A Notations

In this section, we define notations, many of which are standard, that are useful in the proofs.

We denote by N the set of all natural numbers, including 0, and by N* the set N without 0. We
denote by Z the set of all integers. For any a, b € Z, we denote by [a, b] the set of all integers k € Z
satisfying a < k < b. For any finite set A, we denote by | A| the cardinal of A.

For n, N € N*, we denote by R the N-dimensional real vector space and by R"*¥ the vector
space of real matrices with n lines and N columns. For a vector z = (z1,...,x N)T e RV, we
use the norm ||z||oc = max;eqi np [#]. For 2 € RY and r > 0, we denote B (z,1r) = {y €

For any vector z = (z1,...,zn5)7 € RY, we define sign(z) = (sign(x1),...,sign(zn))? €
{—1,0,1}" as the vector whose i** component is equal to

1 ifz; >0
sign(xz;) =<0  ifz; =0
-1 ifz; <0.

For any matrix M € R™*¥ foralli € [1,n], we denote by M, . the i line of M. The vector M; .
is a line vector whose j component is M; ;. Similarly, for j E [1, N], we denote by M. ; the ]‘h
column of M, which is the column vector whose i component is M; ;. For any matrix M € R”XN ,
we denote by M7 € RN *™ the transpose matrix of M.

We denote by Idy the N x N identity matrix and by 1 the vector (1,1,...,1)T € RN, If A € RY
is a vector of size N, for some N € N*, we denote by Diag(\) the N x N matrix defined by:

. A ifi=j
Dlag()\)m- = {0 J

otherwise.

If X and Y are two sets and h : X — Y is a function, for a subset A C Y, we denote by h~1(A) the
preimage of A under f, that is

h™'(A) = {x € X, h(x) € A}.
Note that this does not require the function h to be injective.

For any n, N € N* and any differentiable function f : R” — R, for all z € R", we denote by
D (x) its differential at the point z, i.e. the linear application D f(z) : R" — R¥ satisfying, for all
h € R",

flx+h)=f(x)+Df(x)-h+o(h).

If we denote by z; and h; the components of x and h, for j € [1, n], we have

h= Z@xj

where for all j, aaT’:(x) € RN If f : R™ — R is a linear application, we denote by Ker f the set
{x € R", f(x) = 0}, which is a linear subset of R™.

B The lifting operator ¢

Let us introduce the notion of ‘path’, extending the definition in Section A path is a sequence of
neurons (Vg, Vg1, --.,01) € Vi X Vi1 X -+ x V, for integers k, [ satisfying 0 < k <1 < L. In
particular, for all [ € [0, L — 1], the set P; defined in Section contains all the paths starting from
layer [ and ending in layer L — 1. We recall

P = (L_J 'Pl> U{B}

=0
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If k,I,m € N are three integers satisfying 0 < k < [ < m < L,and p = (vg,...,v-1) €
Vi x -+ xVi_yandp' = (vy,...,0m) € Vi X -+ X V;,, are two paths such that p ends in the layer
preceding the starting layer of p’, we define the union of the paths by

pUDP = (Vs oy 01,0, V) € Vi X o0 X Vi,
Before proving Proposition let us compare briefly our construction to [39]. The lifting operator ¢
introduced in Section|2.2|is similar to the operator ® in [39], except that ® does not take a matrix
form. The operator «(z, ) introduced in Sectioncorresponds partly to the object @(6, ) in
[39]. One of the differences is that @ (6, x) does not include any product with z,, in its entries, as

does a(x, 9). Finally, a similar statement to Propositionand a similar proof can be found in [39].
However, one of the present contributions is to simplify the construction.

Let us now prove Proposition which we restate here.
Proposition 13. Forall § € R x R and all x € R"?,

fo@)" = a(z,0)¢(0).
Proof. Let us prove first the following expression, for all vy, € Vp.:
L-1
fo(x)o, = ( Z Lo Weg—vy H Aoy (mie)wvz—M’LH)
vo€Vo =1

vL1€VEL_1

L—-1
(Z T (x,o)wvl,%l/+l> +by,. (15

= v EV] U=l
v 1€VE_1

We prove this by induction on the number L of layers of the network.

Initialization (L = 2). Let vy € V5.

(W2 Wlx + b1) b
( Z Wy, v, [0 (Wi + b1))],, ) + by,
v1€V]
( Z Wy, =00 I/Vl)v17 T+ bvl )) —+ bv2
v1€V]
= Z wUl_)UQaUl T, 0 ( Z Woyg—v1 Lug + bv1>> + bv2
v1E€V] voEVo

= Z w'ul—yuzavl (ZC, 0)"”1)0*)1]1 x’Uo + ( Z w’U14H)2 a’Ul ($7 9>bv1> + bvz

vo€ Vo v €EVY
%

= Z LvoWog—vy Aoy (.’ﬂ, a)w’Ul‘H& + ( Z b'Ul Ay, (iC, e)wm%Uz) + b7J2
vo€Vo v1 EVY
v1EVY

which proves (15), when L = 2.

Now let L > 3 and suppose holds for all ReLU networks with L — 1 layers. Let us consider a
network with L layers.
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Let us denote by gg(z) the output of the L — 1 first layers of the network pre-activation (before
applying the ReLUs of the layer L — 1). The function gy is that of a ReL.U network with L — 1 layers,
and we have

fo(z) = Wro(ge(z)) +br.
Let vz, € V. We thus have

fe(x)'UL = Z w'UL—l‘}'ULJ(ge(x)'UL—l) + by, - (16)

v -1€VL -1

By the induction hypothesis, forall v;,_1 € Vi,_1, go(2),, _, can be expressed with (I3). Considering

that o(g9(2)v, ,) = @u,_, (x,0)gs(x)y,_, and replacing go(z),, , by its expression using (13),
(16) becomes

L-2
f9 (x)'UL = Z Wop, 1= Qup_y (:U, 9) [( Z Lo Wog—vy H O, (:L’, o)wvz—le)

v 1€VL 1 vo €V =1

v —2€VE_o

L—2 L—2
+ <Z Z by, H vy (I70)wvz’—”’l’+1> +bu_y
=1

v EV] =l

+ va

v _2€VE_s

L—-2
= E Wop_y v, Gop 1 (2, 0)Tug Weg 0y H v, (T, )W, 50,

vo€ Vo =1

v 1€V 1

L-2 L—-2
+ Z wUL—l—)’ULa’UL71("I;70)bUz H av,/ (xae)wv,/—w,/_*_l
1

= v eV =l

vL_1€VL_1

+ < Z wULl"'ULa'ULl(:E79)bUL1> + va

v -1€VL-1

L—1
= g Lyo Wyg—svq H Ay, (xae)w’lll—)'ULJrl

voEVD =1

v 1€V 1

L-1 L-1
* <Z Z by, H Gy (xve)wvlzavl/_*_l) + by, ,
=1

v eV =l

vL1€VL_1

which proves holds for ReLU networks with L layers. This ends the induction, and we conclude
that holds for all ReLU networks.

We can now use this expression to prove Proposition The first sum in (15) is taken over all the
paths p = (vo,...,vr—1) € Po, and each summand can be written as

L—-1

L—1 L—1
Lo Wyg—vq H Gy, (1'7 a)wvl—le = <xvo H [ (xa 0)) (H ww—>w+1> = Otp(l‘, 0)¢p,1;L (0)
=1 =0

=1
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For all [ € [1,L — 1], the inner sum of the double sum in is taken over all the paths p =
(viy...,vr—1) € Py, and each summand can be written as

L-1 L—-1 L-1
bvz H a’Uz/ (x, ‘9)7~U1n/—>vz/+1 = <H aUz/ (1‘, 9)) <b'Ul H wvz/—wzurl) = ap(x’ 9)¢P71’L (0)

=l =l =l
And finally, we can also write
va = ap ($7 9)¢B,UL (9)

Joining all these sums and denoting ¢. ,,, (0) = (¢pv, (0))per € R”, we have

fo(@)o, =Y op(,0) 0, (0) = a(x,0)..0, (6),
pEP
so in other words,

fo(x)" = a(z,0)p(0).

We restate here and prove Proposition
Proposition 14. For all n € N*, for all X € R"*V°, the mapping
ax: RExRE — R"XP
0 — a(X,0)
appearing in (3) is piecewise-constant, with a finite number of pieces. Furthermore, the boundary of

each piece has Lebesgue measure zero. We call Ax the union of all the boundaries. The set Ax is
closed and has Lebesgue measure zero.

