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Abstract

Consider a setting where we wish to automate an expensive task with a machine
learning algorithm using a limited labeling resource. In such settings, examples
routed for labeling are often out of scope for the machine learning algorithm. For
example, in a spam detection setting, human reviewers not only provide labeled
data but are such high-quality detectors of spam that examples routed to them no
longer require machine evaluation. As a consequence, the distribution of examples
routed to the machine is intimately tied to the process generating labels. We
introduce a formalization of this setting, and give an algorithm that simultaneously
learns a model and decides when to request a label by leveraging ideas from both
the abstention and active learning literatures. We prove an upper bound on the
algorithm’s label complexity and a matching lower bound for any algorithm in this
setting. We conduct a thorough set of experiments including an ablation study to
test different components of our algorithm. We demonstrate the effectiveness of an
efficient version of our algorithm over margin sampling on a variety of datasets.

1 Introduction

In this paper, we consider a system that relies on automated predictions made by a machine learning
model. We assume this system has a limited budget for requesting ground-truth labels (e.g. from a
domain expert). In practice, such request can be used, among other purposes, to gather additional
training data for the machine learning model. If the system asks for a label for an example, then it no
longer needs the model’s prediction for that particular example. Thus, the pattern of label queries
effectively defines the distribution that the model will learn with and predict on.

Take for example a large-scale video-hosting website. The website wants to automatically detect
videos that violate its community guidelines. In order to acquire labels for this task, some of
these videos are evaluated by a finite pool of human reviewers. There are two consequences of
this evaluation. Firstly, the reviewer provides a training label for the model. Secondly, the human
intervention makes it so that the machine learning algorithm is no longer tasked with making
predictions on these examples. As a result, the goal is then optimize the the model’s performance in
the domain where it will be executed.

We take the perspective of a system designer who wants to understand (and optimize for) the
performance of the automated system on the examples that it will be asked to evaluate. Let r : X →
{0, 1} be a rule governing whether the system requests a label for x ∈ X . Let h : X → R be a
hypothesis describing the automated system. We seek to minimize E[L(h(x), y) | r(x) = 0], where
L is a loss function. We can think of this setting as combining the objective studied in abstention
learning (minimizing E[L(h(x), y) | r(x) = 0]) with the feedback model studied in active learning
(labels are only available when r(x) = 1). We introduce a new framework, which we call dual
purpose learning framework, that combines these elements.
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We first analyze the proper dual purpose labeling framework in an online setting, which proceeds
as follows. At the start of each round t, the learner selects both a requester function rt from some
classRρ, where ρ is an upper bound on the request-rate of functions in this class, and a hypothesis
ht from some class H using all the feedback available from the past. The learner’s expected loss
on this round is given by E[L(ht(x), y) | rt(x) = 0]. The function rt also determines the feedback
available to the algorithm. If rt(x) = 1, the learner observes (x, y), which was drawn i.i.d. from an
unknown distribution, and otherwise, only x is revealed and y is censored. The goal of the learner
is to compete with the optimal choice of hypothesis and requester by minimizing the excess loss
LH,Rρ(ht, rt) = E[L(ht(x), y) | rt(x) = 0]− inf(h∗,r∗)∈H×Rρ E[L(h∗(x), y) | r∗(x) = 0].

Our first main result is the surprising fact that, under mild assumptions, bounds on the excess loss
that match the O(1/

√
t) generalization rates of full-feedback passive learning are not possible in the

proper dual purpose labeling framework. This lower bound also suggests a relaxation of the proper
dual purpose labeling framework, which we call improper dual purpose labeling. In the improper
setting, the learner is still interested in learning ht, rt that minimize LH,Rρ . However, the learner
is allowed to request labels using a more powerful requester class than Rρ during training. As in
classical PAC-learning results, improper learning allows the circumvention of the impossibility result.

As a practical matter, the improper setting is useful when the system designer is willing to spend more
resources during training. In our motivating example, the designer of the abuse-detection system
might be willing to implement a more complicated system during training, which might include a
larger budget (in dollars or man-power) for human intervention. However, after a time horizon T ,
training stops, and the designer commits to some hT , rT for rT ∈ Rρ. From then on, examples
satisfyng rT (x) = 0 are routed to hT , and thus, we wish to characterize LH,Rρ(hT , rT ).

In the improper setting, we demonstrate that IWAL, an algorithm from the active learning literature
[Beygelzimer et al., 2009], can be adapted to our setting into an algorithm which we call DPL-IWAL.
Since our objective is no longer an expectation of some loss function, but rather, the conditional
expectation evaluated on the event that r(x) = 0, IWAL’s standard analysis does not apply. A
key technical hurdle is proving that estimates of this conditional loss concentrate at the right rate
in order to attain generalization guarantees for the pair (h, r) returned by DPL-IWAL. We show
that over a time horizon T , DPL-IWAL algorithm requests O((ρ + η)T ) examples where η =
min(h,r)∈H×Rρ E[L(h(x), y) | r(x) = 0] is the optimum value of our objective. At the same time
our main lower bound demonstrates that Ω((ρ+ η)T ) requests are in fact necessary to compete with
the best policy inH×Rρ.

Finally, we conduct a thorough exploration of these techniques on a number of datasets. We first
undertake an ablation study, using a finite hypothesis class, showing that DPL-IWAL outperforms
baselines that either ignore the active learning or abstention learning aspects of the problem. DPL-
IWAL is not computationally efficient to implement since just like IWAL, it maintains a version
space, that is a set of candidate hypotheses, which is non-trivial to optimize over in general. We
therefore also conduct a number of experiments with an efficient heuristic inspired by our results
using continuous hypothesis classes, outperforming natural baselines including margin sampling
[Lewis and Gale, 1994, Balcan et al., 2007], which admits state-of-the-art performance for active
learning problems in practice [Yang and Loog, 2016, Mussmann and Liang, 2018, Chuang et al.,
2019].

1.1 Related Work

Our setting encompasses an objective considered in abstention learning (sometimes called selective
classification), where the learner controls its evaluation region, that is the region of the domain where
the learner is evaluated, by abstaining on the complement. In our setting, the evaluation region is
where the learner does not request a label and the complementing abstention region is where the
learner makes a request. At the same time, our setting considers the feedback mechanism from
active learning. These are tied in a specific way in our framework: feedback is only available on the
abstention (i.e. requesting) region and no information is revealed about the evaluation region. Neither
an abstention algorithm nor a standard active learning algorithm would work in our setting and the
algorithms in these settings can lead to incorrect solutions (see Appendix C). Nevertheless, we survey
some of the relevant literature.
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Learning with abstention was first studied by Chow [1957, 1970] for specific practical applications.
Subsequently, several authors analyzed algorithms [Bartlett and Wegkamp, 2008, Grandvalet et al.,
2008, Yuan and Wegkamp, 2010, Yuang and Wegkamp, 2011] for this setting with an emphasis on
developing margin-based rules for abstention. Along a different line of work, El-Yaniv and Wiener
[2010, 2011] analyze the theoretical trade-off between the coverage of an abstention function and a
classifier’s performance when not abstaining. All these works share in common the assumption that
the learner has offline access to fully labeled samples, unlike the setting considered in this work.

A more recent line of work Cortes et al. [2016a,b, 2018] considers a setting where the algorithms learn
over two classes of functions, a hypothesis class and an abstention class. These work either assume
full feedback is always available (e.g. Cortes et al. [2016a,b]), or like in Cortes et al. [2018], the
feedback is only available in the evaluation region, which is the exact opposite feedback mechanism
than that of our setting since we receive feedback in the abstention region. Similarly, Shekhar et al.
[2021] consider a setting where feedback is always available.

In the active learning literature, several authors focus on analyzing margin-based active learning
which requests the labels for points close to a learned model classification surface [Dasgupta et al.,
2005, Balcan et al., 2007, Balcan and Long, 2013, Awasthi et al., 2014, 2015, Zhang, 2018, Huang
et al., 2019, Zhang et al., 2020]. Other algorithms admit generalization guarantees on the same order
as passive learning while proving that their algorithm’s label complexity, i.e. the number of points
requested during learning, is bounded by a favorable rate. Beygelzimer et al. [2009] derived an
algorithm, called IWAL, for general loss functions with strong theoretical guarantees. We wish to use
this algorithm for our setting with the abstention learning objective. However, the loss function we
consider is in fact a conditional expectation evaluated on an event, which is not amenable to standard
IWAL. Our analysis and corresponding algorithm, DPL-IWAL, describes how to apply IWAL to such
a setting.

Finally, ideas from the abstention framework have been applied to the active learning previously.
Zhang and Chaudhuri [2014] used confidence-based predictors as a subroutine of an active learning
algorithm. El-Yaniv and Wiener [2012] applied an abstention strategy from El-Yaniv and Wiener
[2010] to the CAL algorithm of Cohn et al. [1994] proving theoretical guarantees, but only under
specific model and distributional assumptions, which we do not make in our setting.

2 Setting and Preliminaries

In the dual purpose labeling framework, a learner is given a hypothesis class H with finite VC-
dimension d, and a class of deterministic requester functions R ⊂ {X → {0, 1}}. Nature fixes a
distribution D over X × Y , unknown to the learner. Given the marginal over X , and ρ > 0, we
denote Rρ ⊂ R as the subset of R with bounded request-rate Ex[r(x) = 1] ≤ ρ for all r ∈ Rρ.
Ex[r(x) = 1] can be well estimated using unlabeled data, which is generally readily available,
allowing a bound on request-rate to be enforced in practice.

