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Abstract—Tensor completion is a core machine learn-
ing algorithm used in recommender systems and other
domains with missing data. While the matrix case is
well-understood, theoretical results for tensor problems
are limited, particularly when the sampling patterns are
deterministic. Here we bound the generalization error of
the solutions of two tensor completion methods, Poisson loss
and atomic norm minimization, providing tighter bounds
in terms of the target tensor rank. If the ground-truth
tensor is order t with CP-rank r, the dependence on r is
improved from r2(t−1)(t2−t−1) in [16] to r2(t−1)(3t−5). The
error in our bounds is deterministically controlled by the
spectral gap of the sampling sparsity pattern. We also prove
several new properties for the atomic tensor norm, reducing
the rank dependence from r3t−3 in [14] to r3t−5 under
random sampling schemes. A limitation is that atomic
norm minimization, while theoretically interesting, leads
to inefficient algorithms. However, numerical experiments
illustrate the dependence of the reconstruction error on
the spectral gap for the practical max-quasinorm, ridge
penalty, and Poisson loss minimization algorithms. This
view through the spectral gap is a promising window for
further study of tensor algorithms.

I. INTRODUCTION

In many situations, incomplete data measurements are
the rule due to data corruption, impracticality, or impos-
sibility of filling in all information that is desired. Tensor
completion is a general technique used to fill in missing
multivariate data using assumptions of prior structure. It
is the natural generalization of matrix completion, made
famous as a winning solution to the Netflix prize [2]: A
system to recommend films to users was built by filling
in a low-rank matrix of scores for each pair of movies
by users.

In tensor completion, we seek to fully or partially
recover the entries of an unknown order t tensor (i.e.,
a multidimensional n×· · ·×n array with t ≥ 2 indices)
T given some limited set of observations {Te}e∈E .
The ground truth is assumed to have CP-rank r [20].
Mathematical analysis of such methods often assumes
that the observed entries in the tensor E ⊆ [n]t are
random, and the best known polynomial-time algorithms
require Õ(nt/2) sample complexity for an order t tensor
[19], [22], [24], [6]. On the other hand, a number of
papers have studied deterministic sampling for matrix
completion [17], [4], [3], [5], [10], [12]. For tensors,
only a few recent results have studied error bounds
in the deterministic setting. [9, Theorem 3.1] gave a
general bound for non-uniform Frobenius norm error
for any deterministic sampling pattern with an NP-hard
algorithm. However, the dependence on rank in the
bound is not specified. An HOSVD method was also
analyzed in [9] for low Tucker rank tensor completion.

Closest to the work we present here, [16] found
bounds for minimizing a quasinorm penalized problem
[14] in terms a spectral gap. For regular graphs where
each vertex has the same degree, smaller second eigen-
value corresponds to larger spectral gap. Viewing the
sampling pattern as the adjacency tensor of a t-uniform
hypergraph H constructed from a regular graph G, they
showed that the second eigenvalue of G could be used to
control the reconstruction error. Expander graphs, which
have the smallest possible second eigenvalue/largest
spectral gap, are thus optimal for that theory. In addition,
using the definition of the second eigenvalue for the



adjacency tensor of a hypergraph [13], they showed
that the for any t-uniform hypergraph (not necessarily
regular) as a sampling pattern, its second eigenvalue
could also be used to control the reconstruction error,
but with a larger sample complexity bound.

Our main contribution is a collection of theoretical
results suggesting that the spectral gap influences the
quality of reconstruction. We first show how the rank
dependence of previous generalization bounds [16] can
be tightened if the optimization is done with a different
atomic norm penalty. Several properties of this atomic
norm are proven, improving upon the results in [14]
where the atomic norm was introduced. We also extend
the analysis of tensor count data with a Poisson likeli-
hood model [21] to deterministic observations. Finally,
we present numerical experiments to showcase how a
larger spectral gap leads to less error. These results
together provide strong evidence that the spectral gap
of the observation mask is important for controlling the
error of tensor completion. Our notation and some basic
definitions are given in App. A.

II. THEORETICAL RESULTS

A. Tensor atomic norm properties

In order to connect the expansion properties of the
sampling pattern hypergraph to the error of the algo-
rithms, we will work with sign tensors. A sign tensor S
has all entries equal to +1 or −1, i.e. S ∈

⊗t
i=1{±1}ni .

The sign rank of a sign tensor S is defined as

rank±(S) = inf

{
r
∣∣∣ S =

r∑
i=1

s
(1)
i ◦ · · · ◦ s(t)i

}
,

(II.1)

where s
(j)
i ∈ {±1}ni , i ∈ [r], j ∈ [t]. We define the

atomic norm for a tensor T as

∥T∥± = inf

{
r∑

i=1

|αi|
∣∣∣ T =

r∑
i=1

αiSi

}
, (II.2)

where αi ∈ R, Si ∈
⊗t

i=1{±1}ni , i ∈ [r]. This is called
tensor atomic-M norm in [14]. In (II.2), the “atoms” are
simple sign tensors.

