library validation step during startup.

4. Defining the the run configuration MolPAL has two broad sets of parameters: (1) optimization
hyperparameters: surrogate model architecture (D-MPNN, RF, NN), molecular representation (graph,
fingerprint), acquisition function (greedy, UCB: upper confidence bound; TS: Thompson sampling;
PI: probability of improvement; and EI: expected improvement), batch size (expressed as either
a fraction of the pool or absolute amount), and stopping criteria (maximum number of iterations,
total sample count, minimum improvement); and (2) docking task parameters (chemical library,
protein target, and docking parameters). Given that each optimization task is unique, it is impossible
to definitively identify the optimal set of optimization hyperparameters for every scenario. In
previous studies, we experimented broadly among these choices for several tasks and found that
the combination of a directed message passing neural network (D-MPNN) with mean-variance
estimation (MVE) uncertainty quantification [21] for the surrogate model combined with an upper
confidence bound (UCB) acquisition function to be robust in terms of optimization performance (e.g.,
--model=mpn --conf-method=mve --metric=ucb). We also found that smaller batch sizes led
to generally higher enrichment compared to larger batch sizes for a similar sample count, but this
shifts the computational budget to spend more time on training and prediction costs as the surrogate
model is updated more frequently. It is an ongoing challenge in the field to identify the optimal batch
size in a principled manner. Early stopping experiments showed that most optimizations converged
between 8-10 batches with a 0.2% batch size on a 2M member library, so we generally recommend
deciding on a total sample count first and then determining the batch size such that 6-10 batches are
selected. For convenience, all of these arguments may be stored in a YAML-format configuration file
and supplied via the --config argument.
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Figure 3: Parity plot of final MolPAL perfor-
mance without DSP (“BO”, x-axis) vs. with DSP
(“BO+DSP”, y-axis) on each DOCKSTRING task.
Each point represents the mean performance of
five independent runs. Runs were conducted with
a D-MPNN surrogate model, UCB acquisition and
six batches (one initialization plus five acquisition)
of ca. 1,000 molecules. White circle indicates
p < 0.05 (Bonferroni-corrected) that BO+DSP
performance is worse than BO. Figure reproduced
using data from [15].

MolPAL uses the pyscreener library [13]
to perform the docking calculations, so a
pyscreener configuration file is passed to the
--objective-config argument. This file re-
quires only the filepath of a receptor in PDB
format, the desired docking software (Vina [26],
Smina [17], PSOVina [20], QVina2 [2], and
DOCK6 [3]), and docking box parameters. For
more details on this file, we refer a reader to the
documentation [12], and for a general guide on
determining the appropriate docking protocol,
we refer a reader to [5].

6. Analyzing the results The outputs of a
completed MolPAL run are are (1) a CSV con-
taining all of the molecules and the docking
score of their top-ranked pose and (2) a series of
zipped tarballs containing all input and output
files generated from docking. Typically, pose
analysis is necessary before selecting molecules
for further simulation or experimentation. To
access the docking poses of the top-k molecules,
run molpal extract OUTPUT_DIR K to ex-
tract the poses of the best K molecules from
their respective tarballs to the poses subdirec-
tory. Poses will be stored in the native output
format of the selected docking software (e.g.,
PDBQT for Vina-type software and SDF for
DOCK6). Once extracted, the poses may then
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be examined either manually using programs such as PyMol [24] and Chimera [22] or automatically
using Python libraries such as ProLIF [6].

3.1 Limiting overhead costs with pruning

In the regime of ultra-large chemical libraries, the surrogate model training and inference steps (steps
(2) and (3) from Software and Methods) can become quite costly. When using a D-MPNN model on a
library of 100M molecules with a batch size of 400k, these two steps can comprise more than 15% of
the cost of a single iteration of the optimization loop. To mitigate these overhead costs, we developed
design space pruning (DSP) as an extension to the framework of model-guided optimization [15]. At
each iteration of the optimization, DSP removes molecules from the library based on the probability
that a given molecule is a hit (as calculated by the surrogate model). This reduces the number of
inference calls made in the prediction step of the next iteration and thus its overall cost. Across 58
different docking tasks of 260k molecules from the DOCKSTRING benchmark [9], BO+DSP resulted
in comparable performance to baseline BO with significantly reduced inference costs (Figure 3).

To use DSP during a MolPAL run, all that is required is the --prune flag. Because DSP introduces
the possibility removing “good” molecules from the library before they are selected for docking, it
is best suited for situations where the reduced inference costs outweigh the risk of removing active
molecules from the library.

4 Conclusion

Model-guided optimization is an attractive choice for SBVS when the goal is to identify a broadly
potent set of molecules. Exhaustive search of ultra-large chemical libraries with SBVS is expensive,
but the optimization approach of MolPAL can drastically lower these costs while stile identifying the
large majority of potent molecules. The approach is not limited to SBVS and is effective in other
virtual screening objectives, such as the identification of organic photoelectric materials, as shown in
a retrospective experiment on the Harvard Clean Energy Project dataset [14, 16].
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