The interaction between the learner and nature proceeds through a sequence of rounds t. The learner
first selects (ht, rt) ∈ H ×Rρ as a function of the past. Nature then draws an independent sample
(xt, yt) from D, where xt is revealed to the learner. If rt(xt) = 1, the learner additionally observes
yt, but the performance of ht is not evaluated. If rt(xt) = 0, the learner does not observe yt, but the
performance of ht is evaluated. Thus, the choice of rt serves dual purposes: it determines whether
the algorithm receives feedback, and whether its performance will be evaluated.

Formalizing this further, we suppose that the learner is given a loss function L : Y × Y → R. The
learner seeks to output ht that generalizes well on the region where rt dictates that ht should be
evaluated. We therefore seek to bound the (conditional) excess loss LH,Rρ(ht, rt) = E[L(ht(x), y) |
rt(x) = 0]− inf(h∗,r∗)∈H×Rρ E[L(h∗(x), y) | r∗(x) = 0]. In particular we seek O(1/

√
t) bounds

on LH,Rρ(ht, rt), matching the generalization rate of full-feedback passive learning.

The conditional loss of the best pair inH×Rρ plays an important role in our lower bounds, and so it
is useful to define η = inf(h∗,r∗)∈H×Rρ Ex,y[L(h∗(x), y) | r∗(x) = 0].

Finally, we call this the proper dual purpose framework since the algorithm is attempting to generalize
well with respect to the classH×Rρ and labels are generated according to functions inRρ. In the
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subsequent section, we will see that O(1/
√
t) bounds on LH,Rρ(ht, rt) are impossible in general.

This motivates the improper dual purpose framework as introduced in the following section.

3 Lower Bound

In this section, we present a lower bound stating that it is impossible for any algorithm to achieve
an O(1/

√
t) generalization rate in the proper dual purpose setting. Thus, we here introduce the

notion of improper algorithms. On each round t, an improper algorithm selects ht ∈ H and an
Rt : X → {0, 1} that is unconstrained for the purposes of showing a lower bound (e.g. Rt is not
necessarily in the setRρ). As in the proper setting, label requests are tied to the evaluation region.
That is, the algorithm sees yt i.f.f. Rt(xt) = 1, and wishes to minimize LH,Rρ(ht, Rt). Notice that
L is still defined with respect to the reference classRρ, and that the proper setting is a special case
of the improper setting where Rt is equal to an rt ∈ Rρ. The lower bound below shows that any
algorithm with the desired generalization rate must satisfy 1

T

∑T
t=1E[Rt(xt)] > ρ. Thus, since

E[r(x)] ≤ ρ for every r ∈ Rρ, no proper algorithm can attain the desired rate.

We prove a bound that holds for almost any possible classes of functionsH,R, with some restrictions
onR. We say thatR separates X if given any finite set of examples in x0, . . . , xn ∈ X , there exists
a point x̂ outside this finite set of points and a requester in R such r(x̂) = 1 while r(x0) = · · · =
r(xn) = 0. This condition is much stronger than is necessary for the lower bound, but is already
satisfied by simple classes such as whenR contains linear separators and X is a ball in any dimension
≥ 2, and becomes easier to satisfy asR becomes more complex. We need a weaker condition that
requires only the separation property hold for some set shattered byH.

Definition 1. R separates X with respect toH if d = VCD(H), and there exists a set of d examples
x0, . . . , xd−1 shattered byH, x̂ ∈ X , and r ∈ R such that r(x̂) = 1 and r(x0) = . . . r(xd−1) = 0.

We first describe a distribution that follows the basic construction used to demonstrate lower bounds
for pure active learning [Beygelzimer et al., 2009]. We then augment this distribution to include a
region of mass ρ that contains random noise. Intuitively, one can think of an algorithm as requesting
a label either to solve the active learning problem or to avoid loss on examples that it is uncertain on
in the region of mass ρ. We argue that the optimal algorithm, when not solving the active learning
problem, spends ρT labels requesting on the random noise.

While this is the basic idea, the proof needs to preclude the possibility that an algorithm with a
suboptimal prediction h benefits from requesting labels outside the region of mass ρ purely for the
purpose of avoiding loss (and not to solve the active learning problem). An algorithm can also
request labels at a rate greater than ρ on any given round with the hope of decreasing its overall label
complexity over T rounds. The proof shows that neither of these strategies benefits an algorithm
enough to deviate from the optimal strategy outlined in the previous paragraph.

Definition 2. Fix any ρ ≥ 0. We say that a round t is a failed round if the algorithm selects a
requesting strategy Rt : X → {0, 1}, and hypothesis ht ∈ H satisfying E[L(ht(x), y) | Rt(x) =

0] ≥ min(h,r)∈H×Rρ E[L(h(x), y) | r(x) = 0] +
√

dη
t .

As a practical matter, we will also require that an improper algorithm outputs a model (hT , rT ) ∈
H ×Rρ at the end of its time horizon, where rT comes from the reference class. This paves the way
for algorithms discussed in the subsequent sections which are applicable in systems that are able to
tolerate a higher labeling overhead during a finite training horizon, but eventually need to converge on
a model with request rate ρ. Crucially, the lower bound establishes the minimum additional overhead
during training as η (defined in Section 2), which is matched by our upper bounds.

Theorem 1. Let L(h(x), y) = 1[yh(x) ≤ 0] be the misclassification loss. Given R that separates
X with respect to H with d = VCD(H), let Rρ ⊂ R consist of requesters with bounded request-
rate ρ. For any η ≤ 1/4, ρ ≤ 1/2, there exists a distribution on X × {−1, 1} such that η =
min(h,r)∈H×Rρ E[L(h(x), y) | r(x) = 0] .

Furthermore, there exists a sufficiently large T ≥ 0 such that with probability at least 1/2 any
algorithm that, (A) outputs (hT , rT ) ∈ H×Rρ, such that E[L(hT (x), y) | rT (x) = 0] ≤ η+

√
dη/T ,

and (B) suffers no more than T/2 failed rounds, requires that: E[
∑
tRt] ≥ Ω((η + ρ)T ).
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Algorithm 1 DPL-IWAL Algorithm

Require: Max iteration T > 0, V1 = H×Rρ, t0 be the first time t such that t ≥ 16 log(t/δ)
for t ∈ [1, t0] do

Observe xt in order to construct estimates 1
t−1

∑t−1
s=1 1[r(xs) = 0]

for t ∈ [t0 + 1, T ] do
(ht, rt)← argmin(h,r)∈Vt L̂t−1(h, r)
Receive xt
if rt(xt) = 1 then Request label yt
pt(xt)←min

(
1, max

(h,r),(h′,r′)∈Vt
max
y∈Y

∣∣∣ L(h(xt),y)1[r(xt)=0]
1
t−1

∑t−1
s=1 1[r(xs)=0]

− L(h′(xt),y)1[r′(xt)=0]
1
t−1

∑t−1
s=1 1[r′(xs)=0]

∣∣∣)
qt ∼ Bernoulli(pt)
if qt = 1 then Request or re-use label yt
Vt+1 ← {(h, r) ∈Vt : L̂t(h, r) ≤ min(h,r)∈Vt L̂t(h, r) + ∆̃t}
if rt(xt) = 0 ∧ qt = 0 then Predict label using sgn(ht(xt))

Return: (hT , rT )

The above theorem states that an algorithm must request the labels of at least Ω((η + ρ)T ) examples
(in expectation) if we require that the pair returned by the algorithm generalizes at a rate approximating
that of standard supervised learning. This then directly implies that Rt must be selected outside of
the classRρ since this class only contains functions with a requesting rate of at most ρ, resulting in
label complexity at most O(ρT ) in expectation. All proofs can be found in Appendix A.

Although we state the lower bound for classification loss, it can be extended to any loss function
where mispredicting the sign of an example, yh(x) ≤ 0, implies L(h(x), y) ≥ C for some constant
C. This is true for the logistic, hinge, squared, and absolute losses.

4 Dual Purpose Labeling Algorithm

In this section, we present our algorithm, DPL-IWAL (see Algorithm 1 for the pseudo-code), in the
improper dual purpose framework. At a high level, DPL-IWAL finds the pair (h, r) ∈ H ×Rρ that
minimizes the conditional loss, E[L(h(x), y)|r(x) = 0], i.e. the expected loss of h conditioned on
the event that the label is not requested by r. Intuitively, the best pair (h, r) requests the label of the
point whenever the prediction of sgn(h(x)) is likely to be incorrect.

To find such a pair, at each round t, the algorithm first constructs an importance weighted estimate,
L̂t(h, r), of E[L(h(x), y)|r(x) = 0] by using the fewest number of labeled points as possible and then
chooses the pair (ht, rt) that minimizes L̂t(h, r). Ideally, the importance weighted estimates L̂t(h, r)
could be constructed from the set of points whose labels have been requested by r1, . . . , rt, but these
sets of points are a non-trivially biased sample of the underlying distribution. Moreover, these points
could reside in regions of the space that are not useful for calculating E[L(h(x), y)|r(x) = 0]. To
see this more clearly, consider a simple case whenRρ is contains just one function and the algorithm
is then simply finding the argminh∈H E[L(h(x), y)|r(x) = 0]. The points the r functions request
the label for, meaning points where r(x) = 1, do not reveal any information necessary to estimate
E[L(h(x), y)|r(x) = 0] for h ∈ H. Thus, the algorithm must label other regions in the space. Below,
we describe how the algorithm uses a subset of the points requested by the rt ∈ Rρ in conjunction
with some additional carefully chosen points, via a function qt outside Rρ, to construct unbiased
estimators, L̂t(h, r). This fact thus makes DPL-IWAL an improper dual purpose algorithm.