Note that the set of all rank-1 sign tensors forms a
basis for

⊗t
i=1 Rn, so this decomposition into rank-

1 sign tensors is always possible; furthermore, this is
a norm for tensors and matrices [14], [17], and it
is commonly used in compressed sensing and matrix
completion [8], [11]. The following results give several
useful properties of the tensor atomic norm, which will
be used in our tensor completion analysis (proofs in
Apps. B and C, respectively):

Theorem II.1. Let T ∈
⊗t

i=1 Rni and S ∈
⊗t

i=1 Rmi .
The following atomic norm properties hold:

1) ∥TI1,...,It∥± ≤ ∥T∥± for any subsets Ii ⊆ [ni].
2) ∥T ⊗ S∥± ≤ ∥T∥±∥S∥±.
3) ∥T ∗ S∥± ≤ ∥T ⊗ S∥±, where T, S ∈

⊗t
i=1 Rni .

4) ∥T ∗ T∥± ≤ ∥T∥2±.

Lemma II.2. Let ui ∈ Rni with ∥ui∥∞ ≤ 1 for i ∈ [t]
and rank-1 T = u1 ◦ u2 ◦ · · · ◦ ut. Then ∥T∥± ≤ 1.

We also need to compare the atomic norm of a tensor
T and its CP-rank to obtain rank-dependent bounds. The
following Theorem improves the rank dependence in [14,
Theorem 7] by a factor of r (proof in App. D):

Theorem II.3. Let T ∈
⊗t

i=1 Rni and rank(T ) = r.
Then

|T |∞ ≤ ∥T∥± ≤ KG

√
r3t−5|T |∞, (II.3)

where KG ≤ 1.783 is Grothendieck’s constant over R.

In contrast, for the max-quasinorm (see App. A), it
was shown in [16] that

|T |∞ ≤ ∥T∥max ≤
√
rt2−t−1 |T |∞.

Since 3t− 5 ≤ t2 − t− 1 for all integers t ≥ 2, atomic
norm-based analysis and optimization will yield a better
rank dependence in the generalization error bound.

While the main focus of this paper is on deterministic
sampling patterns, we note that Theorem II.3 can be used
to improve upon results in the literature that consider
random sampling schemes. In [14], the authors intro-
duce the atomic norm to show that O

(
nr3t−3

)
entries

chosen randomly are sufficient to provide an accurate
approximation of a rank r tensor in

⊗t
i=1 Rn. Using

our main result, Theorem 8 in [14] can be applied with
R = KG

√
r3t−5|T |∞ to reduce the sampling complexity

to O
(
nr3t−5

)
. To the best of our knowledge, the results

here provide the best sampling complexity to date for
tensors of general order under random and deterministic
sampling patterns.

B. Deterministic tensor completion

Equipped with the properties of the atomic norm
proved in Theorem II.1, we give an improved general-
ization error bound for deterministic tensor completion
(proof in App. E):

Theorem II.4. Given a hypercubic tensor T of order
t, reveal its entries according to a t-uniform t-partite
hypergraph H = (V,E) with V = V1 ∪ · · · ∪ Vt, |V1| =
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· · · = |Vt| = n, and second eigenvalue λ2(H). Let T̂
satisfy

T̂ = argmin
T ′

∥T ′∥±

such that T ′
e = Te for all e ∈ E.

Then the following bound holds:

1

nt
∥T̂ − T∥2F ≤ 2t+2nt/2λ2(H)

|E|
∥T∥2±, (II.4)

where λ2(H) =
∥∥∥TH − |E|

nt J
∥∥∥ , J is the all-ones tensor,

and TH is the adjacency tensor of H such that Ti1,...,it =
1{(i1, . . . , it) ∈ E}.

The above result is for any t-uniform, t-partite hy-
pergraphs, and the error bound depends on the second
eigenvalue of their adjacency tensors. Concentration for
the second eigenvalue of adjacency tensors for random
hypergraphs was considered in [13], [25].

Computing λ2(H) is costly since the tensor spectral
norm is NP-hard [18]. However, we can “lift” a graph
into a hypergraph in a way that gives a bound in terms
of graph eigenvalues. Let G = (V (G), E(G)) be a
connected d-regular graph on n vertices with the second
largest eigenvalue (in absolute value) λ ∈ (0, d). The
following construction of a t-partite, t-uniform, dt−1-
regular hypergraph H = (V,E) from G was given in
[16]. See Fig 1 for an illustration of the “edge lifting”
operation from a regular graph to a regular hypergraph
graph when t = 3 and d = 4.

Definition II.5 (Edge lifting for regular hypergraphs).
Let V = V1 ∪ V2 ∪ · · · ∪ Vt be the disjoint union of
t vertex sets such that |V1| = · · · = |Vt| = n. The
hyperedges of H correspond to all walks of length t−1
in G: (v1, . . . , vt) is a hyperedge in H if and only if
(i1, . . . , it) is a walk of length t− 1 in G.

Theorem II.6. Given a hypercubic tensor T of order
t, reveal its entries according to a t-partite, t-uniform,
dt−1-regular hypergraph H = (V,E) lifted from a d-
regular graph G of size n with second eigenvalue (in
absolute value) λ ∈ (0, d). Then solving

T̂ = argmin
T ′

∥T ′∥±

such that T ′
e = Te for all e ∈ E (II.5)

will result in the following mean squared error bound:

1

nt
∥T̂ − T∥2F ≤ 2t(2t− 3)

λ

d
∥T∥2±

≤ 2t(2t− 3)
λ

d
K2

Gr
3t−5|T |2∞. (II.6)

V1

V2

V3

e

i1

i2

i3

G H
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i2

i3 i4
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i6

Fig. 1. Lifting a graph G into a hypergraph H when t = 3: We depict
a 4-connected ring base graph G on the left and a single edge in the
hypergraph H on the right. (i1, i2, i3) forms an hyperedge e in H if
and only if (i1, i2, i3) is a walk in G.