Proof. Let us first notice that for any ¢ € [1,n], forany ! € [1, L — 1],
(a’v (xi’ 9))1)€V1U"'U‘/171 € {O’ 1}V1UWUVZ71

takes at most 221 T +Ni—1 distinct values, so the mapping 6 — (a, (2", 0)) is piecewise

veEVIU---UV;_4
constant, with a finite number of pieces.

Leti € [1,n]. Let! € [1, L — 1] and v € V}. Recall the definition of f;_1, as given in Section
The function § — a,(z*, 0) takes only two values, 1 or 0, and its values are determined by the sign

of ,

> wesofioa (@) + by (17)

v eV

For all v/ € V;_4, the value of f;_;(z),, depends on #. On a piece P C R x RZ such that
(o (x,0)) ey, 18 constant, this dependence is polynomial. Thus, on P, the value of
is a polynomial function of 6, and since the coefficient applied to b, is equal to 1, the corresponding
polynomial is non constant. Since the values of a,(z*, #) are determined by the sign of , inside
P, the boundary between {6 € R x RZ a,(x%,0) = 0} and {# € R x R® a,(2%,0) = 1} is
included in the set of 6 for which equals 0. This piece of boundary is thus contained in a level
set of a non constant polynomial, whose Lebesgue measure is zero.

Since there is a finite number of pieces P, the Lebesgue measure of the boundary between {6 €
RZ x RE a,(z%,0) = 0} and {0 € RE x RB a,(%,0) = 1}, which is contained in the union of
the boundaries on all the pieces P, is thus equal to 0.

Since this is true for all [ € [1,L — 1] and all v € V;, the boundary of a piece over which
(av(a:’, 0))116‘,1U.”UV.L71 is constant also has Lebesgue measure zero.

Now since, for all ', the value of a(z’,0) only depends on (av(2’,0)) iy, ,
and since ax(f) is a matrix whose lines are the vectors a(x?,6), we can conclude that
. E B nxP
ax: RYx Re — }S( X, ) is piecewise-constant, with a finite number of pieces, and that
)
the boundary of each piece has Lebesgue measure zero.

A boundary is, by definition, closed. Finally, a finite union of closed sets with Lebesgue measure 0,
as A is, is closed and has Lebesgue measure 0. O
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For convenience, we introduce the two following notations. Let [ € [0, L]. For any I’ € [0, ] and

any pathpi = (Ul'7 e 7’[}[) e ‘/2, X oo X ‘/l» we denote
-1 .
6,, = A1li=g Woimves =0 (18)
S [Tty wo s iU 21,
where as a classic convention, an empty product is equal to 1. In particular, if [ = 0, for any
pi = (vo) € Vo, we have 0, = 1. For any path p, = (vj,...,vr) € V; X - X VL, we denote
L—1
Op, = H Wy, —vgy1s (19)
k=l

with again the convention that an empty product is equal to 1, soif [ = L, 0, = 1.

Some attention must be paid to the fact that for any I’ € [1, L], if we take p; in the case | = L and p,
in the case | = I, it is possible to have

pi:(vl’;"'avL):pm

but in that case we DO NOT have §,, = 6, , since 6,, = by Hf;ll, Woy, vy, and O, =
f;ll, Wy, -0y, - We will always denote the paths p; and p, with an 4 (as in ‘input’) or an o

(as in ‘output’) to clarify which definition is used.

When considering another parameterization 0 € RF x RP, we denote by épi and épo the correspond-
ing objects.

We establish different characterizations of the set S defined in Section[2.3]that will be useful in the
proofs. As mentioned in Section@ the subset of parameters (]RE x RP ) \ S is close to the notion

of ‘admissible’ parameter in [39], but is slightly larger since the condition we_,,, 7 0 is replaced by
(We—sw, by) # (0,0), for each hidden neuron v.

Proposition 15. Let § € RE x RB. The following statements are equivalent.
i) 0 € (RE x RP)\S.

ii) Foralll € [1,L—1] and all v; € V}, there existl' € [0,1], apathp; = (v, ...,v) € Vi x---xV]
and a path p, = (v, ...,vr) € Vi X -+ x VI, such that

Op, #0 and 6, #0.

iii) Foralll € [1,L — 1] and allv; € V}, there existl' € [0,1], apathp = (vy,..., v, ..., v_1) €
Py and vy, € Vi, such that
Pp,o. (0) # 0.

Proof. Let us show successively that i) = 4i), i4) = 4i7) and iii) = 7).
i) — i) Letd € (R” x RB)\S. Let us show i) holds.

Let! € [1,L] and v; € V,. To form a path p; satisfying the condition, we follow the proce-
dure:
pi < (1)
k<1
while k¥ > 1 and b, = 0 do
Fug_1 € Vi1, Wey_y 0, 0
Di < (Vk—1,Di)
k+—Fk—-1
end while
U+ k

The existence of vg_; in the loop is guaranteed by the fact that § ¢ S and b, = 0 in the condition
of the while loop. In the end, we obtain a path p; = (vy, ..., v;) with either I’ > 0 and by # 0, or
" = 0. In both cases, we have by construction

6,, # 0.

We do similarly the other way to form a path p, = (v, ..., vr). We follow the procedure:
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Po < (v1)

k<1

while k < L — 1do
3’Uk-‘rl € Vk+1aka—)vk+1 # 0
Do < (po»karl)
k+—k+1

end while

The existence of vy in the loop is guaranteed by the fact that € S. In the end, we obtain a path
Do = (v, ..., vr) satisfying by construction

0p, # 0.
1) —4ii) Letl € [1,L — 1] and v; € V. There exist I’ € [0,1], a path p; = (vpr,...,v) €
Vir x -+ x Vyand a path p, = (v, ...,vp) € V; X -+ x Vf, such that
0,, 70 and 6, #0.
Denoting p = (v, ...,v;,...,v5-1), we have

Pp,o, (0) = 0p,0p, # 0.

i4i) — i) Let us show the contrapositive: let # € .S, and let us show the statement ¢44) is not true.
Indeed, if @ € S, there exist [ € [1, L —1] and v; € V; such that (we_,, by, ) = (0,0) or wy, e = 0.

Consider a path p = (vp,...,v;,...,v5—1) and vy, € V. We have
: !/
_ bvl/wvl/—>’ul/+l e wvlfl—)vlwvl—>vl+1 e va,1—>’UL lfl 2 1
¢P;UL( )_ fl/_O
w’l}g*}’vl e wvl_lﬁmwvlﬂvz_'_l e w’L)L_lﬁ’UL 1 - Y-

If (We—su;» by, ) = (0,0), either I’ = land b,,, = 050 ¢y, () = 0,0rl" < landsince wy,_, 4, =0,
we have ¢, ., () = 0.

If ey, e = 0, Wy 50, ; = 050 @p o, () = 0. Thus i74) is not satisfied. O

We restate and prove Proposition
Proposition 16. For all 0,0 € RE x RB, we have

080 —  ¢(0) = (D),

and thus in particular

0~0 = ¢6)=o(0).

Proof. Let 0,0 € RE x RB such that § £ 0. There exists a family (A, ..., AL) € (R*)% x .- x
(R*)Vz, with 20— 1y, and AL = 1y, , such that for all [ € [1, L], for all (vl 1,0) € Vi_1 % V, (6)
holds. We consider first a path p = (v, ...,vr_1) € Py and v, € V. Using (6) and the fact that
M), = AL =1, wehave

L Loy \L L )
v, -~ v
G, (0) = val—l_)vl = H lfl1 Woy_y—vy = L vaz 1—o = Ppu (0).
=1 )"“lfl ”0 =1

Similarly, forl € [1,L — 11] and a pathp = (v,...,vp—1) € P, and for all v;, € VL, we have,
using (6) and the fact that A’

L %
1 7 vy ~ L 1 7y
¢p,vL = by, H Wy _y—vpy = )\vlb H )\lzi_llwvl/fl—wl/ = >\1)L vy H Wy _ =y
U=l+1 U=l+1 "V -1 U=l+1
= d)PJJL (0)
Finally, for p = 8 and vy, € V7, we have
(bPﬂJL (9) = b'UL = )‘5L va = b'UL = ¢P,UL (9)
This shows ¢(6) = ¢(6).
For the second implication, we simply use the fact that if § ~ 0, in particular, 6 2. O
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Corollary 17. The set (RE x RB ) \/S is stable by rescaling equivalence: if § € (RE X RB) \S,
and § € RF x RP satisfies 6§ = 0, then § € (RF x RP)\S.