Similarly to IWAL [Beygelzimer et al., 2009], the DPL-IWAL algorithm constructs an importance
weighted estimate, but instead of estimating the expected loss as is done in IWAL, we craft an estimate
of the conditional losses for t > t0,

L̂t(h, r) =
1

t− t0 − 1

t∑
s=t0+1

qs
ps(xs)

L(h(xs), ys)1[r(xs) = 0]
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

,

where a coin qs ∈ {0, 1} is flipped with a bias probability ps(xs) and where t0 is the first time
t such that t ≥ 16 log(t/δ). Note that for the first s ∈ [1, t0], we simply observe the features
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xs in order to construct 1
s−1

∑s−1
s′=1 1[r(xs′) = 0] that are non-zero with high probability since

these are needed in definition of the denominator of L̂t(h, r). Ignoring the qs and ps(xs) for now,
the numerator 1

t−t0−1

∑t
s=t0+1 L(h(xs), ys)1[r(xs) = 0] is a measure of the joint expectation

E[L(h(x), y)1[r(x) = 0]] while the denominator contains running averages of the E[r(x) = 0].
Roughly speaking, by considering the ratio of these two terms, we estimate the conditional expected
loss, E[L(h(x), y)|r(x) = 0] = E[L(h(x),y)1[r(x)=0]]

E[r(x)=0] .

The algorithm maintains a version space, Vt, as defined in Algorithm 1, which it reduces at each round.
We prove that it suffices to use a slack term ∆̃t = Õ

(√
(1/t) log(1/δ)

)
, in order to ensure with

high probability that (h∗, r∗) remain within the version space as it shrinks. The Õ(·) hides constants
and log(t|H ×Rρ|) factors; see the appendix for exact constants. In order to reduce the number of
labeled points used to construct the importance-weighted estimates, the probability of requesting a
point pt is defined by the (estimated) conditional loss difference between pairs of functions in this
shrinking set Vt. Given the above, the algorithm’s overall requesting rule, Rt, is thus defined by the
following condition: Rt(xt) = 1 if and only if rt(xt) = 1 ∨ qt = 1 where rt ∈ Rρ and qt 6∈ Rρ.

5 Generalization and Label Complexity Guarantees

In this section, we present a series of theoretical guarantees that analyze the performance of our
approach as compared to different baselines as well as prove an upper bound on the expected number
of label requests by the DPL-IWAL algorithm.

In our framework, we seek to select a hypothesis ht which incurs minimal loss whenever a label
request is not made. Below, we prove an upper bound on this type of loss that is in terms of the best
pair of functions, (h∗, r∗) = argmin(h,r)∈H×Rρ E[L(h(x), y)|r(x) = 0].

Theorem 2. Given any ρ < 1
2 , for any δ > 0, with probability at least 1− δ, for all t ≥ 16 log(3t/δ),

E[L(ht(x), y)|rt(x) = 0] ≤ E[L(h∗(x), y)|r∗(x) = 0] + Õ
(√

(1/t) log(1/δ)
)
.

This guarantee states that the pair (ht, rt) chosen by the algorithm is converging to the best pair
(h∗, r∗) as a function of the time t with respect to the conditional loss. The assumption t ≥
16 log(3t/δ) is mild condition, for example, if δ = 0.0001 we then require t > 104. Also, in most
standard applications, only a small fraction of examples can be labeled and it is natural to assume that
ρ < 1

2 . Nevertheless, this assumption can be reduced by increasing the constraint on t in the bound.

Overall, the theoretical analysis, which is given in Appendix B, departs from standard derivations
since we need to carefully deal with conditional losses and the constructed estimates, L̂t(h, r).
More concretely, we first must ensure that the denominator of the estimate L̂t(h, r) is non-zero
with high probability as otherwise the estimate would not be well defined. To do so, we start the
labeling process of our algorithm only after t0 examples have been observed. After t0 examples have
been observed and using the fact that E[r(x) = 0] > 1 − ρ, we can then prove that the condition

1
s−1

∑s−1
s′=1 1[r(xs′) = 0] > 0 holds with high probability (Lemma 1). Then, in order to apply

Azuma’s inequality on conditional losses, we need to prove that L(h(xs),ys)1[r(xs)=0]
1
s−1

∑s−1

s′=1
1[r(xs′ )=0]

is bounded

by a favorable constant despite the variable denominator term (Lemma 2). Azuma’s inequality
implies that the estimates are converging to E[L̂t(h, r)], but this is not enough since we want to prove
guarantees in terms of E[L(h(x), y)|r(x) = 0]. Thus, using a series of concentration inequalities, we
prove that expected value of the estimate, E[L̂t(h, r)], converges to the expected conditional loss,
E[L(h(x), y)|r(x) = 0] at the desired rate (see proof of Theorem 2).

Next, we compare the quality of the predictions of our approach to that of simply predicting according
to the best-in-class as measured by the non-conditional loss, hb = argminh∈H E[L(h(x), y)]. This
comparison quantifies the potential benefits of our framework as compared to that of supervised
learning since hb is the hypothesis that an algorithm in the supervised setting is attempting to learn.

In the next corollary, we consider the never-requester function, r�, that is 1[r�(x) = 0] = 1 for all
x ∈ X . The never-requester is inRρ for any value of ρ > 0. The never-requester trivially does not
increase the label complexity and since it’s a single function, it also does not discernibly augment the
complexity of class,Rρ, and so it can be included inRρ at effectively no cost.
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Corollary 1. Given any ρ < 1
2 , for any δ > 0, with probability at least 1 − δ, for all t ≥

16 log(3t/δ), E[L(ht(x), y)|rt(x) = 0] ≤ E[L(hb(x), y)] + γ + Õ
(√

(1/t) log(1/δ)
)
, where γ =

E[L(h∗(x), y)|r∗(x) = 0]− E[L(hb(x), y)]. Furthermore, if r� ∈ Rρ, then γ ≤ 0.

The above corollary states the predictions of the chosen function ht when not requesting admit
strictly fewer mistakes as compared to the predictions of hb, the best-in-class in H, whenever
γ < −Õ

(√
(1/t) log(1/δ)

)
. The value γ characterizes the difference between the best-in-class in

our setting versus the best-in-class in the supervised learning. The more negative this term is, the
fewer number of mistakes are made. In an empirical study in Appendix D, we show that typically γ
is significantly smaller than 0.

To derive label complexity guarantees, we define a disagreement coefficient for conditional losses,
directly derived from the coefficient definitions in Henneke [2007], Beygelzimer et al. [2009].
Let ρ((h, r), (h′, r′)) = E[|L(h(x),y)1[r(x)=0]

E[r(x)=0] − L(h′(x),y)1[r′(x)=0]
E[r′(x)=0] |] be a measure of the dis-

tance between two pairs (h, r) and (h′, r′). Based on this metric, we define the ball around
the best pair (h∗, r∗) as follows: B(h∗, r∗,Λ) = {(h, r) ∈ H × Rρ : ρ((h, r), (h∗, r∗)) ≤
Λ}. The disagreement coefficient is the infimum value of θ > 0 such that for all Λ ≥ 0:
E
[

max(h,r)∈B(h∗,r∗,Λ) maxy

∣∣∣L(h(x),y)1[r(x)=0]
E[r(x)=0] − L(h∗(x),y)1[r∗(x)=0]

E[r∗(x)=0]

∣∣∣] ≤ θΛ. The next theo-

rem bounds the expected number of points requested needed to construct the estimates, L̂t(h, r) in
terms of the coefficient θ.

Theorem 3. Given any ρ < 1
2 , for all δ > 0, with probability at least 1 − δ,

∑T
s=1 E[ps(xs)] =

Õ(θηT + θ
√
T ), where θ is the disagreement coefficient.

Since the labeling rate of rt is at most ρ, the label complexity of the DPL-IWAL algorithm is then given
by
∑T
s=1 E[rs(xs) = 1]+E[ps(xs)] = Õ((θη+ρ)T+θ

√
T ). Assume that E[L(ht(x), y) | Rt(x) =

0] ≤ E[L(ht(x), y)|rt(x) = 0]; intuitively, this implies using qt in addition to rt to make requests
helps reduce our conditional loss and it holds in practice as shown by our experiments in Appendix D.
Then it follows, by Theorem 2, that E[L(ht(x), y) | Rt(x) = 0] ≤ η + Õ(

√
(1/t) log(1/δ)), i.e.

with high probability failed rounds do not occur. Thus, in this case, DPL-IWAL exhibits an upper
bound on the label complexity that matches the lower bound stated in the previous section, apart for
o(T ) terms, namely

√
T . An even sharper bound for the o(T ) term is possible, using analysis similar

to that of the EIWAL algorithm in Cortes et al. [2019], resulting in rate of
√
ηT .

The analysis that proves the label complexity bound carefully deals with the denominator term of the
estimates of the conditional loss as well as the fact that we are working with two function classes.
Similarly to the generalization bound analysis, we first prove that the denominator term is well
behaved and is not too far form its mean. Then, we leverage the disagreement coefficient θ and
shrinking version space over the two classes.