Theorem II.6 is proven in App. F. Suppose we lift an
expander graph G with λ = O(

√
d) and t, |T |∞ = O(1).

In order to have the right hand side of (II.6) bounded by
ε, we need to take

|E| = O

(
nr2(t−1)(3t−5)

ε2(t−1)

)
(II.7)

many samples. The sample complexity in [16] is
O
(

nr2(t−1)(t2−t−1)

ε2(t−1)

)
. Optimizing the atomic norm in-

stead of the max-quasinorm yields a better bound, al-
though it requires costly integer programming.

III. POISSON TENSOR REGRESSION

We may also use the atomic norm properties to obtain
error bounds in the case of noisy tensor completion. In
this scenario, we seek to estimate a parametric tensor T
from noisy, incomplete observations so that T is never
observed directly. We specifically consider the Poisson
tensor completion problem [21], where we observe count
data X ∈

⊗t
i=1 N

ni
+ obeying

Xe ∼ Poisson(Te) for all e ∈ E, (III.1)

where T ∈
⊗t

i=1[β, α]
ni specifies the range of possible

Poisson parameters (with 0 < β ≤ α). Given Xe for e ∈
E, we approximate T via a Poisson maximum likelihood
estimator

T̂ = argmax
Z∈Sr(β,α)

∑
e∈E

Xe log(Ze)− Ze (III.2)

where our parametric tensor search space is

Sr(β, α) =

{
Z ∈

t⊗
i=1

[β, α]ni | rank(Z) ≤ r

}
.

This leads to our main result for the Poisson regression
(proof in App. G):
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Theorem III.1. Let the hypercubical parameter tensor T
and observations X be generated as above, with entries
revealed according to a t-uniform, t-partite hypergraph
H = (V,E) with V = V1∪· · ·∪Vt, |V1| = · · · = |Vt| =
n, and second eigenvalue λ2(H). Then with probability
exceeding 1− 2

|E| , there exists an absolute constant C >

0 such that T̂ satisfies:

1

nt
∥T̂ − T∥2F ≤ Cα3t3/2

√
nr3t−5 log2(n)

β
√
|E|

+
2t+2nt/2λ2(H)K2

Gα
2r3t−5

|E|
. (III.3)

Furthermore, if the entries are revealed according to
a t-partite, t-uniform, dt−1-regular hypergraph H =
(V,E) constructed from a d-regular graph G of size n
with second eigenvalue (in absolute value) λ ∈ (0, d),
then with probability exceeding 1− 2

ndt−1 ,

1

nt
∥T̂ − T∥2F ≤ Cα3t3/2

√
r3t−5 log2(n)

β
√
dt−1

+ α22t(2t− 3)
λ

d
K2

Gr
3t−5. (III.4)

If all r, t, α, β are independent of n, and we take
an expander graph with λ = O(

√
d), (III.4) says

if ndt−1 is ω(n log2 n), then the generalization er-
ror goes to 0 as n → ∞. Fixing t, α, β, the sam-
ple size is O

(
nr2(t−1)(3t−5)

ε2(t−1) + nr3t−5 log2(n)
ε

)
for an ε-

approximation. The result is no longer deterministic due
to the random nature of the observed counts X , but
not the observation mask. We roughly obtain the same
sampling complexity as in Theorem II.6 with an extra
O
(

nr3t−5 log2(n)
ε

)
term.

We end this section by noting that the derived noisy
tensor completion error bounds (III.3) and (III.4) are
dependent on the Poisson parameter bounds β, α. Such
dependence is typical in the literature under random
sampling schemes [7], [21]. Theoretical results therein
exhibit analogous dependence on the distributional pa-
rameter space, with numerical experiments that further
validate this dependence as β and α are varied.

IV. NUMERICAL EXPERIMENTS

We now present some numerical experiments that
explore our derived error bounds in practice. The goal
of this section is to showcase how the accuracy of esti-
mators T̂ depends on the spectral gap of the associated
hypergraph or “lifted” regular graph that specifies the
sampled tensor entries. To do so, we will generate sub-
sets of revealed tensor entries E in different manners that

vary the second eigenvalue of the associated adjacency
tensor or lifted graph. The following experiments keep
the cardinality |E| fixed so that only the distribution of
the sampled entries contributes to the behavior of the
reconstruction errors.

We tested the max-quasinorm minimization algorithm
of [16] with graph lifting for a graph with d = 15 and
random target tensor with n = 100, t = 3, and r = 3.
To vary the eigenvalue λ2(G), we start by creating a d-
connected ring graph (see Figure 1). We then perform a
number of random edge swaps where we randomly select
two edges and switch their endpoints, which preserves
the regularity of the graph. This is the classical switch
Markov chain for generating random regular graphs [15].
As the number of swaps increases, λ2 decreases until
it stabilizes at approximately 2

√
d− 1. We vary the

number of swaps between 0 and 600 to give as wide
of a λ2 range as possible. This graph is then lifted into
a hypergraph/tensor mask of observed entries.

