
A Learning Details349

Hyperparameter CCN, real CCN, sim DiffSim, real DiffSim, sim
wcomp 0.001 0.001 N/A N/A
wdiss 0.1 0.1 N/A N/A
wpen 100 100 N/A N/A
wres 1 0.001 1000 1
wres, w 0.1 0 1 0

Table 2: Tuned hyperparameters. Rows for residual norm (wres) and weight (wres, w) regularization only apply
for -R variations. Real versus simulated experiments performed best with different residual regularization
weights since the simulations featured larger model-to-actual dynamics gaps.

A.1 Model-Based Parameter Learning350

For our CCN and CCN-R method, we performed a hyperparameter search to determine the most351

effective set of weights for balancing the loss terms in (5). See Table 2 for these sets of weights.352

A.2 Residual Network Architecture and Regularization353

The residual network featured in both CCN-R and DiffSim-R has the same architecture. The first354

layer takes in the full state of the system and converts the quaternion orientation representation into355

a 9-vector of the elements of the corresponding rotation matrix, letting the remaining state positions356

and velocities pass through to layer 2. Beyond the first layer, the network is a fully-connected multi-357

layer perceptron (MLP) with two hidden layers of size 128. The last layer outputs values in the358

acceleration space of the system. All activations are ReLU.359

We regularized the residual via both output norm regularization and weight regularization, with as-360

sociated weight hyperparameters wres and wres, w, respectively. See Table 2 for the optimal values.361

Since the simulation examples were specifically designed to test the capabilities of the residual net-362

work, we found the optimal weights for the residual terms were much lower for simulated examples363

than for the real data. We also note that the optimal residual weights were much higher for DiffSim364

than for CCN. This is a direct result from the DiffSim residual’s attempts to explain some of the365

contact dynamics, whose accelerations are orders of magnitude larger than the continuous accelera-366

tions. Our CCN method avoids this by better containing its residual in the continuous domain, and367

thus could use lower residual regularization weights.368

A.3 End-to-End Network Architecture369

The best performing network for the End-to-end baseline is an MLP with 4 hidden layers each of370

size 256 with Tanh activation. Its input is the full state of the system, and its output is the next371

velocity. The next configuration is obtained from predicted next velocity with an Euler step (6b).372

B Inertia Evaluation Metric Details373

A body’s set of inertial parameters is I = [m, px, py, pz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz]. Since true in-374

ertia parameter vectors feature values at wildly different scales, the vector s is selected to normalize375

I to more equally evaluate all inertial parameter errors. For example, the true inertial parameters for376

the simulated asymmetric object used in the vortex example are377

Iasym = [0.25, 0, 0, 0, 0.00081, 0.00081, 0.00081, 0, 0, 0] . (14)
Choosing 3.5cm as a reasonable center of mass location distance, the associated sasym normalizer is378

sasym =
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