In this paper, we analyzed the scenario where the requesting functions rt ∈ Rρ are constrained to
request at most ρ times and minimize the conditional loss over this set of requesters. One could
instead consider a Lagrangian relaxation of this constraint and pay a fixed cost c for each request.
That is, consider the cost-based loss defined by 1r(x)=0L(h(x), y) + c1r(x)=1. Both of these loss
views are important and in fact have been analyzed in the abstention setting (e.g., see El-Yaniv and
Wiener [2010] for conditional loss and see Cortes et al. [2016a] for cost-based loss). Despite focusing
on conditional loss over constrained requester functions, the theory and algorithms in this paper can
be extended to the cost-based loss. In particular, for the algorithm not to incur too many mistakes
during training and to return a pair of function that generalized well, the algorithm must select Rt
outside of the class of requesters. The version of DPL-IWAL for cost-based loss will thus require
requesting according to both qt and rt.

6 Empirical Investigation

We start our empirical investigation by corroborating the theoretical insights made in the previous
sections with an ablation study of DPL-IWAL. Since IWAL needs to solve a computationally
intractable constrained optimization problem over its version space, which is only made more
challenging in our setting by the joint optimization overH×Rρ, we use finite classes for these initial
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DPL-Simplified Algorithm
Require: Max iteration T > 0, classesH×Rρ

for t ∈ [1, T ] do
ht ← argminh∈H

∑t−1
s=1 qsL(h(xs), ys)

rt ← argminr∈Rρ
∑t−1
s=1 qs

L(ht(xs),ys)1[r(xs)=0]
1
s−1

∑s−1
s′=1

1[r(xs′ )=0]

Receive xt
if rt(xt) = 1 then qt ← 1, request label yt
else qt ← 0, predict label using sgn(ht(xt))

Return: (hT , rT )

Figure 1: On the left, the number of online mistakes made while processing a stream of data and the
held-out conditional loss on non-requested points made by DPL-IWAL and baselines comparators.
The plots show the mean and standard deviation over 10 trials. On the right, the pseudo-code of
DPL-Simplified Algorithm.

experiments. Then, we turn to a more practical algorithm inspired by the DPL-IWAL algorithm, but
that leverages readily available optimization routines and empirically effective heuristics.

Ablation Study: We compare the performance of DPL-IWAL against baselines which ignore either
the active learning and/or the abstention aspects of the dual purpose labeling, in order to demonstrate
that indeed both aspects are necessary. To do so, we compare our algorithm to several variants,
defined as follows. The fully uniform baseline simply decides to request a label using a random biased
coin-flip independent of the example, thereby mimicking standard passive supervised learning. The
uniform rt baseline uses the DPL-IWAL algorithm in conjunction with trivial requester class that
fixes its output uniformly at random, independent of the input xt. The uniform qt baseline is similar
to DPL-IWAL, with outcomes qt determined by coin-flips with a fixed bias, independent of xt.

For this experiment, we define a set of requester regions near the margin of the classification surface,
each covering a mass ρ of the overall distribution. Specifically, for any set of real-valued hypotheses
set H, where the classification of point x made by h ∈ H is defined as sgn(h(x)), we define a
margin-based requester function class as: Rρ,H =

{
rh(x) 7→ 1[|h(x)| ≤ τh,ρ(DX )] : h ∈ H

}
,

where DX is marginal distribution on X and τh,ρ(DX ) is the largest threshold value that satisfies
EDX [rh(x) = 1] ≤ ρ. Note, the τh,ρ threshold can be estimated using unlabeled data.

We test six publicly available datasets [Chang and Lin] and for each, we use linear logistic regression
models trained using the Python scikit-learn library. For all datasets, we construct a finite
hypothesis classH and a matching finite margin-based requester setRρ,H. We then stream unlabeled
examples to each algorithm by sampling without replacement from a training split. The process is
repeated 10 times, using a different random train/test split for each trial. For details, see Appendix D.

In Figure 1 (left), we compare each method using two metrics. First, we consider the number of
incorrect predictions (i.e. “online mistakes”) that the model makes while processing the stream
of unlabeled training data, where label-requests are spared mistakes. Second, we consider the
conditional loss of the currently selected pair (ht, rt) by measuring the average misclassification loss
on non-requested points using a held-out test split. See Appendix D for our results on all datasets,
which all show a similar pattern.

Overall these results show that our DPL-IWAL algorithm, with both a non-trivial sampling function
qt and requesting function rt, outperforms all baseline methods. This indicates that both active
learning and abstention aspects of DPL-IWAL are necessary since naively applying an active learning
algorithm without abstention (e.g. uniform rt) or naively applying an abstention algorithm without
active learning (e.g. uniform qt) admit suboptimal results.

DPL-Simplified Algorithm: Here, we consider the DPL-Simplified Algorithm (Figure 1 right)
where, the joint optimization problem over H × Rρ is split into two separate optimizations. This
piece-wise optimization may not arrive at the same solution as the joint optimization, but we find it
to be an empirically effective proxy. The first optimization over H is a standard learning problem
over the currently labeled examples and any off-the-shelf hypothesis class and training algorithm
can be used. The second optimization over Rρ is still non-trivial to solve. However, the objective
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# Online Mistakes Conditional Test Error (%)
dataset KNN MAR MIX KNN MAR MIX
a9a 2017± 35 1531± 44 1713± 51 12.1± 0.39 8.9± 0.44 10.3± 0.30
acoustic 1654± 58 1458± 52 1418± 51 9.4± 0.35 8.1± 0.13 7.8± 0.28
cifar 904± 30 849± 38 701± 26 5.0± 0.23 5.1± 0.14 3.8± 0.09
cod-rna 644± 27 360± 13 329± 12 3.1± 0.11 2.2± 0.06 1.5± 0.07
covtype 3471± 89 3365± 89 3318± 78 18.6± 0.30 19.3± 0.18 17.9± 0.28
HIGGS 5862± 79 5500± 90 5689± 69 35.2± 0.31 32.7± 0.25 34.0± 0.27
ijcnn 654± 52 420± 20 310± 30 2.2± 0.28 2.4± 0.16 0.7± 0.14
mnist 1489± 69 1032± 26 958± 50 6.7± 0.31 5.1± 0.09 4.1± 0.12
shuttle 29± 16 122± 27 21± 8 0.1± 0.05 0.8± 0.09 0.1± 0.05
skin 61± 64 662± 110 36± 31 0.1± 0.02 4.0± 0.89 0.02± 0.01

HIGGS
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Figure 2: The left side of the table displays the mean and standard deviation over 10 trials of the
number of total online mistakes after processing 20,000 examples for each of the requestor strategies
(all limited to requesting labels for 20% of examples). The right side of the table shows the mean and
standard deviation of the conditional misclassification loss Pr(h(x) 6= y|r(x) = 0), measured on the
test set, for (hT , rT ). On the right, histograms show the number of errors made by a partially-trained
linear hypothesis h as a function of the model confidence for two datasets.

does provide the intuition that an optimal requester seeks to cover all of classifier ht’s mistakes. This
suggests an approximate solution, where we train a requester r that seeks to classify the incorrect
predictions of a fixed hypothesis ht over the set of labeled examples thus far. At the same time, notice
that the simplified algorithm fixes qt = rt(xt) (and no longer needs to solve IWAL’s constrained
optimization problem). This makes the requester function responsible for not just sampling regions of
the space thatH cannot correctly capture, but also sampling examples that are effective for training.

To cover the regions where the classifier is incorrect, we leverage what we call a KNN-Requester
function. In particular, we use scikit-learn’s KNeighborsClassifier to train a non-parametric
model to predict hypothesis ht’s training mistakes. The resulting requester is rKNN,h,ρ(x) =
1[|1 − Prθ(h(x) 6= y|x)| < τθ] , where Prθ(h(x) 6= y|x) denotes the probability that h makes a
mistake according to the KNN model and ρ indicates the classifier’s threshold τθ has been tuned
so that the requester labels approximately a ρ fraction examples. To select points that are effective
for training the classifier, we borrow intuition from the simple yet empirically very effective margin
(or uncertainty) active learning algorithm, which samples examples that the current model is least
confident on (i.e., example closest to the decision surface).

This leads us to the Mixture-Requester (MIX) function which merges the margin and KNN
strategies. Specifically, we uniformly combine the probability score produced by the KNN model
underlying rKNN,h,ρ and the margin score derived from ht(x) as follows: rMIX,h,ρ(x) = 1[|1 −
Prθ(h(x) 6= y|x)| + |σ(h(x)) − 0.5| < τh,θ] , where σ is a normalizing function that maps the
input into [0, 1], which in our case is the output of scikit-learn’s predict_proba method. Thus, this
requester seeks to sample points that are both covering mistakes of the classifier as well as sampling
points that are effective for training.

In addition to the above, we evaluate the simpler Margin-Requester to serve as a natural, yet
effective baseline: rMAR,h,ρ(x) = 1[|σ(h(x))−0.5| < τh,θ]. This requester is essentially mimicking
the behavior of using uncertainty-based active learning without any regard to the DPL setting.

In the following experiments, the hypothesis class H is the set of linear models with bounded L2-
norm, trained using scikit-learn’s LogisticRegression implementation, and we use 10 publicly
available datasets, all which we cast as binary classification problems (see Appendix D for details).
We execute a batch variant of DPL-Simplified, where at each iteration we process a batch of 5,000
examples, querying 20% of the examples for their labels and making prediction for the rest. Upon
the completion of the iteration, we receive the requested labels and update the choice of (h, r). This
larger batch size, more closely reflects practical learning settings, where it is impractical to re-train the
model after every single label query [Amin et al., 2020]. All methods are seeded with 500 randomly
sampled initial examples and each experiment is run for 10 trials.