Figure 2 shows the results from these experiments. We
observe a significant positive correlation between gen-
eralization error and λ2, increasing nonlinearly for the
larger values of the eigenvalue. To check if this pattern
persisted when limiting to lower λ2 values, we removed
the points with large λ2 values that were dominating
the plot. We can see there still is a positive correlation
when the points are removed, providing further evidence
that λ2 is a determinant of generalization error. Further
details and similar plots for two additional square loss
algorithms, as well as regression reports, are included in
App. H and the supplemental files.

We also experimented with the Poisson regression
algorithm [21]. In this case, we did not use graph lifting
but came up with a procedure to generate mask tensors
with varying λ2(H) by starting from a grid-like mask
and randomly shuffling entries. The tensor eigenvalue
λ2(H) was estimated by a rank-1 fit to (TH − |E|

nt J).
We again saw a strong correlation between λ2 and error.
Further details and plots of results are shown in App. I.

V. CONCLUSION

We provided an improved analysis of deterministic
tensor completion based on the spectral gap of expander
graphs in [16] and applied the results for Poisson tensor
regression. Our new numerical experiments support the
dependence of generalization error on the spectral gap.
Our main contribution also improves upon previous re-
sults that consider random sampling schemes, providing
the best sampling complexity to date for general order
tensor completion problems in terms of the CP-rank.
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Fig. 2. Numerical experiments show that reconstruction error corre-
lates with λ2(G) using the max-quasinorm minimization method and
graph lifting. This graph has d = 15 and n = 100, and the tensor
order t = 3, for 2.25% of the entries sampled. Above: The full range
of graph eigenvalues by varying edge swaps from 0 to 600. Below:
Linear fits show significant positive correlation even when points with
λ2 > 12 are removed. Coefficients of determination R2 for linear fits
of error versus λ2 are included.

It would be interesting to see if our analysis can
be extended for deterministic non-uniform low CP-rank
tensor completion following the line of work [12], [9].
However, more properties of the tensor atomic or max-
quasinorm are needed. In particular, in the matrix case,
we have the following relation between the max-norm
and operator norm: ∥A∗B∥ ≤ ∥A∥max∥B∥ for any two
n × n matrices A,B, which is crucial in the proof of
[12, Theorem 15] and [9, Theorem B.1]. Generalizing
this inequality for these tensor factorization norms is an
interesting question for future work.

Our work also contains some limitations. First, we did
not study the computational complexity of our optimiza-
tion algorithms, although we expect them to be NP-hard
[1]. Directly minimizing the atomic norm as in Theo-
rem II.4 requires integer programming and is not efficient

in practice. Finally, while many numerical results show a
good correlation with λ2, there is significant unexplained
variance at a given gap and across algorithms. Like many
results, these theoretical bounds are not tight enough to
quantitatively predict performance, and they are far from
the parameter counting lower-bound of O(nrt) for the
CP decomposition.
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APPENDIX

A. Notation and definitions

We use lowercase symbols u for vectors, uppercase U for matrices and tensors. The symbol “◦” denotes the outer
product of vectors, i.e. T = u◦v◦w denotes the order 3, rank-1 tensor with entry Ti,j,k = uivjwk. We also use this
symbol for the outer product of matrices as appears in the rank-r decomposition of a tensor T = U (1) ◦U (2) ◦U (3),
where each matrix U (i) has r columns, so that Ti,j,k =

∑r
l=1 U

(1)
i,l U

(2)
j,l U

(3)
k,l , and T = ⃝t

i=1U
(i) is shorthand for

the same order t, rank-r tensor. The symbols ⊗ and ∗ denote Kronecker and Hadamard products, respectively. We
use

⊗t
i=1 Rni for the space of all order t tensors with ni entries in the i-th dimension. We use 1A ∈ Rn as the

indicator vector of a set A ⊆ [n], i.e. (1A)i = 1 if i ∈ A and 0 otherwise. For any order t tensor T ∈
⊗t

i=1 Rni

and subsets Ii ⊆ [ni], denote TI1,...,It to be the subtensor restricted on the index set I1 × · · · × It. Norms ∥ · ∥
are by default the ℓ2 norm for vectors and operator norm for matrices and tensors. We use the notation | · |p for
entry-wise ℓp norms of matrices and tensors.

Let T ∈
⊗t

i=1 Rni and S ∈
⊗t

i=1 Rmi . We define the Kronecker product of two tensors (T⊗S) ∈
⊗t

i=1 Rnimi

as the tensor with entries
(T ⊗ S)k1,...,kt = Ti1,...,itSj1,...,jt

for k1 = j1 +m1(i1 − 1), . . . , kt = jt +mt(it − 1).
Let T, S ∈

⊗t
i=1 Rni . We define the Hadamard product of two tensors (T ∗S) ∈

⊗t
i=1 Rni as the tensor with

indices (T ∗ S)i1,...,it = Ti1,...,itSi1,...,it .
For matrices, the most common measure of complexity is the rank. In the tensor setting, there are various

definitions of rank [20]. However, in this paper, we will work with the CP-rank defined as

rank(T ) = min

{
r
∣∣∣ T =

r∑
i=1

u
(1)
i ◦ · · · ◦ u(t)

i

}
, (A.1)

where each vectors u
(j)
i ∈ Rn.