Proof. Let 8 € (RE X RB) \\S and f € RE x RB such that § £ 4. Propositionshows that
() = $(6).

Let! € [1,L] and v € V. Since # € (R¥ x RP)\S, according to Proposition|15|there exists
" €0,1],apathp = (v, ..., v, ...,vp—1) and vg, € V7, such that ¢, ,,, (0) # 0. We have

d)pﬂJL (é) = ¢P,UL (9) 7é 01
and since this is true for any [ € [1, L] and v € V;, Proposition|15[shows that § € (RE x RP)\S.
O

We restate and prove Proposition
Proposition 18. Forall 0 € (RF x RP)\S, for all € RF x R,

o) =0() = 024

Proof. Let us choose (A°,...,\F) € (R*)Y x ... x (R*)V as follows. Foralll € [1,L — 1]
and all v; € V;, since § € (R x RP)\S, Proposition|15|shows that there exists a path p,(v;) =
(vi,...,vg) € Vi x ++- x V, such that 6, (,,) # 0. Let us define \° = 1y, A¥ = 1, and for all
lel,L-1],

_ Op, (v1)

l
’Ul_e

Po(vi)
The value of /\ﬁjl a priori depends on the choice of the path p,(v;), but the first of the two following
facts, that we are going to prove, shows it only depends on vy, since in (20), p; does not depend on
Po (Ul)-
e For all I € [0,L], for all vy € Vj, for any I’ € [0,l] and any p; = (vy,...,v) €
Vir - x W,
.
Op, = Ay, Op; - (20)

. !
Foralll € [0, L], forall v; € Vi, A, # 0.

Indeed, let [ € [[0,L] and let us consider I’ € [0,!] and a path p; = (vy,...,v;) € Vi x
- x Vi. Let vj41,...,v, € Vigq1 X -+ x Vi, such that p,(v;) = (v, vi41,...,v5). Let
p=(vy,...,v...,05-1) € P sothat p; Up,(v;) = pU (v,). We have by hypothesis

opiepo(vl) = ‘bp,u (0) = ¢p,vL (é) = épi épo(vl)’
thus

b, o -
Po L)Gpi :Al 0

vy Pio
9;’70(”1)

which proves the first point. To prove the second point, we simply use Proposition to consider a
path p; such that §,,, # 0, and shows that XL, # 0.

Let us now prove the rescaling equivalence. Let [ € [1, L], and let (v;_1,v;) € V;—1 x V]. Let us

0171 =

consider, thanks to Proposition(15} I’ € [0, — 1] and a path p; = (vyr, ..., vi—1) € Vi X --- x Vi1

such that 6, # 0. The relation (20) shows we also have 8, # 0. Let p; = p; U (v;). Using (20) with

0,, we have
k3
_ A\l g _\l g .~
apiw’l/l—l*ﬂ)l = 0]0;, - )‘vlepé - )‘vlepiwvl—1ﬂﬂz'

At the same time, using (20) with §,,, we have,

_ -1
epiwvl—l‘)'ul =A — epiwvl—lg’vl’



so combining both equalities, we have

l ~ _\!-15
)‘uzapiwvz,q%vl =A — epiwvzq%vz'

Using the fact that 6, # 0 and AL £ 0, we finally obtain, for all I € [1, L] and all (v;—1,v;) €
Vici x Vi

!
o
Ao,

Foralll € [1, L] and all v; € V}, using with p; = (v;), we obtain

wvl_lﬁvl = wvl_lﬂvl'

by, = AL by,
This shows that @ is satisfied for all (v;—1,v;) € Vi—1 x V], and thus 2 7 O

The following proposition is useful in the proof of Theorem and allows to improve identifiability
modulo rescaling into identifiability modulo positive rescaling.

Proposition 19. For all 0 € (R x RP)\S, there exists ¢ > 0 such that for all § € RF x R,

10 =0)los <eand0 26 = 0~4.
Proof. Let 0 € (R¥ x RP)\S. We define
€ = min <{|wv_w/|, v— v € Eand wy_y #0} U {|by], v€ Bandb, # 0})

Let € RP x R such that [|§ — 6]loc < € and 0 L 9. To prove 6 ~ 6, we simply have to
prove sign(f) = sign(f). There exists (\?, ..., A\F) € (R*)"0 x --- x (R*)VE, with \° = 1y, and
L =1y, such that, for all | € [1, L], for all (v;_1,v;) € Vj_1 X Vi, @ holds. Let us show that

sign(6) = sign().
Indeed, let ! € [1, L], and let (v,v") € Vi_1 X Vj. If Wy, # 0, then since |wy—yyr — Wy—yor | < €
and by definition € < |wq, |, we have sign(wy—, ) = sign(Wy—, ). Otherwise, if wy_,» = 0,
shows that we have

~ )\lfl

Wy —p! = ;f/wv%v’ =0,
so we still have sign(wy—, ) = sign(Wy—y).
Now let I € [1,L] and let v € V. Similarly, if b, # 0, we have |b, — I~)U| < e < |byl, so

sign(b,) = sign(b, ), and if b, = 0, we have

so again sign (b, ) = sign(b,).

)
This shows sign(6) = sign(6), so 6 ~ 6. O

C The smooth manifold structure of >}

In this section, we prove Theorem which is restated as Theorem Before doing so, we establish
intermediary results, some of which are evoked in Section

Let us discuss the cardinal of Fy defined in Section The set Fj is obtained by removing the edges
of the form v — s% . (v) forv € V3 U---UVy_;. Note that we do not remove the edges of the form
v — 5% (v) forv € Vp. Foralll € [1, L — 1], there are precisely N; edges of the form (v, s% . (v))
with v € V], so
|Fo| = |E] = (N1 + -+ + Np1)
=NoN1+---+Np_1Np,—Ny—---—Np_1.
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As a consequence, since |B| = Ny + - - - + N, we have in particular
|Fo| +|B| = NoN1+ -+ Np_1Np =Ny —+++=Np_1+ Ny +---+ N
= NoN1+---+ Nr_1Np + Np. 2D
The following proposition is a first step towards Proposition which states that 1/? is a homeomor-

phism.
Proposition 20. Forall 0 € (RF x RB)\S, the function ° : Uy — RP*VL is injective.

Proof. Let 7,7 € Up such that ¢?(7) = (). Let us show 7 = 7. We have ¢(pg(7)) = é(pa (7))
and by definition of Uy, pg(7) € (RE x R ) \\S, so by Proposition we have the rescaling
equivalence

R .
po(T) ~ po(T).

By definition of the rescaling equivalence, in its formulation @, there exists (A\°, ..., AF) € (R*)Vo x

<oox (R*)VE, with A® = 1y, and A = 1y, , such that, for alll € [1, L], forall (v;—1,v;) € Vi1 x V],

Ay -
{p9(7>vll~>vl = W[M(T)vl,l%m 22)

by, = AL, by,
Letl € [2,L] and letv;_; € Vi_;. Letv; = s% . (v;_1). According to we have

UM ~
o = TP

max

But since v; = 5%, (v;_1) and v;_; € Vi_y with[ — 1 € [1,L — 1], we have v;_; — v; € E\Fp,
so by definition of py in

9
pe(T)'Ul—lg"Ul = Wy = pe(%)vl—lg’vl 7é 0,

(A,

SO = +— = 1.
X 1)11171

We have shown that for all [ € [2, L], for all v;_; € V,_1, there exists v; € V; such that
Aoy = (.
As a consequence, if [ is such that ' = 1y, then \'=1 =1y, .
Starting from A = 1y, , this shows by induction that for all [ € [1, L],
MN=1y,.
By hypothesis we also have A\’ = 1y, . Using , this shows that
po(T) = po(7).
The injectivity of py allows us to conclude that
T=T.
O
The following proposition shows, as mentioned in Section that 1/ is a homeomorphism. This is a
necessary step to prove that (Vg, (%) ™!)gere «re)\ s is an atlas of 3.
Proposition 21. Forall 0 € (RE x RE ) \S, ¥ is a homeomorphism from Uy onto its image V.
Proof. We already know from Proposition [20|that ¢/? is injective, so we need to prove that ¢ is

continuous and its inverse is continuous. The function py is affine and ¢ is a polynomial function, so
the function ¥ = ¢ o pg is a polynomial function, and in particular it is continuous.