In Figure 2, we show both the number of online errors incurred during the iterative labeling/training
procedure as well as the average conditional misclassification loss of the final (h, r) pair on a test set.
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In Appendix D, we plot the full learning curves in Figure 8 associated with Figure 2. Overall, MIX
is very effective, outperforming the baseline methods in 8 out of 10 datasets. To better understand
when MIX outperforms the margin-requester, we present a histogram of errors as a function the
confidence of a model trained with a set of 3,500 examples sampled uniformly at random (Figure 2
right). The histogram for the HIGGS dataset, where the margin baseline performs well, shows
that most of the errors are highly concentrated around the minimum model certainty region, i.e.
where the model prediction score is close to 0.5. In contrast, the histogram for cod-rna, where the
DPL-inspired mixture-requester excels, shows that while there are some errors concentrated around
the 0.5 threshold, there are also a number of errors far away from the model decision boundary.

7 Conclusion

We introduced a new setting which models the relationship between labeling and learning in real
systems. We derived a lower bound in terms of the abstention-rate of a reference class and the
optimum value of our objective. We presented an algorithm DPL-IWAL that admits strong general-
ization and label complexity guarantees and a more efficient variant, DPL-Simplified. Finally, we
reported experiments which corroborate our theoretical findings and demonstrate that our algorithm
outperforms natural baselines, including the ubiquitous margin sampling algorithm.
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A Lower Bound Proof

In this appendix, we present the proof of the lower bound for the dual propose labeling problem
analyzed in this paper.

Theorem 1. Let L(h(x), y) = 1[yh(x) ≤ 0] be the misclassification loss. Given R that separates
X with respect to H with d = VCD(H), let Rρ ⊂ R consist of requesters with bounded request-
rate ρ. For any η ≤ 1/4, ρ ≤ 1/2, there exists a distribution on X × {−1, 1} such that η =
min(h,r)∈H×Rρ E[L(h(x), y) | r(x) = 0] .

Furthermore, there exists a sufficiently large T ≥ 0 such that with probability at least 1/2 any
algorithm that, (A) outputs (hT , rT ) ∈ H×Rρ, such that E[L(hT (x), y) | rT (x) = 0] ≤ η+

√
dη/T ,

and (B) suffers no more than T/2 failed rounds, requires that: E[
∑
tRt] ≥ Ω((η + ρ)T ).

Proof. Given an algorithm, define Q = E [
∑
tRt], the expected number of labels requested by the

algorithm. We begin by showing that under the conditions of the theorem, Q = Ω(ηT ). We use a
similar construction as used for the lower bounds in standard active learning. However, we must be
careful to ensure that the ability the learner has to abstain usingR does not affect the bounds by too
much. We then show that when ρ > 2cη, Q = Ω(ρT ), where c is the constant in the definition of a
failed round. Together, these two facts imply the theorem.

Let x0, x1, . . . , xd−1 and x̂ be a set of examples satisfying Definition 1. Let r0 ∈ R satisfy r0(x̂) = 1
and r0(xi) = 0, i ≥ 0.

Fix an ε > 0, and set β = 2(η + 2ε). Our marginal distribution on X will be supported on
x̂, x0, x1, . . . xd−1. The instance x̂ will have probability mass ρ. x0 will have probability mass
(1− ρ)(1− β). The remaining xi each have mass (1− ρ)β/(d− 1). Since E[r0(x) = 1] = P[x =
x̂] = ρ, r0 ∈ Rρ.

Let Rad(p) denote a Rademacher random variable with p the probability of +1. Let bi ∼ Rad(1/2)
for i ∈ {1, . . . , d− 1}. These are determined once at the beginning of time.

For each round t if xi, i ≥ 1, is selected by the marginal then y is distributed as Rad(1/2 + εbi
η+2ε ).

If x0 is selected by the marginal then y = 1 with probability 1. If x̂ is selected by the marginal then y
is distributed as Rad(1/2).

For this distribution, the optimal hypothesis h∗ (regardless of which requester is used) labels x0 as 1,
labels each xi, i ≥ 1, as bi and labels x̂ arbitrarily (say h∗(x̂) = 1 wlog).

Intuitively, r0 is the optimal requester inRρ for h∗ since, conditioned on x, h∗ suffers a loss of 1/2
when x = x̂, a loss of (1/2− λ) when x = xi, i ≥ 1 and a loss of 0 when x = x0, where we define
λ = ε

η+2ε . (We make this fact precise below). However, for a suboptimal h, h could in principle
reduce its loss by carefully abstaining on examples it is uncertain on, avoiding examples where its
conditional loss is (1/2 + λ). In the following we bound the effectiveness of such a strategy.

Define R′ = {r : X → {0, 1} | r(x̂) = 0} as the set of all requesting strategies, not necessarily
satisfying P[R′(x) = 0] ≤ ρ, and not necessarily belonging toR, but that do not request a label for
x̂. R′ρ = {r ∈ R′ | P[r(x) = 1] ≤ ρ}.

Fix an arbitrary h ∈ H, and r ∈ R′ρ. Let Fi = 1[h(xi) 6= bi], and Gi = 1 − Fi. Define
Z = P[r(x) = 1]. Let N = (1−ρ)β

d−1 be the probability mass placed on each xi, i ≥ 1.

E[L(h(x), y) ∧ r(x) = 0]

≥ ρ

2
+N

d−1∑
i=1

1[r(xi) = 0]Gi(1/2− λ) +N

d−1∑
i=1

1[r(xi) = 0]Fi(1/2 + λ)

=
ρ

2
+N

d−1∑
i=1

1[r(xi) = 0](1/2− λ) + 2λN

d−1∑
i=1

1[r(xi) = 0]Fi
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=
ρ

2
+N

d−1∑
i=1

(1/2− λ) + 2λN

d−1∑
i=1

Fi

−N
d−1∑
i=1

1[r(xi) = 1](1/2− λ)− 2λN

d−1∑
i=1

1[r(xi) = 1]Fi

≥ ρ

2
+N

d−1∑
i=1

(1/2− λ) + 2λN

d−1∑
i=1

Fi

− Z

2
+ λN

d−1∑
i=1

1[r(xi) = 1]− 2λN

d−1∑
i=1

1[r(xi) = 1]Fi

≥ ρ

2
− Z

2
+N

d−1∑
i=1

(1/2− λ) + λN

d−1∑
i=1

Fi

=
ρ

2
− Z

2
+ (1− ρ)β(1/2− λ) + (1− ρ)λβ

1

d− 1

d−1∑
i=1

Fi

The first inequality follows since h may also mislabel x0. The second inquality follows because
N
∑d−1
i=1 [r(xi) = 1] ≤ Z. The third inequality follows because

∑d−1
i=1 1[r(xi) = 1]Fi is less than

both
∑d−1
i=1 Fi and

∑d−1
i=1 1[r(xi) = 1].

By definition β(1/2− λ) = η and λβ = 2ε. Therefore:

E[L(h(x), y) | r(x) = 0] ≥ 1

(1− Z)

[
ρ

2
− Z

2
+ (1− ρ)η + (1− ρ)

2ε

d− 1

d−1∑
i=1

Fi

]

≥ η +
1− ρ
1− Z

2ε

d− 1

d−1∑
i=1

Fi ≥ η +
ε

d− 1

d−1∑
i=1

Fi (1)

The second inequality above can be verified by some algebra when η ≤ 1/2. In particular,
ρ−Z

2 +η−ηρ
1−Z ≥ η ⇔ ρ−Z

2 + η ≥ (ρ − Z)η + η ⇔ η ≤ 1/2 when Z ≤ ρ. The third inequal-
ity follows since ρ ≤ 1/2 and so 1−ρ

1−Z ≥ (1− ρ) ≥ 1/2.

Since our distribution places ρ mass on x̂, it’s clear that r0 is the only function inRρ that is not in
R′ρ.

Under the requester r0, which avoids loss on x̂, a hypothesis that correctly labels x0 incurs a loss of:

E[L(h(x), y | r0(x) = 0] =
1

1− ρ

[
N

d−1∑
i=1

Gi(1/2− λ) +N

d−1∑
i=1

Fi(1/2 + λ)

]

=
1

1− ρ

[
(d− 1)N(

1

2
− λ) +N

d−1∑
i=1

2λFi

]

= β(1/2− λ) +
2λβ

d− 1

d−1∑
i=1

Fi = η +
4ε

d− 1

d−1∑
i=1

Fi. (2)

Any hypothesis that incorrectly labels x0 is strictly worse, and so equations (1) and (2), confirm
that the optimal hypothesis requester pair is indeed (h∗, r0), with a loss of η (since equation (2
holds with equality). Moreover, any suboptimal hypothesis requester pair has a loss of more than
η + ε

d−1

∑d−1
i=1 Fi, the minimum of (1) and (2).

We can now leverage Theorem 12 of Beygelzimer et al. [2009] . The theorem states that any algorithm
that queries xi, i ≥ 1 fewer than c′dη2/ε2 times , for some constant c′, will incorrectly predict more
than 1/4 of the bits bi with probability at least 1/2, and thus will output (ĥ, r̂) with error at least
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η + ε/4 with probability at least 1/2. Setting ε = 4
√

dη
T tells us that any algorithm satisfying

condition (A) in the statement of the theorem, must query at at least Q ≥ c′

16ηT = Ω(ηT ) examples
before time T .

We next prove that if ρ ≥ 2cη, then any algorithm satisfying condition (B) in the statement of the
theorem must query Ω(ρT ) examples.