In [14], Ghadermarzy, Plan, and Yilmaz studied tensor completion without reducing it to a matrix case by
minimizing a max-quasinorm as a proxy for rank. This is defined as

∥T∥max = min
T=U(1)◦···◦U(t)

t∏
i=1

∥U (i)∥2,∞ ,

where the factorization is a CP decomposition of T .
Define the spectral norm of a tensor T as

∥T∥ = sup
v1,...,vt∈Sn−1

∣∣∣∣∣∣
n∑

i1,...,it=1

Ti1,...,itv1(i1) · · · vt(it)

∣∣∣∣∣∣ , (A.2)

where Sn−1 is the unit sphere in Rn.
A d-regular graph on n vertices is a graph where each vertex has the same degree d. The adjacency matrix of

a graph G = (V,E) is a |V | × |V | symmetric matrix such that Aij = 1{{i, j} ∈ E} for all i, j ∈ V . The second
eigenvalue (in absolute value) of G, denoted by λ(G), is defined as λ = max{|λ2(A)|, |λn(A)|}.

A hypergraph H = (V,E) consists of a set V of vertices and a set E of hyperedges such that each hyperedge
is a nonempty set of V . A hypergraph H is k-uniform for an integer k ≥ 2 if every hyperedge e ∈ E contains
exactly k vertices. The degree of i, is the number of all hyperedges incident to i. A hypergraph is d-regular if
all of its vertices have degree d. A k-uniform hypergraph is k-partite if we can decompose the vertex set as a
disjoint union V = V1 ∪ · · · ∪ Vk such that each hyperedge in E contains exactly one vertex in Vi, 1 ≤ i ≤ k.
The adjacency tensor T of a k-uniform hypergraph H = (V,E) on n vertices is a k-th order symmetric tensor of
size n such that Ti1,...,ik = 1{{i1, . . . , ik} ∈ E}. The second eigenvalue of H , denoted by λ2(H), is defined as
λ2(H) =

∥∥∥T − |E|
nt J

∥∥∥, where J is the all-ones tensor.
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B. Proof of Theorem II.1
We prove Claims (1–4) in order. For Claim (1), write T using the decomposition which attains the atomic norm,

T = ⃝t
i=1U

(i) for some U (i) ∈ Rni×r, 1 ≤ i ≤ t. Then a single entry of T can be written as

Ti1,...,it =

r∑
i=1

αiu
(1)
i1,i

· · ·u(t)
it,i

,

where uk
ik,i

∈ {−1,+1} for 1 ≤ ik ≤ nk, 1 ≤ i ≤ r, 1 ≤ k ≤ t,

U (1) = [α1u
(1)
1 , · · · , αru

(1)
r ],

and U (k), 2 ≤ k ≤ t are matrices with column vectors given by u
(k)
1 , . . . , u

(k)
r ∈ Rn1 . By the definition of atomic

norm, we have

∥T∥± =

r∑
i=1

|αi|.

We know that TI1,...,It = ⃝t
i=1U

(i)
Ii,:

, where U
(i)
Ii,:

denotes the submatrix of U (i) with the column restricted on Ii.
Therefore TI1,...,It can be written as a linear combination of rank-1 sign tensors with the sum of absolute value of
weights given by

∑r
i=1 |αi|. By the definition of the atomic norm, this is an upper bound, so ∥TI1,...,It∥± ≤ ∥T∥±.

This proves Claim (1). For Claim (2), let

T = ⃝t
i=1T

(i) and S = ⃝t
i=1S

(i)

be the rank r1 and r2 decompositions of T and S that attain their atomic norms. We can write

Ti1,...,it =

r1∑
i=1

αiu
(1)
i1,i

· · ·u(t)
it,i

, Sj1,...,jt =

r2∑
j=1

βjv
(1)
j1,j

· · · v(t)jt,j
, (A.3)

where vkjk,j ∈ {−1,+1} for 1 ≤ jk ≤ nk, 1 ≤ j ≤ r, 1 ≤ k ≤ t,

V (1) = [β1v
(1)
1 , · · · , βr2v

(1)
r2 ],

and V (k), 2 ≤ k ≤ t are matrices with column vectors given by v
(k)
1 , . . . , v

(k)
r . And by definition, ∥S∥± =∑r2

j=1 |βj |. Then since

(T ⊗ S)k1,...,kt = Ti1,...,itSj1,...,jt =

(
r1∑
l=1

U
(1)
i1,l

· · ·U (t)
it,l

)(
r2∑

l′=1

V
(1)
j1,l′

· · ·V (t)
jt,l′

)

=

r1∑
l=1

r2∑
l′=1

(
U

(1)
i1,l

V
(1)
j1,l′

)
· · ·
(
U

(t)
it,l

V
(t)
jt,l′

)
=

r1r2∑
p=1

(
U (1) ⊗ V (1)

)
k1,p

· · ·
(
T (t) ⊗ V (t)

)
kt,p

for ks = js+ms(is−1) for all s = 1, . . . , t and p = l′+ r2(l−1), we have that T ⊗S = ⃝t
i=1(U

(i)⊗V (i)). This
gives a way to write T ⊗ S as a weighted sum of rank-1 sign tensors with the sum of absolute value of weights
given by

r1∑
i=1

r2∑
j=1

|αiβj | = ∥T∥±∥S∥±.

