
A Appendix

A.1 Hyperparameters & Implementation Details

A.1.1 Compression Models

experiment section add.
samples

effective
size

fine-tuned
from [21]

trained
from scratch

compression
rate

class-cond. ImageNet 4.1 Fig. 10,18,19 973 7 7 1/256

LSUN-Cats 4.1 Fig. 23 1014 3 7 1/256
LSUN-Churches 4.1 Fig. 22 1022 3 7 1/256
LSUN-Bedrooms 4.1 Fig. 24 1017 3 7 1/256

Conceptual Captions 4.2 Fig. 11 973 7 7 1/256

FFHQ 4.1 Fig. 25 548 7 3 1/256

Semantic FLICKR A.2 Fig. 12,13 973 7 7 1/256

Table 4: Hyperparameters for all compression models used in our experiments.

We follow [21] and implement our image compression models as “VQGANs”. More
specifically, we use the official implementation provided at https://github.com/CompVis/
taming-transformers and fine-tune the publicly available model for experiments on LSUN.
For FFHQ, we train such a compression model from scratch. See Tab. 4 for an overview. As some of
the codebook entries remain unused after training, we shrink the codebook to its effective size when
training a generative model on top of it. For eventual entries not detected during evaluation on the
subset, we assign a random entry.

A.1.2 Hierarchical Representations via Multinomial Diffusion

Tab. 5 lists the configurations of the multinomial diffusion processes for each experiment described in
this work (see also Tab. 4). Note that all representations xt for T > 1 have the same spatial resolution,
but since each forward diffusion process gradually removes information, we obtain a coarse-to-fine
hierarchy. On average, level xt will contain bᾱt ·Nc valid entries, which we denote as the effective
sequence length in Tab. 5. Thus, ImageBART can also be interpreted as a generative compression
model as illustrated in Fig. 9: By trading perfect reconstruction quality for compression, one can
obtain a significantly shorter sequence, still representing a visually plausible image. This provides the
basis for learning a generative model that does not waste capacity on redundancies in the data [17]
and the compressed space significantly lowers the computational demands for training and decoding.

A.1.3 Reverse Diffusion with Transformer Models

ImageBART is a learned Markov chain, trained to reverse the multinomial diffusion process described
in Eq. (5). We can efficiently model the conditionals ptθ with a sequence-to-sequence model and
follow [75, 45] to implement ptθ with an encoder-decoder architecture. Tab. 6 summarizes the
hyperparameters used to implement the conditionals for each experiment. For comparison, the

experiment length of chain βt schedule (t ≥ 2) effect. seq. length
(fullN = 256, t ≥ 2, w/o cond.)

class-cond. ImageNet T = 6 [0.090, 0.104, 0.139, 0.266, 1.0] [232, 208, 179, 131, 0]

LSUN-Cats T = 4 [0.152, 0.231, 1.0] [217, 166, 0]
LSUN-Churches T = 4 [0.152, 0.231, 1.0] [217, 166, 0]
LSUN-Bedrooms T = 4 [0.152, 0.231, 1.0] [217, 166, 0]

Conceptual Captions T = 5 [0.113, 0.141, 0.246, 1.0] [227, 195, 147, 0]

FFHQ T = 3 [0.364, 1.0] [162, 0]

Semantic FLICKR T = 5 [0.250, 0.333, 0.500, 1.0] [192, 128, 64, 0]

Table 5: Hyperparameters for all multinomial diffusion process we used in our experiments.