Recall that all r ∈ R′, satisfy r(x̂) = 0. Let h be an arbitrary hypothesis satisfying h(x0) = 1. The
optimal r′ ∈ R′ for h, satisfies r′(x̂) = 0, r′(x0) = 0, r′(xi) = 1 for all i ≥ 1. In other words, r′ is
forced to suffer loss on x̂ because r′ ∈ R′, but avoids all other error otherwise.

E[L(h(x), y) | r′(x) = 0] = E[L(h(x), y) | r′(x) = 0, x = x̂]P[x = x̂ | r′(x) = 0]

+ E[L(h(x), y) | r′(x) = 0, x = x0]P[x = x0 | r′(x) = 0]

= E[L(h(x), y) | r′(x) = 0, x = x̂]P[x = x̂ | r′(x) = 0]

=
1

2

P(x = x̂, r′(x) = 0)

P(r′(x) = 0)
=

1

2

ρ

ρ+ (1− ρ)(1− β)

≥ cη

1− β + ρβ
> cη

Since E[L(h(x), y) | r′(x) = 0] > cη, there is a sufficiently large T such that cη +
√

2dη
T <

E[L(h(x), y) | r′(x) = 0]. Thus any t > T/2 is a failed round if the algorithm plays a requesting
strategy in R′. Any algorithm satisfying (B) in the statement of the theorem must therefore with
probability at least 1/2 select strategies Rt 6∈ R′, satisfying Rt(x̂) = 1 for all rounds t > T/2. For
each such Rt, E[Rt(x) = 1] ≥ ρ, and thus Q = Ω(ρT ) when ρ ≥ 2cη, completing the proof.

B Proofs of Generalization and Label Complexity Guarantees

In this appendix, we first prove generalization guarantees and then label complexity guarantees.

For simplicity below, let t0 be the first time t such that t ≥ 16 log(t/δ), let ∆t =
√

log(3t/δ)
t ,

∆′t = ( 4
1−ρ + 2)

√
2 log(6(t−t0)(t−t0+1)|H×R|2/δ)

t−t0 for any t > t0, and ∆̃t = 2∆′t + 8
1−ρ∆t−1.

B.1 Generalization Guarantees

Lemma 1. Assume ρ < 1
2 . For any δ > 0, with probability at least 1− δ, for all s ≥ 16 log(3s/δ),

and any r ∈ R,

1

E[r(x) = 0] + ∆s−1
≤ 1

1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

≤ 1

E[r(x) = 0]−∆s−1
.

Proof. By Hoeffding’s inequality, E[r′(x) = 0] ≤ Ês−1[1[r′(x) = 0]] + ∆s−1 and E[r′(x) = 0] ≥
Ês−1[1[r′(x) = 0]]−∆s−1 hold concurrently with probability at least 1− δ.

The inequality E[r′(x) = 1] ≤ ρ directly implies that E[r′(x) = 0] > 1 − ρ ≥ 1
2 . It also holds

by assumption that s− 1 ≥ 16 log(3(s− 1)/δ) which can be rewritten as 1
2 −∆s−1 >

1
4 . Hence,

E[r′(x) = 0]−∆s−1 >
1
2 −∆s−1 >

1
4 > 0. The statement of the lemma follows by inverting the

concentration inequalities and then dividing by E[r′(x) = 0]−∆s−1 and by E[r′(x) = 0] + ∆s−1,
separately.

Lemma 2. Assume ρ < 1
2 . For any δ > 0, with probability at least 1− δ, for all s ≥ 16 log(3s/δ),

and any (h, r), (h′, r′) ∈ H ×R,∣∣∣∣L(h(xs), ys)1[r(xs) = 0]
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

− L(h′(xs), ys)1[r′(xs) = 0]
1
s−1

∑s−1
s′=1 1[r′(xs′) = 0]

∣∣∣∣ ≤ 4

1− ρ
+ 2.
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Proof. By an application of Lemma 1, with probability at least 1− δ,

L(h(xs), ys)1[r(xs) = 0]
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

− L(h′(xs), ys)1[r′(xs) = 0]
1
s−1

∑s−1
s′=1 1[r′(xs′) = 0]

≤ L(h(xs), ys)1[r(xs) = 0]

E[r(x) = 0]−∆s−1
− L(h′(xs), ys)1[r′(xs) = 0]

E[r′(x) = 0] + ∆s−1

≤ E[r(x) = 0]− E[r′(x) = 0] + 2∆s−1

(E[r′(x) = 0] + ∆s−1)(E[r(x) = 0]−∆s−1)

=
E[r(x) = 0]− E[r′(x) = 0]

(E[r′(x) = 0] + ∆s−1)(E[r(x) = 0]−∆s−1)
(3)

+
2∆s−1

(E[r′(x) = 0] + ∆s−1)(E[r(x) = 0]−∆s−1)
(4)

where we used the fact that L(h′(xs), ys)1[r′(xs) = 0] ≤ 1. First, we analyze the term (3). By
the assumptions, it holds that E[r′(x) = 1] ≤ ρ which implies E[r′(x) = 0] > 1 − ρ ≥ 1

2 and
that s − 1 ≥ 16 log(3(s − 1)/δ) which can be rewritten as 1

2 − ∆s−1 > 1
4 . Hence, E[r′(x) =

0]−∆s−1 >
1
2 −∆s−1 >

1
4 > 0. Thus,

(3) ≤ 4

1− ρ
,

where we also used the fact that E[r′(x) = 0] + ∆s−1 ≥ 1− ρ .

Next, we turn to term (4). For simplicity, let a = E[r(x) = 0] and b = E[r′(x) = 0] and consider the
following

(a+ ∆s−1)(b−∆s−1)/∆s−1 = ab/∆s−1 − a+ b−∆s−1

>
1

4∆s−1
− 1 +

1

4
=

1

4∆s−1
− 3

4
> 1

where we used the fact that b−∆s−1 > 1/4, ab > 1
4 , and a < 1 by the same reasoning as term (3)

and that 1/∆s−1 − 3 > 1 since by assumption 1
4 > ∆s−1. Hence,

(4) =
2

ab/∆s−1 − a+ b−∆s−1
≤ 2.

Putting the above together, (3) + (4) ≤ 4
1−ρ + 2 and taking absolute values concludes the proof.

Theorem 2. Given any ρ < 1
2 , for any δ > 0, with probability at least 1− δ, for all t ≥ 16 log(3t/δ),

E[L(ht(x), y)|rt(x) = 0] ≤ E[L(h∗(x), y)|r∗(x) = 0] + Õ
(√

(1/t) log(1/δ)
)
.

Proof. Recall that t0 is the first time t such that t ≥ 16 log(t/δ) and consider only t > t0. For any
pair (h, r) ∈ Vt and (h′, r′) ∈ Vt, let

Zs =E
[

qs
ps(xs)

L(h(xs), ys)1[r(xs) = 0]
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

]
− E

[
qs

ps(xs)

L(h′(xs), ys)1[r′(xs) = 0]
1
s−1

∑s−1
s′=1 1[r′(xs′) = 0]

]
− qs
ps(xs)

(
L(h(xs), ys)1[r(xs) = 0]

1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

− L(h′(xs), ys)1[r′(xs) = 0]
1
s−1

∑s−1
s′=1 1[r′(xs′) = 0]

)
,

for s ∈ [t]. If ps < 1, then Zs ≤ 2 by definition. If ps = 1, then |Zs| ≤ 8
1−ρ +4 follows by Lemma 2

with probability at least 1− δ. Under this high probability event, we apply Azuma’s inequality to Zs
to attain:∣∣∣∣ 1

t− t0

t∑
s=t0

E
[

qs
ps(xs)

L(h(xs), ys)1[r(xs) = 0]
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

]
− 1

t− t0

t∑
s=t0

E
[

qs
ps(xs)

L(h′(xs), ys)1[r′(xs) = 0]
1
s−1

∑s−1
s′=1 1[r′(xs′) = 0]

]

− 1

t− t0

t∑
s=t0

qs
ps(xs)

(
L(h(xs), ys)1[r(x) = 0]

1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

− L(h′(xs), ys)1[r′(x) = 0]
1
s−1

∑s−1
s′=1 1[r′(xs′) = 0]

)∣∣∣∣ ≤ 2∆′t,

15



where we take a union bound over all (h, r) ∈ Vt. Equivalently, this can be written as:

∣∣E[L̂t(h, r)]− E[L̂t(h
′, r′)]− L̂t(h, r)− L̂t(h′, r′)

∣∣ ≤ 2∆′t, (5)

To attain our desired bound, we then relate E[L̂t(h, r)] to E[L(h(x), y)|r(x) = 0]. First, we rewrite
the former expectation:

E[L̂t(h, r)] =
1

t− t0

t∑
s=t0

E
[

qs
ps(xs)

L(h(xs), ys)1[r(xs) = 0]
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

]

=
1

t− t0

t∑
s=t0

E
[
L(h(xs), ys)1[r(xs) = 0]

1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

]

= E[L(h(x), y)1[r(x) = 0]]
1

t− t0

t∑
s=t0

E
[

1
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

]
(6)

where the first inequality follows since E[qs|ps(xs)] = ps(xs) and where the second inequal-
ity follows by the fact that the data is i.i.d. Combining this with Lemma 1 multiplied by
E[L(h(x), y)1[r(x) = 0]], it follows that