To prove that (1)%)~! is continuous, we consider a sequence (7,,) taking values in Up and 7 € Uy
such that ¥ (7,,) — (1), and we want to show that 7,, — 7.
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Let us first show that for all v € B, (7,,),, — 7, Indeed, let ! € [1, L] and let v; € V], so that v; is
an arbitrary element of B. Let us define v; 1 = s% . (v;), then v;yo = s% __ (v;41) and so on up to
v, = 8% (vp_1). Since forall I’ € [I, L — 1], vy 41 = s% . (v, by definition of Fj and py (see
(8) and (9)), we have

Po (Tn)vl/ vy = Wop—up s (23)
and

P0(T vy =iy = Wop—vy - (24)
In particular, since § ¢ S, for all I’ € [I, L — 1] we have w,, s # 0, so by definition of s/ .,
Wy~ = 0. We thus have

Wy sy -+ Wop vy 7 0. (25)

If we denote p = (v, ...,vr_1), we have, using the definition of ¢ and @)

6
D,UL (Tn) = (Tn)vl Wy —vpqq -+ - Wop 1oy,

and using (24),

Using and the fact that

¢§,UL (T) = (T)Ulwvz—>711+1 < Wop oy —op-

¥ () = 0¥ (1),
we conclude that
(Tn)v, = To,-

Let us now prove that for all (v,v’) € E, (7,)y—v — Tv—w. Let us show by inductionon ! € [1, L]

the following hypothesis
VZ/ S [[17 l]]v V('U7 ’Ul) € (‘/2’71 X W’) N F97 (Tn)v%v’ — Ty—v'- (Hl)

Initialization. Let (vg,v1) € (Vo x V1) N Fy. We define v = 52 _(v;), then we define vg =
8% . (v2),and soonup to vy, = s% . (vr_1). Letp = (vg,...,vr_1) € P.

As above, using the definition of pg, Fy and ¢, we have

¢gﬂ,L () = (Tn)vo—>v1 Wy, —vg -+ - Wy vy

and )
T/J;WL (7) = (T)vo—sv1 Wor =05 - - - Wop,_y sy,

and since 6 ¢ .S, we also have , as above,

wvlﬁvz "'w’ULflﬁ’UL #O' (26)

Since
W0 (1n) — (1)
we conclude using that
(Tn)vo—v1 = Tug—vs -
We have shown H.

Induction step. Let [ € [2, L] and let us assume that H;_; holds.

Let (vi_1,v;) € (Vie1 x Vi) N Fp. We define vj11 = s% . (v1), 142 = 8%, (v141), and so on up to
v, = 8% . (vp—1). Let us denote p, = (v, ..., vr). Recalling the notation defined in (19), we have

po(Tn)p, = Wy w4+« - Wop 1= = PO (T)p, # 0. 27

At the same time, since 7 € Uy, Proposition shows there exist I’ € [0,/ — 1] and a path
pi = (Ul', s, V-2, Ul—1) such that
po(T)p, # 0. (28)

If I’ > 1, we have shown in the first part of the proof that (7,,),,, — 7,,,. Moreover, whatever the
value of I’ is, for k € [I,1 — 2], if (v, vk41) € E\Fy,

p9(7n>vkavk+1 - ka%karl = p9(7->1)k4)1)k+17
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and if (vg, vg41) € Fy, according to H;_1,

po(Tn)'Uk‘”fk+1 = (Tn)vkﬁvkﬂ 7 Topg—vgr1 — pG(T)Uk‘}Ukﬁ»l'

We therefore have

Po (Tn)pi — Po (T)Piv (29)
and in particular, since pg(7),, # 0, there exists ng € N such that for all n > ng,
po(Tn)p; # 0. (30)

We can write

¢z,w, (7n) = po(Tn)p: (Tn)v_1—v, PO(Tn)p,
and
g,’UL (T) = p9<7_):07‘, (T)'Ul—l—VUl p9(T)Po’

so using (27), (30) and (29), we have

zﬂ)L (Tn) f),vL (T)
Po (Tn)piPO (Tn)po Po (T)pqz Po (T)po
We have shown H;, which concludes the induction step.
In particular, H, is satisfied, and finally 7,, — 7.
This shows that 1/? is a homeomophism. O

The following lemma is necessary for the proof of Proposition

Lemma 22. Let§ € (R¥ x RP)\S. Let (v,v') € E (resp. v € B). If wy_.y # 0 (resp. b, # 0),
then there exists ¢ > 0 such that for all § € RE x RB, if lo(6) — gb(é)Hoo < €, then Wy_ # 0
(resp. 1~)U #0).

Proof. Let 0 € (RF x RP)\S and (v,v’) € E such that w,_,,» # 0. Denote | € [0, L — 1] such
that v € V;. If | = 0, we take p; = (v) so that by convention 8,,, = 1 # 0, and if [ > 1, we use
Propositionwhich states that there exists I’ € [0,] — 1] and a path p; = (vp, ..., v—2,v) such
that 8, # 0. Similarly, if | = L — 1, we take p, = (v’) so that by convention §,, = 1 # 0 and if
Il <L —1,weuse Propositionwhich states that there exists a path p, = (v/,v;41,...,vr) such
that 8, # 0. If we denote

, .
(v, V142, ..., VL—1) ifl=0
p=2< (vy,...,0_1,0,0") ifl=L—-1
, .
(vpy .oy, 01—1,0,0" ,U149,...,v,—1) otherwise,

we have
Gp,vr. (0) = Op,wys0rOp, # 0.
We define € = |¢,.,, (8)| > 0. Forall § € RF x R” such that ||¢(0) — ¢(6) ]|~ < € we have

PpvL (é) # 0.
Since ¢p.v, (8) = 0, Wy, , this implies in particular that
Wy—ser # 0.
The proof is similar in the case v € B and b, # 0. O

The following proposition, which states that for any 6 € (R x RP)\S, Vy = ¢?(Up) is open with
respect to the topology induced on X% by the standard topology of R”*VZ | is necessary to show that
(Vg, (¢0)_1)96(RE xRB)\ S is an atlas of X7.

Proposition 23. For any 0 € (RE X RB) \'S, for any T € Uy, there exists € > 0 such that

YN Boo (40 (1),€) C Vp.
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Proof. Let us first construct € and then consider an element of the set on the left of the inclusion and
prove it belongs to Vy. Let § € (R¥ x RP)\S and 7 € Uy. Forall [ € [1, L — 1], forall v € V;, by
definition of Fy and py, we have pg(7)y_ss0  (v) = Wy_ss0  (v), and since ¢ ¢ S, by definition of

max Wt
0

max’

s Wy_ys0 () 7 0,50 according to Lemma there exists €, > 0 such that for all @ € RE x RB,

16(ps(7)) = d(O)lloc < €6 = Wyssn,, ) #O-

Let € = min,ev, ..UV, _, €o-

Let us now show the inclusion: let § € (R x RP)\S such that [|¢(ps(7)) — #(0)]oc < € and
let us show that qﬁ(é) € Vj. Notice first that for all [ € [1,L — 1] and v € V}, by definition of ¢,

Wy 0 () 7 0and W, _, .0 () # 0. We are going to define 7 € Uy such that py(7) £ 8, so that

using P;roposition PO (F) = ¢(h).

Let us define recursively a family (\°, ... AF) € (R*)Y0 x --. x (R*)"Z as follows:

* we define \' = 1y, ;

e foralll € [1,L — 1], for all v € V], we define

Wo—s8 (v) y141
Ago

sY (v)°
Wy—ss0 () fhax (V)

X, = 31)

* we define finally \° = 1y,.