16

https://github.com/CompVis/taming-transformers
https://github.com/CompVis/taming-transformers

x0 : rb = 1 x1 : rb = 619 x2 : rb = 680 x4 : rb = 1190 x5 : rb = 1.5 · 105

Figure 9: ImageBART can be interpreted as a generative compression model retaining high visual quality at
high compression rates. Here, we denote the compression rate rb = 256·256·3·8

neff ·log2(973)
(in bits), and neff is the

effective sequence length as in Tab. 5.

experiment num. parameters [M] num. layers
(encoder/decoder)

embed. dim.
(encoder & decoder)

class-cond. ImageNet [693, 693, 693, 693, 718] [4× (32/6), (0/36)] [4× 1152, 1216]

LSUN-Cats [693, 693, 718] [2× (32/6), (0/36)] [2× 1152, 1216]
LSUN-Churches [693, 693, 718] [2× (32/6), (0/36)] [2× 1152, 1216]
LSUN-Bedrooms [693, 693, 718] [2× (32/6), (0/36)] [2× 1152, 1216]

Conceptual Captions [685, 685, 685, 778] [3× (32/6), (0/36)] [3× 1152, 1216]

FFHQ [687, 713] [(32/6), (0/36)] [1152, 1216]

Semantic FLICKR [397, 397, 397, 429] [3× (19/5), (0, 24)] [1152, 1216]

Table 6: Hyperparameters for each experiment and scale (t ≥ 2) used to implement the Markov chain in Eq. (5).

models in Tab. 1 contain 115M (VDVAE), 255M (DDPM), 30M (StyleGAN2), 158M (BigGAN),
448M (DCT) and 600M (TT) parameters.

A.1.4 Hardware

All models listed in Tab. 4 and Tab. 6 were optimized on a single NVIDIA A100 GPU and using
32-bit precision. Sampling speed as reported in Fig. 8 was also measured on a NVIDIA A100.

A.2 Details on Conditional Experiments

Semantically Guided Synthesis In addition to class- and text-conditional generative modeling, we
apply our model to semantically guided synthesis of landscape images [53]. To achieve this we follow
[21] and use the discrete representation of an autoencoder model trained on segmentation masks as
conditioning c for our models ptθ. However, since simply prepending c here doubles the total length,
which means a fourfold increase in complexity in the attention mechanism, we exploit the fact that
the segmentation masks and the images (or their representations) are aligned. More specifically,
within the encoder-decoder architecture, we first produce two embeddings e1 and e2 for xt and c,
respectively, which are subsequently concatenated channel-wise, thereby keeping the sequence length
of xt. With this modifications, we train a model with T = 5 and individually optimize each scale
similar to the unconditional training setting. Here again, we use the compression model p0θ pre-trained
on ImageNet. For training, we randomly crop the images and semantic maps to size 256× 256. For
testing, however, we again use the sliding window approach of [21] (cf. Sec. 4.2), which enables us
to generate high-resolution images of landscapes, as visualized in Fig. 12 and Fig. 13.

A.3 Masked Diffusion Processes for Local Editing

Previous autoregressive approaches [72] model images directly as a sequence of pixels from the
top-left to the bottom-right. Thus, when generating a pixel, only context from neighbors to the left
and above can be taken into account. While more recent approaches, which use a CNN to learn a
discrete representation that is subsequently modeled autoregressively [74, 21], improve this situation

17

Figure 10: Additional samples for class-conditional synthesis results on ImageNet.

A heart made of ___. A vase made of ___.
wood stone pizza metal wood avocado pizza pasta

Figure 11: Additional samples from our text-conditional model.

18

Figure 12: Semantically guided samples from ImageBART conditionally trained semantic maps from the on the
S-FLCKR dataset, similar to the one shown in the top row. Image size is 1024× 410.

19

Figure 13: Additional samples on semantic image synthesis. Left: 1024× 656 pix. Right: 1024× 608 pix.

20

Masked Input TT [21] ImageBART

Input
Iterative Refinement According to Global Context

−−→

ImageBART

TT [21]

ImageBART

TT [21]

ImageBART

TT [21]

Figure 14: Additional examples for upper half completion as in Fig. 5. The top shows masked inputs, results
by TT [21] and results by ImageBART. The bottom shows every other sample of the forward-backward chain
described in Sec. 4.3 and Sec. A.3. ImageBART can incorporate global context to produce consistent completions,
whereas TT is limited to context from above and thus fails to produce consistent completions.