E[L(h(x), y)1[r(x) = 0]]
1

t− t0

t∑
s=t0

E
[ 1

E[r(x) = 0] + ∆s−1

]
(7)

≤ E[L̂t(h, r)]

≤ E[L(h(x), y)1[r(x) = 0]]
1

t− t0

t∑
s=t0

E
[ 1

E[r(x) = 0]−∆s−1

]
. (8)

Hence, in order to relate E[L̂t(h, r)] to E[L(h(x), y)|r(x) = 0], we also need that 1
E[r(x)=0]±∆s−1

is
close to 1

E[r(x)=0] and so consider the following:∣∣∣∣ 1

t− t0

t∑
s=t0

(
1

E[r(x) = 0]−∆s−1
− 1

E[r(x) = 0]

)∣∣∣∣ =
1

t− t0

t∑
s=t0

∆s−1

(E[r(x) = 0]−∆s−1)E[r(x) = 0]

=
1

E[r(x) = 0]

1

t− t0

t∑
s=t0

∆s−1

(E[r(x) = 0]−∆s−1)]

≤ 1

E[r(x) = 0]

(
4

∆t−1

E[r(x) = 0]

)
(9)

where in the last inequality we used the fact that E[r′(x) = 0] −∆s−1 >
1
2 −∆s−1 >

1
4 via the

same reasoning as in Lemma 1. Similarly,∣∣∣∣ 1

t− t0

t∑
s=t0

(
1

E[r(x) = 0] + ∆s−1
− 1

E[r(x) = 0]

)∣∣∣∣ =
1

t− t0

t∑
s=t0

∆s−1

(E[r(x) = 0] + ∆s−1)E[r(x) = 0]

=
1

E[r(x) = 0]

1

t− t0

t∑
s=t0

∆s−1

(E[r(x) = 0] + ∆s−1)

≤ 1

E[r(x) = 0]

(
4

∆t−1

E[r(x) = 0]

)
. (10)

Multiplying (9) and (10) by E[L(h(x), y)1[r(x) = 0]] and using the fact that E[r(x) = 0] ≥ 1− ρ
and E[L(h(x), y)|r(x) = 0] ≤ 1, it follows that∣∣∣∣E[L(h(x), y)1[r(x) = 0]]

1

t− t0

t∑
s=t0

E
[

1

E[r(x) = 0] + ∆s−1

]
− E[L(h(x), y)|r(x) = 0]

∣∣∣∣
≤ E[L(h(x), y)|r(x) = 0]

(
4

∆t−1

E[r(x) = 0]

)
≤ 4

1− ρ
∆t−1 (11)
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and∣∣∣∣E[L(h(x), y)1[r(x) = 0]]
1

t− t0

t∑
s=t0

E
[

1

E[r(x) = 0]−∆s−1

]
− E[L(h(x), y)|r(x) = 0]

∣∣∣∣
≤ 4

1− ρ
∆t−1. (12)

Using the series of inequalities (8), (11), and (12) into the result of the concentration inequality of (5)
along with some algebra,

|E[L(h(x), y)|r(x) = 0]− E[L(h′(x), y)|r′(x) = 0]− L̂t(h, r) + L̂t(h
′, r′)|

≤ 2∆′t +
8

1− ρ
∆t−1. (13)

Recalling that ∆̃t = 2∆′t + 8
1−ρ∆t−1. Since Vt ⊆ Vt−1, it holds that for any pair (h, r) ∈ Vt and

(h′, r′) ∈ Vt via inequality (13):

E[L(h(x), y)|r(x) = 0]− E[L(h′(x), y)|r′(x) = 0]

≤ L̂t−1(h, r)− L̂t−1(h′, r′) + ∆̃t−1

≤ min
(h,r)∈Vt−1

L̂t−1(h, r) + ∆̃t−1 − min
(h,r)∈Vt−1

L̂t−1(h, r) + ∆̃t−1

= 2∆̃t−1.

We then prove that (h∗, r∗) ∈ Vt. By induction, suppose that (h∗, r∗) ∈ Vt−1. Let (h′t−1, r
′
t−1) =

min(h,r)∈Vt−1
L̂t−1(h, r). Then, by inequality (13):

L̂t−1(h∗, r∗)

≤ L̂t−1(h′t−1, r
′
t−1)− E[L(h′t−1(x), y)|r′t−1(x) = 0] + E[L(h∗(x), y)|r∗(x) = 0] + ∆̃t−1

≤ L̂t−1(h′t−1, r
′
t−1) + ∆̃t−1

which by definition means that (h∗, r∗) ∈ Vt.

Corollary 1. Given any ρ < 1
2 , for any δ > 0, with probability at least 1 − δ, for all t ≥

16 log(3t/δ), E[L(ht(x), y)|rt(x) = 0] ≤ E[L(hb(x), y)] + γ + Õ
(√

(1/t) log(1/δ)
)
, where γ =

E[L(h∗(x), y)|r∗(x) = 0]− E[L(hb(x), y)]. Furthermore, if r� ∈ Rρ, then γ ≤ 0.

Proof. Since hb ∈ H and since r� ∈ R, it holds that E[L(h∗(x), y)|r∗(x) = 0] ≤ E[L(hb(x), y)].

B.2 Label Complexity

Proposition 1. For all δ > 0, with probability at least 1− δ, for all t ≥ 16 log(3t/δ),

E[ps(xs)] ≤ 4θE[L(h∗(x), y)|r∗(x) = 0] + Õ

(
θ

√
log(1/δ)

t

)
,

where θ is the disagreement coefficient.
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Proof. By Lemma (1) in conjunction with Inequalities (9) and (10), it holds that

E[ps(xs)] ≤ E
[

max
(h,r),(h′,r′)∈Vs

max
y

L(h(xs), y)1[r(xs) = 0]
1
s−1

∑s−1
s′=1 1[r(xs′) = 0]

− L(h′(xs), y)1[r′(xs) = 0]
1
s−1

∑s−1
s′=1 1[r′(xs′) = 0]

]
≤ 2E

[
max

(h,r)∈Vs
max
y

L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]−∆s−1
− L(h′(xs), y)1[r′(xs) = 0]

E[r′(x) = 0] + ∆s−1

]
= 2E

[
max

(h,r)∈Vs
max
y

L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]−∆s−1
− L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]

+
L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]
− L(h′(xs), y)1[r′(xs) = 0]

E[r′(x) = 0] + ∆s−1
− L(h′(xs), y)1[r′(xs) = 0]

E[r′(x) = 0]

+
L(h′(xs), y)1[r′(xs) = 0]

E[r′(x) = 0]

]
≤ E

[
max

(h,r),(h′,r′)∈Vs
max
y

∣∣∣∣L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]
+
L(h′(xs), y)1[r′(xs) = 0]

E[r′(x) = 0]

∣∣∣∣]
+

8

(1− ρ)2
∆s−1.

We then focusing on bounding the first term above. By Theorem 2, Vs ⊆ {(h, r) ∈ H × R :

E[L(h(x), y)|r(x) = 0] ≤ E[L(h∗(x), y)|r∗(x) = 0] + 2∆̃s−1}. Using this fact in conjunction
with ρ((h, r), (h∗, r∗)) ≤ E[L(h(x), y)|r(x) = 0] + E[L(h∗(x), y)|r∗(x) = 0] implies that Vs ⊆
B(h∗, r∗,Λ) where Λ = 2E[L(h∗(x), y)|r∗(x) = 0] + 2∆̃s−1. where we used the definition of
disagreement coefficient in the last inequality.

Using the above it holds that:

E
[

max
(h,r),(h′,r′)∈Vs

max
y

∣∣∣∣L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]
− L(h′(xs), y)1[r′(xs) = 0]

E[r′(x) = 0]

∣∣∣∣]
≤ 2E

[
max

(h,r)∈Vs
max
y

∣∣∣∣L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]
− L(h∗(xs), y)1[r∗(xs) = 0]

E[r∗(x) = 0]

∣∣∣∣]
≤ 2E

[
max

(h,r)∈B(h∗,r∗,Λ)
max
y
|L(h(xs), y)1[r(xs) = 0]

E[r(x) = 0]
− L(h∗(xs), y)1[r∗(xs) = 0]

E[r∗(x) = 0]

∣∣∣∣]
≤ 2θ(2E[L(h∗(x), y)|r∗(x) = 0] + 2∆̃s−1)

where we used the definition of disagreement coefficient in the last inequality.

Theorem 3. Given any ρ < 1
2 , for all δ > 0, with probability at least 1 − δ,

∑T
s=1 E[ps(xs)] =

Õ(θηT + θ
√
T ), where θ is the disagreement coefficient.

Proof. The theorem follows directly by summing Proposition 1 over the rounds.
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(a) (b) (c) (d)

Figure 3: Example distribution: (a) A distribution in R2. (b) Region selected by an optimal abstention
algorithm is depicted by the red circles. (c) Dataset induced by the abstention region in (b). (d)
Disagreement region for active learning is shown in white.

C Comparisons to Active and Abstention Learning:

We now provide a simple example to help distinguish our setting from both active and abstention
learning. Consider the distribution depicted in Figure 3 (a), and suppose the learner is given a
hypothesis class consisting of halfspaces.

Figure 3 (b) depicts the optimal abstention region as dotted red circles. Suppose the learner were
handed this region by an oracle (ignoring any computation and sample complexity concerns in
actually finding this region). Then recall that in our setting the mechanism for avoiding loss (i.e.,
“abstaining”) is also the same mechanism for generating labeled examples. Thus, if the learner were
to solely request labels from the optimal abstention region, it would generate the dataset depicted in
Figure 3 (c) and this dataset would induce precisely the wrong hypothesis.