Note that for all [ € [0, L] and for all v € V}, AL, # 0. Also note that for all I € [2, L], for all
v € Vj_1, reformulating (31)) in a way that will be useful later, we have

AL,

Gax(®) _ Woorsh (v)
T . (32)

v V500 (V)

We then define 7 € R x RE by:
e foralll € [1, L], for all (v,v") € (Vi1 x V}) N Fy,
AL,
7~—v—>v/ = ﬁﬁ}v—m’; (33)
o foralll € [1, L], forallv € V,

7y = ALby. (34)

Let us show pg(7) £ 0. Indeed, let | € [1,L] and let (v,v') € Vi3 x V. If v € Vhorov €
ViU---UVy_gand v’ # s%  (v), then by definition (8) of Fp, we have v — v’ € Fy, so using @
and we have
- . AL,
Po(T)v—svr = Ty = )\lzl Wy—v’- (35)
v

IfveViu---uUVy_gand v’ = %, (v), then by definition (8) of Iy, we have v — v € E\Fp,
and since in that case, [ > 2, using and (32), we see that

- A,
pH(T)vﬁv’ = Wy—ov' = Tilwv%v“ (36)
If v € B, using @) and , we have
po(Flo = To = Abby. 37)



Using Corollary | since 0 € (RE x RP)\ S and py(7) £ 6, we also have po(7) € (RF x RF)\S.
Since, by definition, Uy = p; " ((RF x RF)\S), we have 7 € Up. We have shown

YN By (WP (1),€) C Vp.
O

The following proposition is necessary in order to show that (Vj, (7,/19)*1)96(]1{5 «RB)\ g is an atlas of
PO

Proposition 24. Forall § € (R¥ x RP)\S, the function 4 is C*° and its differential Dy? (7) is
injective for all T € Uy.

Proof. Letf € (RE x RB ) \S. First of all, ¢ is a polynomial function as a composition of ¢ and
pe which are both polynomial functions. So, ¢ is C°.

In order to show the injectivity of the differential D¢ (7) for all 7 € Uy, let us compute the partial

derivatives of wp v, (7). Let p € P and vy, € V. Using the definition of 1% and ¢, three cases are
possible.

Case 1. The path p is of the form (vg, v1,...,vr—1). We have
b0 (T) = P0(T) g1 -+ PO(T)or 1 —vor
Case 2. The path p is of the form (v, ...,vp—1) with I € [1, L — 1]. We have, for all T € Uy,
pos (T) = T0p0(T) v iy - P0(T)up 1 v -
Case 3. For p = 3, we have, for all T € Up,
z,vL (T) = Ty,

) 6
Let (v,v") € Fy, and let us compute L8 = (7).

6 ’U—)’U

Case 1. We have p = (v, ...,vr—1) € Po. If {v,v'} C {vo,...,vr}, there exists | € [0, L — 1]
such that (v,v") = (vl, vi41), in which case, since (v,v") € Fy, pg(T)v, 0,01 = Toy—visn

and )
oy,
ﬁ(T) = H pe(T)Uk_)vk+1' (38)
v ke[0,L—1]
kL
Otherwise if {v,v'} ¢ {vo,...,vL},
o 6
i — 2L (1) = 0.
aTU—M)’

Case 2. We have p = (vy,...,vp_1) € P, forl € [1,L —1]. If {v,v'} C {v,...,vL}, there
exists I’ € [I, L — 1] such that (v,v") = (v, vy 41), in which case, since (v,v") € Fp,
pG(T)’Ul/—)’Ul/+1 = T’Ul/—>’l)l/+1 and

6
(9’1/)10’1%

or , (T) = Ty H Po (T)vk—wk+1' (39)
v kefl,L—1]
k£l
Otherwise if {v,v'} & {v;,..., v},
ol oL
— =0.
aTv—w’ T)
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Case 3. We have p = (3. In that case, we have

0
a/lszﬂ)L T — O
aTv%v’
oy .y
Now let v € B, and let us compute —="% (7).
Case 1. We have p = (vg,...,vr—1) € Py and
o 6
p,vL
—_— =0.
0Ty (7)

Case 2. We have p = (vy,...,vp—1) € P forl € [1,L — 1]. If v = vy, then
ol

#(7—) = H Po (T)Uk—>vk+1 .
v kefi,L—1]
If v # vy, ,
awp vL
. =0.
ITy (7)

Case 3. We have p = ( and
ol . (r) = 1 ifv=wvg
0Ty |0 ifv # g

Now that we know the partial derivatives, let us show D1?(7) is injective for all 7 € Up. Let T € Uy
and let h € RF? x R such that

DO (r)-h =0.
We need to prove that i = 0.

Let us show first that forall v € B, h,, = 0. Letl € [1, L—1], and let v; € V] so that v; is arbitrary in

B\Vy. Let us define v; 11 = 5%, (v;), then v; 1o = 5% . (v;11),and soonup to vy, = 5% . (vy_1).

Let us denote p = (v;,...,vr—1). We have

g,vL (T) = Ty, Wy, —vpqq -+ - Wop_y—vps
SO 0
0
0
[DdJ (T) ’ h]p,vL = ai:)L (T)hvl = wvzﬂﬂz-u <o Wop =g h'Ul'
[

Since [Dyf(T) - h,,, =0and wy sy, ... Wy, 4y, 7 0, we conclude that hy, = 0. Now let
vy, € V. We consider p = 8 and we have

[DYP(T) - h] . =hy,.

b,vL

Since [Dy?(7) - h = 0, we also conclude in that case that h,, = 0.

p,vL
Let us now show that for all (v,v') € Fy, hyy = 0. Letl € [1,L] and let (v;_1,v;) €
(Vi1 x V) N Fy so that (v;_1,v;) is arbitrary in Fy. If [ = 1, we define p; = (v;—1) and we
have by convention 6,, = 1 # 0. If [ > 1, using Propositionthere exist I’ € [0,! — 1] and

apath p; = (vy,...,v_1) such that pg(7),, # 0. If | < L, we define v;1 = s%_ (v;), then
vipo = 8% (viy1),andsoonuptovr = s?  (vr_1),and we denote p = p; U (v;_1, v, ..., v _1).
If | = L, we denote p = p;. Let us show the following expression.
awe v
[Dy?(r)-h] = Z L (7) RSy (40)
pvL Tvkﬁ'uk_'_l

ke[l 1—1]
(vk,vi4+1)€EFp
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Indeed, if I’ > 1, we have

-1 L-1

0 _

DL (7-) - 7—1)1/ H Pe(T)uk—mk“ H ka—>vk+17
k=l k=l

with the classical convention that if [ = L, the product on the right is empty thus equal to 1. We thus
have

e, oy .
[Dwe (7_) ' h] = Pk (T)hvl/ + Z ¢(T)hvk—>vk+l
pvL 87—’0 ’ T’Uk—VUk 1
! ke[l 1—-1] +
(vk,vr+1)EF0
o 0
- Z % (7)o, —Vk419
ke[l i—1]  URTURHL
(vk,vr+1)EFg
since we have already shown that /,,, = 0.
If I’ = 0, we have
-1 L-1
wg,vL (T) = H pe(T)Uk‘)Uk+l H Wy —vg41>
k=0 k=l
with the same convention that when | = L the product on the right is equal to 1, so again
ol
0 _ p,vL
[D,l/) (T) ’ h} poL Z (‘37'%—>vk+1 (T)hvk_}vwﬂ '

ke[o,1-1]
(vk,vk+1)EF

This concludes the proof of {40).
We can now show by induction the following statement, for [ € [0, L].
Vi' € [L,1], V(v,v") € (Vir—1 x Vir) N Fy, hy_yr = 0. (Hp)

Since [1,0] = 0, Hy is trivially true. Now let [ € [1, L] and suppose H;_; is true. We consider
(vi—1,v;) € (Vi1 X V}) N Fy,and I’ € [0,1], p; and p just as before. Since for all k € [0, — 2], the
induction hypothesis guarantees that h,, ., , = 0, (40) becomes

81/}9 vL
- (T)hvl—lﬁvz'

I
pvL aTvl,l—ml

[Dy?(7) - h]

Using and (39), we obtain

. ... h ifl <L
D 0 . _ pG(T)Pzwvzﬁvl-H Wy, —vp o=
[ (G (7') h]p,vL {pQ(T)pihvzl—wz ifl=1L.

Since pg(7)p, # 0, and for I < L, Wy, a4, - - - W, _, v, 7 0, we conclude that h,,_, ., = 0 and
that H; holds.