Therefore ∥T ⊗ S∥± ≤ ∥T∥±∥S∥±. This completes the proof of Claim (2). For Claim (3), note that every entry
in T ∗ S appears in T ⊗ S, since

(T ∗ S)i1,...,it = (T ⊗ S)i1+n1(i1−1),...,it+nt(it−1).

So we have that T ∗S = (T ⊗S)I1,...,It for some subsets of indices I1, . . . , It, and by Claim (1), the result follows.
Finally, from Claims (2) and (3), ∥T ∗ T∥± ≤ ∥T ⊗ T∥± ≤ ∥T∥2±, and Claim (4) follows.
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C. Proof of Lemma II.2

Since ∥ui∥∞ ≤ 1, ui ∈ [−1, 1]ni , where [−1, 1]ni is a convex hull of the set {−1, 1}ni , ui can be written as a
convex combination of {−1, 1}ni such that

ui =
∑

k∈[2ni ]

λ
(i)
k vik,

where vik, k ∈ [2ni ] are all possible vectors in {−1, 1}ni and
∑

k |λ
(i)
k | = 1. Therefore we have

T = u1 ◦ u2 · · · ◦ ut =
∑

k1,...,kt

λ
(1)
k1

· · ·λ(t)
kt
v
(1)
k1

◦ · · · ◦ v(t)kt
,

which is a decomposition of T as a linear combination of sign rank-1 tensors. So

∥T∥± ≤
∑

k1,...,kt

|λ(1)
k1

· · ·λ(t)
kt
| ≤ 1.

D. Proof of Theorem II.3

The lower bound was shown in [14, Theorem 7]. We now focus on the upper bound. When t = 2, using
Grothendieck’s inequality, it was shown in [17, Theorem 7] that ∥T∥± ≤ KG∥T∥max. From John’s Theorem (see,
for example [23, Corollary 2.2]), ∥T∥max ≤

√
r|T |∞. This proves (II.3) when t = 2.

For t ≥ 3, we will use induction. Let T be an order t tensor with rank r and |T |∞ ≤ 1. Then T has the rank-r
decomposition as

T =

r∑
j=1

v1j ◦ v2j ◦ · · · ◦ vtj .

Matricizing along mode-1 we obtain T[1] ∈ Rn1×(n2···nt) such that

T[1] =

r∑
i=1

v1i ◦ (v2i ⊗ · · · ⊗ vti).

Let W be a R(n2···nt)×r matrix such that W (:, i) = v2i ⊗ · · · ⊗ vti . By John’s Theorem ([23, Corollary 2.2]), there
exists an S ∈ Rr×r such that

T[1] = X ◦ Y, (A.4)

where X = V (1)S ∈ Rn1×r, Y = WS−1 ∈ Rn2···nt×r, and ∥X∥2,∞ ≤ r1/2, ∥Y ∥2,∞ ≤ 1. This also implies
∥Y ∥∞ ≤ ∥Y ∥2,∞ ≤ 1. Since each column of Y is a linear combination of columns of W , for some constants
{γij},

Y (:, i) =

r∑
j=1

γij(v
2
j ⊗ · · · ⊗ vtj).

Then

Ei :=

r∑
j=1

γij(v
2
j ◦ · · · ◦ vtj)

is a order (t− 1) tensor of rank at most r with ∥Ei∥∞ ≤ 1. By induction, we have ∥Ei∥± ≤ KG

√
r3t−8. Then by

the definition of the atomic norm in (II.2), there exists a decomposition of Ei such that for some integer ri,

Ei =

ri∑
j=1

λ
(i)
j u2

i,j ◦ · · · ◦ ut
i,j ,

where
ri∑
j=1

|λ(i)
j | ≤ KG

√
r3t−8,
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and ∥ud
i,j∥∞ ≤ 1 for 2 ≤ d ≤ t. This gives a decomposition of T such that

T =

r∑
i=1

xi ◦

 ri∑
j=1

λ
(i)
j u2

i,j ◦ · · · ◦ ut
i,j

 =

r∑
i=1

ri∑
j=1

λ
(i)
j ∥xi∥∞

(
xi

∥xi∥∞

)
◦ u2

i,j ◦ · · · ◦ ut
i,j , (A.5)

where xi is the i-th column vector of X and

∥xi∥∞ ≤ ∥xi∥2 ≤ ∥X∥2,∞ ≤ r1/2.

Here we assume all xi ̸= 0 for i ∈ [r]. Otherwise, we can ignore the terms involving a zero vector. (A.5) gives a
decomposition of T into a linear combination of

∑r
i=1 ri many rank-1 tensors where each component vector has

ℓ∞-norm at most 1. Therefore by Lemma II.2 and the triangle inequality,

∥T∥± ≤
r∑

i=1

ri∑
j=1

|λ(i)
j |∥xi∥∞ ≤ r3/2KG

√
r3t−8 = KG

√
r3t−5.