Figure 3 (d) depicts a finite dataset drawn according to the distribution and the dotted lines correspond
to a set of “good” hypotheses. Active learning algorithms generally label examples as long as there
is disagreement between good hypotheses on the label of the example. While the exact details vary
by algorithm, an optimal active learner gains no information by labeling an example that all good
hypotheses agree on. Thus, the grayed region in Figure 3 (d) will never be labeled. Moreover, as
the active learner hones in on the optimal hypothesis, and the set of candidate good hypotheses
shrinks, it will eventually stop requesting labels entirely, even though there is value in requesting
labels purely for evading the loss of an incorrect prediction (e.g. requesting labels inside the two
dotted red circles).
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dataset # features # train # test |H| 1/C
a9a 123 20,000 12,561 64 2−11

cod-rna 8 25,000 34,535 64 2−13

mnist 780 30,000 30,000 32 2−10

phishing 68 9,000 2,055 46 2−11

shuttle 9 20,000 23,499 64 2−13

skin 3 150,000 95,065 46 2−11

Table 1: Dataset characteristics.

D Empirical Investigation Appendix

In this section, we first give additional details on the DPL-IWAL ablation study, then present a study
on estimating γ for margin-based requesters, and finally present additional details for the evaluation
of DPL-Simplified.

D.1 DPL-IWAL Ablation Study

In this study, we test the following publicly available datasets: mnist, shuttle, cod-rna, phishing,
skin and a9a. Details of dataset training/test split sizes, number features, and the size of finite
hypothesis sets used in the ablation study is shown in Table 1. All datasets can be found at the
LIBSVM dataset repository: https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/, released under
the 3-clause BSD license. For the mnist dataset we learn the binary classification of odd vs. even
digits and for the shuttle dataset we classify the majority class vs. the rest. For all datasets we
normalize features by first centering each feature (subtracting the mean value of each feature column)
and then scaling to unit variance (dividing by the standard deviation of each feature column). After
this, the entire data matrix is scaled uniformly so that the maximum instance feature vector has unit
norm, i.e. maxi ‖xi‖ = 1.

For theH andRρ set construction, we use logistic regression models trained using the scikit-learn
library with solver=“liblinear” and with L2 regularization parameter C set as indicated in the
table. The hypotheses are each trained using a small random sample of data, with a size uniformly
selected between 30 and 500 data points. Then to create the margin-based requestersRρ, for each
hypothesis h ∈ H, we use the unlabeled training fold examples to estimate a threshold τ that captures
ρ fraction of the distribution.

For each of the baseline methods, we adjust the uniform sampling rate so that the overall number of
requested labels matches that of our proposed algorithm. See Figure 5 for the labeling budget as well
as a breakdown of whether the request came from qt and/or rt. Similar to IWAL Beygelzimer et al.
[2009], the sampling probability pt of DPL-IWAL can be adjusted by rescaling the loss function by a
constant. In these experiments, we found it effective to downweight the loss difference of Algorithm 1
by a factor 0.1 when the signs of h(x) and h′(x) agree. In order to increase efficiency, at some cost in
adaptivity, we update the version space and best model/requester pair after every 25 examples, which
is a standard technique when applying active learning in practice Amin et al. [2020].

Figure 6 shows the results of our ablation study on all datasets. We observe that the uniform random
rt attains similar test error to the fully uniform baseline. This is because if r is a uniform random
requestor, then for all h ∈ H, it holds that E[L(h(x), y)|r(x) = 0] = E[L(h(x), y)]. Thus, uniform
rt behaves like the standard active learner, IWAL, which will generalize as well as a passive learner,
meaning that with respect to the number of points processed, it will attain a test error close to that
of a passive learner. At the same time, online errors for uniform rt are smaller than that of the fully
uniform baseline. This suggests that the samples that are selected by an active learning strategy
are also somewhat correlated with mistakes. Selecting a non-trivial requestor, but constraining qt
to sample uniformly demonstrates that there is indeed significant value to selecting a good request
region, as demonstrated by lower online mistakes and smaller conditional test errors.

Our experiments with the uniform rt baseline demonstrate that naively deploying IWAL in a dual
purpose setting will yield suboptimal results. This shows the considerable benefits of DPL-IWAL,
which uses an IWAL inspired sampling scheme carefully adapted for the dual purpose setting. A
natural question is whether DPL-IWAL can use different active learning algorithms for its sampling
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dataset # features # examples 1/C notes
a9a 123 32,561 10−3

acoustic 50 78,823 10−4 class 1 vs. rest
cifar 10 60,000 10−3 project to 10-dim w/ PCA; class 1 vs. rest
cod-rna 8 59,535 10−3

covtype 54 581,012 10−5 called “covtype.binary” on LIBSVM site
HIGGS 28 100,000 10−4 randomly subsampled from full 11M dataset
ijcnn 22 49,990 10−4

mnist 780 60,000 10−2 odd vs. even
shuttle 9 43,499 10−5 class 1 vs. rest
skin 3 245,065 10−2

Table 2: Dataset characteristics.

procedure (such as uncertaity/margin sampling, DHM, or query-by-committee Balcan et al. [2007],
Dasgupta et al. [2008], Dagan and Engelson [1995]), and whether these result in even more effective
algorithms for the dual purpose setting. These directions pose new technical challenges, for example,
if using a margin-based sampler qt in addition to a margin-based requestor rt, the two of which may
be highly correlated, it becomes non-trivial to estimate the loss conditioned on rt = 0 using samples
selected by qt. Nevertheless, we look forward to investigating these potentially fruitful directions in
future work.

Additionally, in Figure 7, we measure the validity of the assumption E[L(ht(x), y)|Rt(x) = 0] ≤
E[L(ht(x), y)|rt(x) = 0], which is used in the discussion of the label complexity upper bound. This
figures shows that cross these benchmark datasets, the assumption clearly holds.

D.2 Estimating γ for Margin-based Requestors

Recall that in Corollary 1 the bound on the mistakes of our algorithm’s chosen hypothesis as compared
to the best-in-class is more favorable the more negative γ is. In this study, we measure an upper
bound on the value of γ for a margin-based requester function r used in the ablation study and use a
continuous hypothesis space to estimate hb = argminh E[L(h(x), y)].

We can measure a (potentially pessimistic) upper bound on γ for the class Rρ,H by using: γ =
E[L(h∗(x), y) | r∗(x) = 0] − E[L(hb(x), y)] ≤ E[L(hb(x), y) | rhb(x) = 0] − E[L(hb(x), y)] =
E[L(hb(x), y) | |hb(x)| > τh,ρ(DX )] − E[L(hb(x), y)]. For each dataset, we first estimate
hb minimizing the log-loss over the full dataset, then we measure the empirical estimate of
E[L(hb(x), y) | |hb(x)| > τ ] for various choices of τ . In Figure 4, we show measurements of
this upper bound on γ for varying values of the C regularization parameter. The left-most data-point
of the plot is the expected loss of hb, that is E[L(hb(x), y) | |hb(x)| > 0] = E[L(hb(x), y)]. As the
graph progresses to the right, for each non-zero threshold value, the conditional loss outside of the
threshold is always smaller than the value at τ = 0. This implies a strictly negative upper bound on
the value of γ. We also observe that γ tends to grow as τ , or equivalently ρ, increases. This empirical
finding of a strictly negative γ verifies the hypothesis returned by our algorithm admits a favorable
bound in Corollary 1 as compared to the best-in-class.

D.3 DPL-Simplified Study

In Section 6 we evaluate the DPL-Simplified algorithm and baselines using the 10 datasets
described in Table 2, all of which can be found on the LIBSVM dataset website:
https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/. Some of the datasets which are multi-
class case into binary classification problems, which is indicated in the notes column of Table 2
(along with any other pre-processing).

For all datasets we normalize features by first centering each feature (subtracting the mean value of
each feature column) and then scaling to unit variance (dividing by the standard deviation of each
feature column). After this, the entire data matrix is scaled uniformly so that the maximum instance
feature vector has unit norm, i.e. maxi ‖xi‖ = 1.
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Figure 4: Empirical estimate of E[L(hb(x), y) | |hb(x)| > τ ] as a function of τ , which can be used
to lower bound γ. As explained in the text, the fact that the value at τ = 0 is strictly larger than the
values at any τ > 0, implies a strictly negative upper bound on γ for the linear model family,H, and
margin-based requester classRρ,H, across these distributions.

The scikit-learn library is used to train the logistic regression model, h, using solver=’saga’,
max_iter=10000, and setting the L2 regularization parameter indicated in Table 2 for each
dataset. In order to train the KNN model needed for the KNN- and Mixture-Requesters, we
use scikit-learn’s KNeighborsClassifier, with n_neighbors=10, weights=’distance’, and
algorithm=’brute’.

Finally, Figure 8 shows the full learning curves associated with Table 2 in the main paper.
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Figure 5: This figure shows for each dataset (each column) the overall number of labels requested
throughout the training process (first row), the number examples that where qt = 1 (second row), the
number of examples where rt(xt) = 1 (third row), an finally, the number of cases where are label
was requested due to both qt and rt(xt) making a request.
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Figure 6: The number of online mistakes made while processing a stream of data as well as the
held-out conditional loss on non-requested points made by DPL-IWAL and baselines comparators.
The plots show the mean and standard deviation over 10 trials.
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Figure 8: The full learning curves associated to the results presented in Table 2.
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