21

Original Masked Guidance
Red fox (c277) Brown Bear (c294) White Wolf (c270) Leopard (c289) Gazelle (c353)

Lorikeet(c90) Snow Leopard (c288) Doberman (c236) Leopard (c289) Arctic Fox (c279)

Pizza (c963) Carbonara (c959) Meat loaf (c962) Broccoli (c937) Bell pepper (c945)

Granny Smith (c948) Pizza (c963) Orange (c950) Volleyball(c890) Bell pepper (c945)

Figure 15: Conditionally guided inpainting results obtained from conditional ImageBART trained on the
ImageNet dataset.

Original Masked Guidance
’Man standing on a mountain.’ ’Solar Eclipse.’ ’Sunrise.’ ’Moonlight’

’The piece of paper.’ ’A pencil sketch.’ ’A forest behind the window.’ ’Oil painting of a cathedral.’

Figure 16: Additional results on conditional inpainting obtained from conditional ImageBART trained on the
Conceptual Captions dataset.

22

Figure 17: Running the forward-backward chain on a class conditional model allows for fine-grained exploration
of samples for a given class, such as red fox (class 277).

because elements of the representation now correspond to image patches, Fig. 5 showed that these
models still fail to generate completions of the upper half of an image which are consistent with a
given lower half.

While our approach also models each transition autoregressively from the top-left to the bottom-
right, each transition additionally has access to global context from the previous step. We aim to
exploit this fact to obtain novel applications such as consistent completions of upper halfs and, more
generally, completions with respect to an arbitrary mask. For any such mask, let m denote the result
of downsampling it to the size of x1 using nearest-neighbor-interpolation, such that mi = 0 gives the
positions where context should be used, and mi = 1 gives the positions where new content should be
generated. We then define the masked forward process,

qt,mθ (xt|xt−1) = m · qtθ(xt|xt−1) + (1−m) · δ(xt − xt−1), (10)

which only diffuses masked entries, and the masked reverse process,

pt−1,mθ (xt−1|xt) = m · pt−1θ (xt−1|xt) + (1−m) · δ(xt−1 − xt), (11)

which only denoises masked entries. By definition, running this process forward and then backward
again represents the identity on umasked entries such that the given context remains constant. We
denote this forward-backward process that starts from a given xt−1 and produces a sample xt−1,m,

xt ∼ qt,mθ (xt|xt−1), xt−1,m ∼ pt−1,mθ (xt−1,m|xt) (12)

by pt−1|t−1,mθ and use it to sample with spatial conditioning information. Since it always leaves the
unmasked context intact, the reverse process denoises the unmasked entries to make them consistent
with the given context.

Besides Fig. 5, 6 additional visualizations of this process can be found in Fig. 14. The top shows
masked inputs (left), final results of upper completions obtained by [21] (middle) and by p1|1,mθ
(right). The bottom visualizes the trajectory of the masked process, showing the masked input
(leftmost column), denoised samples from p2,mθ (first column) and p1,mθ (second column), and every
other sample from the forward-backward model p1|1,mθ . It demonstrates how the model iteratively
incorporates global context from the previous scale to converge to a globally consistent sample at
the very right. A visualization of the process on the class conditional ImageNet model is shown in
Fig. 17. Additional examples for conditional samples from this process, as in Fig. 7, can be found in
Fig. 15 and Fig. 16.

23

A.4 Limitations and Societal Impacts

Training deep generative models consumes a significant amount of energy (see also Sec. A.1 regarding
the used hardware; the ImageNet model for example was trained for 19 days). With regard to the
environment, it is important that we reduce the energy consumption as much as possible. To take
a step in this direction, we followed previous works and relied on a strongly compressed, learned
representation of images. Because we can fine-tune the corresponding encoder and decoder models
from pre-trained ones, the costs for this step are largely amortized and subsequent levels of our
hierarchy benefit from a drastically reduced sequence length. Nonetheless, it should be noted
that such a strong compression scheme for images does not result in perfect reconstructions. For
applications which require very high fidelity, such a level of compression might be unsuitable due to
artifacts in the reconstructed images. Additionally, the use of adversarial learning in this stage can
potentiate biases of datasets by its mode-seeking behavior. Both of these issues can be lessened with
larger sequence lengths at the cost of higher energy requirements.