E. Proof of Theorem II.4

Following every step in the proof of [16, Theorem 1.2], we have∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Te −
1

|E|
∑
e∈E

Te

∣∣∣∣∣∣ ≤ 2tnt/2λ2(H)

|E|
∥T∥±

holds for any tensor T . Now we apply this inequality to the tensor of squared residuals R := (T̂ − T ) ∗ (T̂ − T ).
Since we solve for T̂ with equality constraints, we have that Re = 0 for all e ∈ E. Thus, using Claim (4) in
Theorem II.1,

1

nt
∥T̂ − T∥2F =

∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Re

∣∣∣∣∣∣ (A.6)

≤2tnt/2λ2(H)

|E|
∥R∥± ≤ 2tnt/2λ2(H)

|E|
∥T̂ − T∥2± ≤ 2tnt/2λ2(H)

|E|

(
∥T̂∥± + ∥T∥±

)2
.

Since T̂ is the output of our optimization routine and T is feasible, ∥T̂∥± ≤ ∥T∥±. This leads to the final result.

F. Proof of Theorem II.6

Following the same steps in the proof of [16, Theorem 1.3],∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Te −
1

ndt−1

∑
e∈E

Te

∣∣∣∣∣∣ ≤ 2

2t−1∑
j=1

(2t− 3)λ

4d
= 2t−2(2t− 3)

λ

d
. (A.7)

Define R = (T̂ − T ) ∗ (T̂ − T ). Then we have

1

nt
∥T̂ − T∥2F =

∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Re

∣∣∣∣∣∣ ≤ 2t−2(2t− 3)
λ

d

(
∥T̂∥± + ∥T∥±

)2
≤ 2t(2t− 3)

λ

d
∥T∥2±. (A.8)
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G. Proof of Theorem III.1

We closely follow the proof of Theorem 3 in [21]. The proof here is modified by using Lemma II.3 to bound
the atomic norm (which improves the rank dependence by a factor of r) and applying bounds (A.6) and (A.8) to
replace the uniform random sampling assumption on E.

Let r± = supZ∈Sr(α,β) ∥Z∥±. As in the proof of Theorem 3 in [21], up to equation 3.14, for any E we obtain
that with probability greater than 1− 2|E|−1

1

|E|
∑
e∈E

Re ≤
128α

√
tn(2r± + 2)

β
√
|E|

(
α(e2 − 2) + 3 log2(|E|)

)
≤ Cα2t3/2

√
nr± log2(n)

β
√
|E|

,

where R = (T̂ − T ) ∗ (T̂ − T ) and C > 0 is an absolute constant. Adding and subtracting 1
nt

∑
e∈[n]t Re to the

left-hand side and rearranging, we have shown∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Re

∣∣∣∣∣∣ ≤ Cα2t3/2
√
nr± log2(n)

β
√
|E|

+

∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Re −
1

|E|
∑
e∈E

Re

∣∣∣∣∣∣ . (A.9)

Bounding the last term as in (A.6) gives∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Re

∣∣∣∣∣∣ ≤ Cα2t3/2
√
nr± log2(n)

β
√
|E|

+
2t+2nt/2λ2(H)r2±

|E|
,

which will establish (III.3). To prove (III.4), the additional assumptions imposed on H can be used to instead bound
the last term of (A.9) as in (A.8) and obtain∣∣∣∣∣∣ 1nt

∑
e∈[n]t

Re

∣∣∣∣∣∣ ≤ Cα2t3/2
√
nr± log2(n)

β
√
|E|

+ 2t(2t− 3)
λ

d
r2±.

The proof ends by using |E| = ndt−1 and applying Lemma II.3 to see that r± ≤ KGα
√
r3t−5.

H. Square loss experiments

Theorems II.4 and II.6 both concern constrained regression where the observations are fit exactly. However,
for noisy data, one can use a square loss and get similar bounds as in [16]. We tested the performance of three
least-squares tensor completion algorithms for varying spectral gaps. These differed in their regularization and
optimization routines, and we refer to the algorithms as “ridge,” “ridge projected,” and “max-quasinorm.” All of
these algorithms are implemented in the code provided at https://github.com/kamdh/max-qnorm-tensor-completion

The standard ridge and projected version of it consider a sum of squares penalty on the factor matrices∑t
i=1 ∥U (i)∥2F as in ridge regression. The ridge algorithm attempts to solve for

Ridge: min
T ′=U(1)◦···◦U(t)

∥P (T ′ − T )∥2F + ε

t∑
i=1

∥U (i)∥2F , (A.10)

where T ′ = U (1) ◦ · · · ◦ U (t) is the CP decomposition into factor matrices, and P is a projection operator that
zeroes out unobserved entries in the data tensor T . The optimization routine performs alternating minimization
over the factor matrices–coordinate descent–using the conjugate gradient method. This is one of the simpler tensor
completion algorithms that one could imagine.

The projected ridge method attempts to solve a constrained version of the ridge problem

min
T ′=U(1)◦···◦U(t)

t∑
i=1

∥U (i)∥2F s.t. ∥P (T ′ − T )∥F ≤ δ. (A.11)
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Fig. 3. Numerical experiments show that reconstruction error (y-axes, log scale for visualization) correlates with λ2(G) for three different
algorithms and varying graph degrees d =7, 15, 23. Coefficients of determination (R2, linear fit of error ∼ λ2 without log scaling to be consistent
with Fig. 2) are inlaid, and full regression reports are provided in the supplemental materials. In the sparsest sampling regime (d = 7), no
method performs well, and the correlation is less consistent. In the denser regimes, the algorithms perform better, although ridge exhibits very
high variance in error, while max-quasinorm and projected ridge are more consistent.