This induction leads to the conclusion that b = 0 and Dy’ (7) is injective. O

We are now equipped to prove Theorem which we restate here.
Theorem 25. X! is a smooth manifold of RP*VE of dimension

|Fy| 4+ |B] = NoN1 + NyNo +---+ N1 N + Np,
and the family (Vy, (we)’l)ee(RExRB)\S is an atlas.

Proof. Our goal is to show that the family (Vs, (%) !)ge e xr5)\ 5 is @ smooth atlas, which will
show that 3] is a smooth manifold.

We already know from Proposition |23|that for any 6 € (RE x RB ) \\S, Vj is an open subset of
¥ and from Proposition [21|that (4)*)~! is a homeomorphism from Vj onto Uy. Since for any
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Figure 3: The points 79, 7, 71 and the inverse charts )¢ and 1/)5.

0 € (RE x RP)\S, 7y € Uy, we have ¢(0) = ¢?(74) € Vy which shows that (Vy)ge(re xre)\ s
covers Xj.

Let 6, e (]RE x RB ) \ S, let us show that the transition map

@) oy W) VeV — ()N (Ve NVp)
is smooth.

Let 79 € Uy such that 79 € (zbé)*l(Vg N V). We are going to show that the function (%) =1 o ¢ is
C*®° in a neighborhood of 7.

For ease of reading, let us denote 1/15(70) by ng. By definition, n9 € Vy N Vj. In particular, since
no € Vi, we can define 7, = (¥%)~1(19). See Figure for a representation.

Let T = Im Dv?(7;), and let us consider a linear subspace G such that T & G = RP*VE, Let
N¢ = |P|Np — |Fy| — |B| = dim(G). Let i : R¥¢ — G be linear and invertible. Let us consider
the function

wp: Ug x RNe 5 RPxW

(r,2) = () +i(x).
We are going to show that there exist an open neighborhood U of (71,0) in (RFe x RB) x RNe
and an open neighborhood V' of 7y in RP*VZ such that g is a C™ diffeomorphism from U onto V/
satisfying
gag( [(RF? x RP) x {0}N¢] n f]) =NV,

Let us first show that g is a C'°°-diffeomorphism from a neighborhood of (71,0) in (R¥? x RZ) x
RN¢ onto a neighborhood of 79 in R”*VZ. As shown in Proposition _ Y is O and i is a
linear function, so ¢y is C™°. Let us prove that the differential Dy (71, 0) is injective. For all
(r,2) € (R x RF) x RNe,

Dgy(11,0) - (1,2) = DY/ (11) - 7 + i(x).
Since Dy (1) -7 € T, i(x) € G, and T and G are in direct sum, if Dy(71,0) - (7,g) = 0, then

we have
Dyl (m)-1=0
i(z) =0.
Since as shown in Proposition Dz/;e (71) is injective, and since i is invertible, we have

(r,2) = (0,0).
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Hence, Dgg(71,0) is injective. Since dim((RF? x RP) x RN¢) = |Fy| + |B| + N¢ = |P|Ny,
the differential Dy (71, 0) is bijective. Using the inverse function theorem, there exists an open
set U C Uy x RN¢ containing (71, 0), an open set V' C RP*VZ containing 7y such that ¢y is a
C*°-diffeomorphism from U onto V.

We have
¢9<[(RF9><RB)><{O}NC]0U) c VNV

In fact, if V' is small enough, this inclusion is an equality. We are going to construct open subsets
U CcUandV C V so that it is the case. Let us define

O = {7 €Uy, (1,0) € U}.

Since U is an open set containing (71, 0), O is an open set containing 71 = (/?)71(ng). Since,
according to Proposition % is a homeomorphism, /% (O) is an open subset of Vj so there exists
€ > 0 such that

Vo N Buo(mo,€) € 47(0). (@1)
We can now define V =V N By (10, €), and U = {(7,2) € U, (7, x) € V'}, which are open sets
such that (71,0) € U, ng € V, and @y is a C°°-diffeomorphism from U onto V. Let us show that

509( [(RF* x RP) x {0}N¢] n U) =V,nV. (42)

The direct inclusion is immediate: if (7,0) € [(RF® x RP) x {0}¥¢] N U, then
wo(1,0) =P (1) € Vo NV,

For the reciprocal inclusion, if 7 € Uy is such that ¢9(7’) eVon ‘N/, then by definition of € and V,
guarantees, since ¥ is injective, that 7 € O. By definition of O, we have (7, 0) € U, and since

wo(,0) = (1) €V,
this shows (7,0) € U. This shows the reciprocal inclusion, and thus {42) holds.

Let us now define
Py: R x RE xRNe — R xRE
(r,x) — 7T

the restriction to the first component, and let us observe that over Vy N f/, we have

Pyo(pg) "t = (u")~" 43)
Indeed, if € V5 NV, then by there exists 7 € Uy such that (7,0) € U and @g(7,0) = 7. Since
©o(7,0) = 9?(7), this shows that 7 = (¢)?)~!(n) and thus

(W)™ () = Pa(7,0) = Py o (pg) " ().

Now recall that 79 = ¢§(7'0). By continuity of 1, there exists ¢ > 0 such that Boo(10,€") C
(¥%)~" (Vo N V) and

Y?(Boo(10,€)) C V.
For any 7 € Bog (70, €' ), we have W(r) € Vy NV so, as we just proved with (@3}, () ' o WO (r) =
Py o (pg)~" o 9?(7). Since the functions 4%, (¢g) " and Py are all C>, we conclude that the
transition map (¢%) =1 0 ¢? is C°° over Bo (70, €'), for all 7o € (1) ~1(Vy N V). We conclude that
(?) =t op? is C* over (¥?) "1 (Vo N V).
We have showed that (Vp, (1/%) 1) ge e xrE) 5 is @ smooth atlas, and thus that 3} is a smooth
submanifold of R”*VZ. As computed in (21), its dimension is

|Fy| + |B] = NoN1 + N1Na+ -+ N1 N + Np.
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D Conditions of local identifiability

Let us restate (using Deﬁnition@ and prove Theorem@

Theorem 26. Forany X € R"*Y° and § € (R¥ x RP)\(S U Ax), the two following statements
are equivalent.

i) 0 is locally identifiable from X.
ii) There exists € > 0 such that Boo(¢(6),€) N X3 N N(X,0) = {4(0)}.

Proof.

i) = i) Suppose 7) is satisfied for some ¢; > 0. We first construct ¢ > 0 and then consider 1 €
Boo(¢(0),€) N X7 N N(X,6), and we prove that = ¢(6). Since § € (RF x RP)\(SUAx) and
since, according to Proposition A is closed, there exists e > 0 such that for any 0e B (0, €2),

(X, 0) = a(X,0),
ie. R
A(X,0) = A(X,0).

Consider € = min(ey, €2). Since, according to Proposition pe o (1?)~1 is continuous at ¢(6) €
¥?(Uy), and since pg o (1)~ (4(0)) = po(1e) = 0, there exists € > 0 such that for all T € Uy,

10 (1) =6l <€ = llpo(r)=Ollc = llPo (") (" (7)) = poo (1)~ (#(8))lloo aj).
Since ¢(#) = 1? (75), Proposition|23|guarantees that, modulo a decrease of ¢/, we can assume that

Boo(0(0),€) N ST C 0 (Up). (45)

Now let € Boo(¢(8),€') N $7 N N(X,0). Let us prove that n = ¢(0). Using ([@5), there exists
7 € Up such that n = ?(7). Since ||¢(0) — nl|oo < €, we have using

llpo(7) = Olloo <€ (46)

Since € < €3, we have
A(X,0) = A(X, pa(T)). 47)

Since ¥?(7) = n € N(X, ), we have by definition of N(X, 6) that ¢?(7) — #(6) € Ker A(X,0),
50

A(X,0) - 9% (1) = A(X,0) - ¢(6) (48)
Using successively (3), @7), and (3 again, we have
Foo(r)(X) = A(X, po(7)) - 9(p

6
= A(X,0) - ¢(po(T))
= A(X,0)- (0

= fo(X).
Since the hypothesis ¢) holds for €1, using and the fact that € < €;, we have

0~ pg(T).

(7))
0
)

We conclude using Proposition that
n=¢(po(7)) = $(0),

which shows
Beo(¢(0), ) NETNN(X,0) C {6(0)}.

The converse inclusion trivially holds and therefore 4¢) holds.
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1) = 1) Suppose i) is satisfied for some ¢’ > 0.