The transformer architecture which is used to model the transitions in our hierarchy is generally
considered to be less biased compared to convolutional architectures. However, it also cannot benefit
from useful inductive biases and therefore requires a large amount of data and resources to learn
all required relationships. In early experiments, we noticed that on small datasets, such as CIFAR-
10 [42], the transformer models overfit before they reach good performance. Thus, in its current
implementation our approach requires datasets of sufficient size. Future works should evaluate
different architectures, regularizations or augmentations to enable its use on small datasets. On the
other extreme, we find that with large datasets, the main bottleneck is the computational resources
that can be spent on the training of the transformer models. On the largest datasets, Conceptual
Captions and ImageNet, we find that performance still improves after two weeks of training. Thus,
consistent with other works on scaling up generative models, we expect that performance of our
model will keep increasing with the available resources.

To ensure comparability with other approaches, we use standard benchmark datasets for deep
generative models, even if some of them are known to contain offensive content [11].

A.5 Sampling Speed

Here, we discuss the effects of varying the number of encoder vs. decoder layers in ImageBART
on sampling speed as presented in Sec. 4.4. On each diffusion scale, the encoder layers only have
to run once whereas the decoder layers have to run ndata_dim times. This results in an approximate
complexity of order nscalesC(nencoder_layers + ndata_dimndecoder_layers), where C is the complexity of a
single transformer layer. The speedup from such an encoder-decoder transformer over a decoder only
transformer with nencoder_layers + ndecoder_layers layers is therefore(

nencoder_layers + ndecoder_layers

)
·
(nencoder_layers

ndata_dim
+ ndecoder_layers

)−1
. (13)

A.6 Additional Samples & Nearest Neighbors

We provide additional samples from our models in Fig. 18-25. Additionally, we also provide nearest
neighbors (measured in VGG feature space) for our FFHQ and LSUN-Churches models in Fig. 26
and Fig. 27, respectively.

24

Figure 18: Additional class-conditional 256 × 256 random samples on ImageNet. Depicted classes are 11:
goldfinch (top left), 90: lorikeet (top right), 108: sea anemone (bottom left) and 0: tench (bottom right).

25

Figure 19: Additional class-conditional 256× 256 random samples on ImageNet. Depicted classes are 200:
tibetian terrier (top left), 974: geyser (top right), 933: cheeseburger (bottom left) and 510: container ship
(bottom right).

26

rate ImageBART TT [21]

0.5

FID: 13.12 FID: 10.26

0.25

FID: 9.77 FID: 7.35

0.05

FID: 7.44 FID: 5.88

Figure 20: Qualitative and quantitative comparison of cIN samples for different rejection rates as in Tab. 1.

27

Sunset over the Map of the world Crowded scene A small house A photograph of a A vector illustration of

skyline of a city. in the year 2077. in front of a pub. in the wilderness. beach. crowd of people. a tree. the brain.

ImageBart

TT [21]

Figure 21: Random samples of text-conditional ImageBART and the text-conditional version of TT for the user
defined text prompts above each row.

28

Figure 22: Additional 256× 256 samples on the LSUN-church dataset.

29

Figure 23: Additional random samples from our model trained on the LSUN-Cats dataset.

30

Figure 24: Additional random samples from our model trained on the LSUN-Bedrooms dataset.

31

Figure 25: Additional 256× 256 samples on the FFHQ dataset

32

Figure 26: Nearest neighbors to samples from ImageBART from the FFHQ train set measured by averaging
over different feature layers of a VGG-16 trained on ImageNet. The first example in each row shows a generated
sample from our model. The remaining ones depict the corresponding nearest neighbors in ascending order.

33

Figure 27: Nearest neighbors to samples from ImageBART from the LSUN-churches train set measured by
averaging over different feature layers of a VGG-16 trained on ImageNet. The first example in each row shows a
generated sample from our model. The remaining ones depict the corresponding nearest neighbors in ascending
order.

34