To deal with the hard constraint on the square residuals, we use an analogous relaxation and variable projection
technique as the max-quasinorm algorithm from [16]. This leads to the relaxed optimization problem

Ridge projected: min
T ′,R

t∑
i=1

∥U (i)∥2F +
κ

2
∥P (T ′ − T −R)∥2F + β∥R∥2F (A.12)

s.t. ∥R∥F ≤ δ,

where again T ′ = U (1) ◦ · · · ◦ U (t). The parameters we used are δ = 0.05
√

|E|, ε = 0.01, rfit = 10r, κ = 100,
β = 1, rebalance = True, init = ’svdrand’. Due to its intriguingly good performance (see below), we
plan to study this algorithm in more detail in a future work.

The final algorithm is the max-quasinorm algorithm studied in detail in [16]. This algorithm is the closest to
atomic norm minimization that we know of that’s also practical. Atomic norm minimization is challenging since it
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Fig. 4. Same as for Fig. 3 except cutting off the largest λ2 values and just depicting d = 15, 23. Numerical experiments show that reconstruction
error (y-axes, log scale for visualization) correlates with λ2(G) for three different algorithms and varying graph degrees. Coefficients of
determination (R2, linear fit of error ∼ λ2 without log scaling to be consistent with Fig. 2) are inlaid, and full regression reports are provided in
the supplemental materials. Here, the correlations are generally weaker except for the ridge projected algorithm, which has the best performance.

would require integer optimization. For completeness, the optimization problem is

Max-quasinorm: min
T ′,R

∥T∥max +
κ

2
∥P (T ′ − T −R)∥2F + β∥R∥2F (A.13)

s.t. ∥P (R)∥F ≤ δ.

The parameters for the max-quasinorm algorithm were δ = 0.05
√
|E|, ε = 0.01, rfit = 10r, κ = 100, β = 1,

rebalance = True, init = ’svdrand’.
The target tensors were size n = 100, order t = 3, rank r = 3, and their factors were generated from a uniform

distribution U [0, 1] and rescaled to have Hilbert-Schmidt norm
√
nt. After fitting T̂ , we measure generalization

error ∥T̂ − T∥F using the tensor Frobenius norm (root mean square error). Due to the normalization of the target
tensor, an error of 1 corresponds to 100% relative error.

We sampled the tensor entries using graph lifting, where a d-regular graph G is lifted into a hypergraph by the
t-path traversal method described in the main text. We start by taking the d-connected ring on n nodes, where
each node is connected to its d nearest neighbors with periodic boundary conditions. This is a deterministic graph
with eigenvalue λ2(G) ≈ d − 1 in experiments. In order to vary λ2(G), we pick edge pairs at random and swap
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Fig. 5. Results of Poisson tensor regression mean squared error for masks with varying λ2(H). A strong correlation is exhibited for target
tensor with rank r = 3.

their endpoints. These edge swaps preserve the degree distribution, but after many swaps, the graph distribution
approaches that of the d-regular random graph, which has λ2(G) ≈ 2

√
d− 1, approximately as small as possible.

We take d ∈ {7, 15, 23} to generate hypergraphs with varying proportions 0.5%, 2.3%, 5.3% of observed entries.
Besides the results shown in Figure 2 for d = 15 and just the max-quasinorm algorithm, we show supporting

results for other parameters and algorithms in Figure 3. These also show a significant correlation between λ2(G)
and the reconstruction error of the tensor for all cases except d = 7. In that case, there are too few observations
to correctly learn the tensor no matter the gap. We performed linear regression of error versus λ2. Coefficients of
determination are given in the plot, and the full regression reports are given in supplemental tables. Finally, Figure 4
shows the same data over a smaller range of λ2.

I. Poisson loss experiments

We used the Poisson max-likelihood algorithm from [21] with code provided by those authors. The algorithm
was run with its default parameters. The target tensors were size n = 100, order t = 3, and rank r = 3. Their
factors were generated randomly from the uniform distribution and rescaled so the resulting tensor had entries in
[1, 6].

The sampling was performed without graph lifting. We found that a regularly spaced “grid” tensor had a large
λ2(H), and that swapping grid entries with random entries caused the eigenvalue to decrease. To generate the grid
for a particular sampling fraction, we uniformly spaced ones in a length n3 linear array that gets reshaped into
an n × n × n array. To vary λ2(H), we then shuffle some fraction of those ones into random locations. In all
experiments, we observe 5% of the entries and shuffle between 10% and 100% of those grid points with random
locations.

To estimate λ2(H), we fit a rank-1 tensor R to (TH − |E|
nt J) using alternating least squares, so that R ≈

(TH − |E|
nt J). The Frobenius norm ∥R∥F gives an estimate of the second eigenvalue. Figure 5 shows how the mean

squared error 1
n3 ∥T̂ − T∥2F varies with λ2(H). Again, we see a strong positive correlation between error and the

eigenvalue.
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