We first construct e and prove 7) holds. Since § € (R¥ x R?)\(S U Ax), using Proposition ,
there exists ¢; > 0 such that for all § € B (0, €1),

a(X,0) = a(X.0),
ie. ~
A(X,0) = A(X,0). (49)
Since ¢ is continuous, there exists e > 0 such that
16Ol <e2 = [|6(8) = $(B)lloc < €
Using Proposition there exists e3 > 0 such that

08 0and |0 — 0o <e3 = 0~0.

Since # ¢ S and S is closed, there exists €5 > 0 such that for all § € RF x RE,if [|§ — 0|0 < €4,
then

6¢S5.
Let € = min(eq, €2, €3, €4). Let 6 e B (0, €), and suppose
fo(X) = f3(X).

Let us prove that § ~ 6. Reformulating the above equality using (3) for both sides, and using the
definition of A given in the beginning of Section we have

A(X, ) - 9(8) = A(X,6) - $(6).

Since || — 6|0 < € < €1, we have the equality and thus

A(X,0) - 9(0) = A(X,0) - 6(6).

In other words, ¢() — ¢(f) € Ker A(X,6). Since € < ¢4, p(f) € Xi. Since € < €3, ¢(f) €
Boo(¢(0),€'). Summarizing,

¢(0) € Bos(9(0),€) N X7 N N(X,0),

and using the hypothesis i), we conclude that

By Proposition we have 0 2 é, and since € < €3, we conclude that
6~ 0.
O

We are now going to prove Theorems[9]and [10} which we restate as Theorems [27]and 28| respectively
(using Deﬁnition@.

Theorem 27 (Necessary condition). Let X € R"*V0 and 6 € (RF x RP)\(SU Ax). If C is not
satisfied, then 0 is not locally identifiable from X (thus not globally identifiable).

Theorem 28 (Sufficient condition). Ler X € R™*V° and § € (R¥ x RP)\(SU Ax). If Cs is
satisfied, then 0 is locally identifiable from X.

To prove the theorems, we need to prove first the following lemmas.

Lemma 29. Let us denote by 7' = Im D1?(7y) the direction of the tangent plane to X% at ¢(#). Let
us denote by H the intersection Ker A(X,0) NT. We have

dim(H) = |Fy| + |B| — Rr. (50)
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Proof. Letn € T. There exists h € R x RZ such that = D) (1) - h. We have the following
equivalence:
neKerA(X,0) < AX.,0)-n=0

— A(X,0)oDy’(r9)-h =0
— I'(X,0)-h =0
< heKel(X,0).
This shows that D% (75) ™! (Ker A(X,0) N T) = Ker I'(X, 0) C RFe x RE,
Since D)% (7y) is injective, we thus have

dim(H) = dim(KerI'(X, 0)) = | Fy| + | B| — Rr-.

Lemma 30. Let G be a supplementary subspace of Ker A(X, #) such that
Ho G =KerA(X,0). (628

If Rr = R, there exist an open set O C Uy x G containing (79,0) and an open set V C RP*Vz
containing ¢ () such that
& 0o — VvV
(1,9) = ¥°(1)+g
is a diffeomorphism from O onto V.

Proof. Let us first show that
TG =RV, (52)

Indeed, since Ker A(X,0) = H @& G and T NKer A(X,0) = H, wehave T N G = {0}. We of
course have
TaGcRPXVE, (53)

Let us show that dim(G) = dim(R7*V2) — dim(T). First note that we have
dim(Ker A(X,0)) = dim(R”*V%) — rank(A(X, 0)) = [P|NL, — Ra. (54)
Using and (54), we have

dim(G) = dim(Ker A(X, 0)) — dim(H)
= |P|Np — R4 — dim(H).

Using (50) and the hypothesis Rr = R4 we thus have

dlm(G) = |P|NL — Rs+ Rr — ‘Fg‘ — |B|
= |PINL — [Fy| — |B|
where the last equality comes from the injectivity of D1?(75), shown in Proposition Together
with (53), this proves (52).

Let us now consider the function

E: UpxG —» RPXVe
(1,9) > ¥(7)+g.

For all (h, g) € (RFe x RB) x G, we have

Dg(19,0) - (h, g) = DY’ (to)h + g.
The differential DE(7, 0) is injective. Indeed, if
D¢(74,0) - (h, g) =0,
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then since D)% (19)h € T and g € G, we have
{Dwe(mm =0
9=0,
and since DY (7y) is injective, h = 0 and D¢ (7, 0) is injective. Since, using (52),
dim(R*? x R?) + dim(G) = |P|Np,
DE(79,0) is bijective.
We can thus apply the inverse function theorem: there exists an open set O C Uy x G containing

(79,0), an open set V C RP*VL containing ¢(#) such that ¢ is a diffeomorphism from O into V. [

We can now prove the theorems.

Proof of Theorem If Cn is not satisfied, then we have Rr = R4 < |Fy| + |B|. We can thus
apply Lemma there exist an open set O C Uy x G containing (75, 0) and an open set V ¢ RP*Vr
containing ¢(f) such that
& o — VvV

(r.9) — ¥(r)+g
is a diffeomorphism from O onto V.
Consider € > 0. We define the open set O = O N (?) "' (B(4(6), €) x G and its image V = £(O).
Using the computation of dim(H ) shown in Lemma we have

dim(H) = |Fy| + |B| — Rr > 0,

so there exists a nonzero w € H such that ¢(6) + w € V. Since ¢ induces a diffeomorphism from O
onto V, there exists (7, g) € O such that

¢(0) +w=1(1) +g

(1) = ¢(0) =w — g. (55)

Let us denote = pg(7) and let us show that Theorem Eii) does not hold. By definition, ¢(f) =
¥?(7) and since (7, 9) € O, [|p(0) — ¢(0)||oo < €. Since HNG = {0}, w € H,g € G and w # 0,
shows that )

¢(0) — ¢(6) # 0.

Furthermore, since w € H C Ker A(X,6) and g € G C Ker A(X,6), (55) shows that

#(0) — ¢(0) € Ker A(X, 0),

SO

»(0) € N(X,0).

Summarizing, for any e > 0 there exists € (RE x RP)\S such that #(0) € Boo(0(0),€) NTEN
N(X,0)\{¢(0#)}. The second item of Theorem|26|does not hold. Since it is equivalent, the first item
of Theorem [26[does not hold either. In other words, the conclusion of Theorem holds. O

Proof of Theorem Suppose that C'g is satisfied. Using Lemmaand using C'g, we obtain
dim(T' N Ker A(X,0)) = |Fy| + |B| — Rr = 0.

We thus have
T NKer A(X,0) = {0}. (56)

In order to apply Theorem let us show by contradiction that there exists € > 0 such that
Boo(0(0),€) N1 N N(X,0) = {4(0)}- 57)

35



More precisely, we suppose that for all n € N*, there exists ¢, € N (X, 0) N X5 such that ¢,, # ¢(6)
and [|¢(#) — ¢nlloc < + and prove that it leads to 7' N Ker A(X, 6) # {0}, which contradicts (56).

Using Proposition|23] there exists 79 € N* such that for all n > ny, there exists 7, € Uy such that
én = ¥ (1,,). Since Y is a homeomorphism and 4% (15) = $(6),

¢n — ¢(0)

implies that
Tn — T9-

Moreover, for all n > ng, 7, # 7p.

When n tends to infinity, we can thus write

$n — $(0) = ¢°(12) = 4’ (19) = DY’ (19) - (70 — 79) + 0(T0 — T9)-
Let us apply A(X, 0) and divide by |7, — 79]|-

1 Ty — T 1
A 0)(9u-0(6)) = ACX, 0)0D¢ (7)o [T ) A(X,0)0 (7, — 7).
17 = 76| 170 =70l /{70 = 7|
(58)
Since ¢, € N(X,0) for all n € N*,
1
T AX,0) - (¢n — 6(0)) = 0.
70 = 76|
Since ﬁ belongs to the unit sphere, we can extract a subsequence that converges to a limit h

with norm equal to 1. Taking the limit in according to this subsequence, we obtain
0= A(X,0) o DY?(ry) - h,

which shows that Dy)?(75)-h € Ker A(X, ). Since h # 0 and Dy?(7y) is injective, D1 (19)h # 0
and
T NKer A(X,0) # {0}.

This is in contradiction with (56).

We have proven . We can now conclude thanks to Lemma there exists € > 0 such that for
any § € RP x REif |0 — 0| < ¢, then

fo(X) = f5(X) = 0~

E Checking the conditions numerically

We restate and prove Proposition[12]
Proposition 31. Let X € R"*"0 and § € R x RB. We have

R4 = Nprank («a(X,0)).

Proof. Letn € RPXVL. We have

If we denote by 7',...,nNt € RP the Ny columns of 7, the columns of A(X,6) - n are
a(X,0)nt, ..., a(X,0)n™Nr. If we consider the matrix 7 as a family of N, vectors of R” and
the matrix A(X, ) -n as a family of Ny, vectors of R™, the operator A(X, #) can then be equivalently
described as
A(X,0): (RP)Ne s (R™)Ne
('sn™) = (a(X 00, a(X, 0.

The rank of such an operator is Ny, rank(a(X, 0)). O
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We restate and prove Proposition[TT]
Proposition 32. Ler X € R"*V0 and § € (RF x RP)\(S U Ax). The function

Ug — R7*VL
T +— fﬂe(T)(X)

is differentiable in a neighborhood of 9, and we denote by D f,, (-, (X) its differential at Ty. We
have

DTfps(Tg)(X) :F(Xv 9) (59)

Proof. Using (3) at pg(7) and the definition of 1/? in (11), we have

fpe(r) (X) = A(Xv 9) ’ '(/JG(T)'
Taking the differential of
Ug — R™*VL
T fpe(r) (X)
at 7y, and using , we obtain

DTfpg(Tg)(X) = A(X7 9) © DwG(TH) = F(X’ 9)
O

To finish with, the following proposition gives explicit expressions of the coefficients of I'( X, 6).
These expressions are given for the sake of theoretical completeness. Note that when it comes to com-
puting I'( X, #) in practice (in order to compute Rr), the correct approach is using backpropagation
as described in Section [S|rather than evaluating the expressions in Proposition @which involve sums
with very large numbers of summands.

Proposition 33. If we decompose it in the canonical bases of RF* x R and RIM"1*Ve (X, 0)
isa (nNpr) x (|Fy| + |B|) matrix. For lighter notations, let us drop the dependency in (X, 0) and

denote by v~ the lines of I'(X, 0), fori € [1,n] and vy, € Vi, which satisfy (v>"=)T € RFe x RB.

For any (i,vr) € [1,n] X Vi, let us express the coefficients of vV, i.e. express 'yfj’l%ml for any

v = V41 € Fp and express ’yf;l“L forany v, € B.

e Foranyl € [0, L — 1] and any (v;,vi11) € Vi X V41 such that v; — v, 41 € Fp,

ivr _ Z - — i i
71;l—wl+1 - xvowvuﬁvlavz (JC 70) H Ay, (:1: 70)ka—>vk+1
voEVY 1§k§éL*l
k+#l
vi_1€VIi_y
Vi42€Vi42

v 1E€VL_1

L
+> > byan @ 0) [ an (@ 0w, ., (60)

V=1 weVy I <k<L-1
k£l
vi_1€Vi_4
Vi42€Vi4o

vL_1E€VL_1

where Wy, sy, = Wyy—sv, and ay, (z",0) = a,,(z*,0) except when | = 0 in which case
Wyyg—v, = 1 and @y, (z*,0) = 1.

» Foranyl € [1,L] and any v; € V,
wr= Y I an@ 0w, ©1)

vi+1€Vi41 ISk<SL-1

vL_1€VL_1
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Proof. Let (i,v1) € [1,n] x VL.

Let us compute %lv_ﬁvm, forl € [0, L — 1] and (v;,v;41) € Vi x Vi41 such that v; — v;41 € Fp.

%zgvul is the coefficient corresponding to the line (4, vy,) and the column (v; — vi41) of I'(X, 6).

Let us denote by h"t Vi1 € RFe x RE the vector whose component indexed by v; — vy 1 is equal
to 1 and whose other components are zero. Let us denote by d**2 € R™*VZ the element whose
component indexed by (i, vy,) is equal to 1 and whose other components are zero. Let us denote by
(-, -)gnxv,, the scalar product of the euclidean space R™*VZ. We have

Vouis = <d"“ CT(X0) BT )
(dvr, A(X,0) 0 DY’ (7p) - h 01+

R*XVL
o 0
<dl LA <Te>>
8Tvz—>vz+1 RXVL
ol
<dZ . v (7 e)>
87—Uz—>“z+1 RXVL
a(X,0) ———(79) ,
{ aTvl—”JHl } ivr
where [ (X, 9)877(79)} denotes the coefficient (¢,v;) of the product
vy iwr
a(X, 9)877(7'9) Let us remind the dimensions in this product. For the left factor, re-
v U4

calling the definition given in the beginning of Sectlon@ we have a(X,0) € R"*7. Concerning
the right factor, since for any 7 € Up, we have ¥/ (1) € RP*VZ, the partial derivative satisfies
o°

F—+——(79) € RP*VZ. Hence, the dimension of the product is

_W

aT’L)L‘)’UI,_'_l

a(X,6) (19) € R™*VE,

To obtain the coefficient (4, vr,) of this product, we keep the i*" line of the left factor, which is equal
6

d
to a(z*, 0), and the column vy, of the right factor, which is equal to %(m). We thus have

1741
o’ ;o OvY MWy,
a(X,0)——(19) = a(z', ) —2L— oy (2, 0) p L (7p).
87—1)1—>1)l+1 i 87—’(}[—)1)l+1 p;) P 8T1)l—>1)1+1
Letp € P.If p = (v, ...,vr) € Po, looking at the case 1 in the proof of Proposition we have
Ny .
o7 2 (7_9) = 1{’u1—>v1+16p} H Wy, —vpqq -
VI kel[0,L—1]
k#l

Recalling the definition of ozp(xi, 0) in the case p € Py, given in @, we also have

L1
ap(zt,8) = Ty, H ay, (z*,0),
k=1

and thus
R ot ,
ap(x’,Q)#(q—g) = Ly svep} Top H ay, (2", 0) H Woy, —svjs 1 - (62)
VIV k=1 ke[0,L—1]
k£l
Now if p = (vy,...,v) € Py, forl’ € [1,...,L — 1}, looking at the case 2 in the proof of
Proposition[24] we have
oo
#(TQ) = 1{vl—)vl+1€p} b’Ul/ H w’Uk—H})H,l'
VLTV ke[l ,L—1]
k£l
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Recalling the definition of a, (2", 6) in the case p € Py, given in (2), we also have

L—1
ap(zt,8) = H ay, (2*,0),

k=l
and thus
L—1
. Y )
7 P, VL _ 7
ap(x 70)8 (7_9) - 1{vz—>vl+16p} bvl/ | | Quy, (1’ ’9) | I Wy —vpy1 -
T’Ul—VUH,l —7/ /
k=l kell’,L—1]
k£l

Finally, if p = (3, looking at the case 3 in the proof of Proposition (24| we have

o 6
Moo (7)o,
87—1)1—>1)l+1
and thus
) oYl
ap(xw)afwi% (19) = 0.
Vi —Vi+1

Assembling (62), (63) and (64), we can sum over all p € P, and obtain

L—1
i,vL . 7 7
7v1+1—>vl - § 1{Uz—>vl+16p} Loy H Quy, (I 70) H Wy —vp41
PEPo k=1 kef[0,L—1]
p=(v0,-.,VL—1) k#l

(63)

(64)

L L—1
+ Z Z Lo, visiep) by, H Aoy, (xi7 0) H Wop—vpg1

r=1  pePy k=l kel ,L—1]
p=(vy/5..,vL 1) k#l

which can be reformulated, getting rid of the zero sums when v; — v; 11 € p, as

PRI _ § : i i %
’Yle%vl - xvowvoﬂvlavz ({E 79) H Qyy, (.’E 70)kaﬂvk+1
vo€Vo ke[1,L—1]
. k#l
vi—1€Viq
vi42€Vi4o

vL_1€VL_1

L
+ Z Z Ay, (xi, Q)bv{ H Qo (xi, g)ka%vkﬁ_la

'=1 vy eVy ke[l’,L—1]
. k£l
v 1€Vio1
Vi42€Viq2

L 1€VL_1

which shows .
The proof of (61 is similar to the one of (60).
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