
A Notations

In this section, we define notations, many of which are standard, that are useful in the proofs.

We denote by N the set of all natural numbers, including 0, and by N⇤ the set N without 0. We
denote by Z the set of all integers. For any a, b 2 Z, we denote by Ja, bK the set of all integers k 2 Z
satisfying a  k  b. For any finite set A, we denote by |A| the cardinal of A.

For n,N 2 N⇤, we denote by RN the N -dimensional real vector space and by Rn⇥N the vector
space of real matrices with n lines and N columns. For a vector x = (x1, . . . , xN )T 2 RN , we
use the norm kxk1 = maxi2J1,NK |xi|. For x 2 RN and r > 0, we denote B1(x, r) = {y 2
RN , ky � xk1 < r}.

For any vector x = (x1, . . . , xN )T 2 RN , we define sign(x) = (sign(x1), . . . , sign(xN ))T 2
{�1, 0, 1}N as the vector whose ith component is equal to

sign(xi) =

8
<

:

1 if xi > 0
0 if xi = 0
�1 if xi < 0.

For any matrix M 2 Rn⇥N , for all i 2 J1, nK, we denote by Mi,: the ith line of M . The vector Mi,:

is a line vector whose jth component is Mi,j . Similarly, for j 2 J1, NK, we denote by M:,j the jth

column of M , which is the column vector whose ith component is Mi,j . For any matrix M 2 Rn⇥N ,
we denote by MT

2 RN⇥n the transpose matrix of M .

We denote by IdN the N ⇥N identity matrix and by 1N the vector (1, 1, . . . , 1)T 2 RN . If � 2 RN

is a vector of size N , for some N 2 N⇤, we denote by Diag(�) the N ⇥N matrix defined by:

Diag(�)i,j =

®
�i if i = j
0 otherwise.

If X and Y are two sets and h : X ! Y is a function, for a subset A ⇢ Y , we denote by h�1(A) the
preimage of A under f , that is

h�1(A) = {x 2 X,h(x) 2 A}.

Note that this does not require the function h to be injective.

For any n,N 2 N⇤ and any differentiable function f : Rn
! RN , for all x 2 Rn, we denote by

Df(x) its differential at the point x, i.e. the linear application Df(x) : Rn
! RN satisfying, for all

h 2 Rn,
f(x+ h) = f(x) +Df(x) · h+ o(h).

If we denote by xj and hj the components of x and h, for j 2 J1, nK, we have

Df(x) · h =
nX

j=1

@f

@xj
(x)hj ,

where for all j, @f
@xj

(x) 2 RN . If f : Rn
! RN is a linear application, we denote by Ker f the set

{x 2 Rn, f(x) = 0}, which is a linear subset of Rn.

B The lifting operator �

Let us introduce the notion of ‘path’, extending the definition in Section 2.2. A path is a sequence of
neurons (vk, vk+1, . . . , vl) 2 Vk ⇥ Vk+1 ⇥ · · ·⇥ Vl, for integers k, l satisfying 0  k  l  L. In
particular, for all l 2 J0, L� 1K, the set Pl defined in Section 2.2 contains all the paths starting from
layer l and ending in layer L� 1. We recall

P =

 
L�1[

l=0

Pl

!
[ {�}.
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If k, l,m 2 N are three integers satisfying 0  k < l  m  L, and p = (vk, . . . , vl�1) 2
Vk ⇥ · · ·⇥ Vl�1 and p0 = (vl, . . . , vm) 2 Vl ⇥ · · ·⇥ Vm are two paths such that p ends in the layer
preceding the starting layer of p0, we define the union of the paths by

p [ p0 = (vk, . . . , vl�1, vl, . . . vm) 2 Vk ⇥ · · ·⇥ Vm.

Before proving Proposition 1, let us compare briefly our construction to [39]. The lifting operator �
introduced in Section 2.2 is similar to the operator � in [39], except that � does not take a matrix
form. The operator ↵(x, ✓) introduced in Section 2.2 corresponds partly to the object ↵(✓, x) in
[39]. One of the differences is that ↵(✓, x) does not include any product with xv0 in its entries, as
does ↵(x, ✓). Finally, a similar statement to Proposition 1 and a similar proof can be found in [39].
However, one of the present contributions is to simplify the construction.

Let us now prove Proposition 1, which we restate here.
Proposition 13. For all ✓ 2 RE

⇥ RB and all x 2 RV0 ,

f✓(x)
T = ↵(x, ✓)�(✓).

Proof. Let us prove first the following expression, for all vL 2 VL:

f✓(x)vL =

 
X

v02V0

...
vL�12VL�1

xv0wv0!v1

L�1Y

l=1

avl(x, ✓)wvl!vl+1

!

+

 
L�1X

l=1

X

vl2Vl

...
vL�12VL�1

bvl

L�1Y

l0=l

avl0 (x, ✓)wvl0!vl0+1

!
+ bvL . (15)

We prove this by induction on the number L of layers of the network.

Initialization (L = 2). Let v2 2 V2.

f✓(x)v2 = (W2)v2,: � (W1x+ b1) + bv2

=

 
X

v12V1

wv1!v2 [� (W1x+ b1)]v1

!
+ bv2

=

 
X

v12V1

wv1!v2� ((W1)v1,: x+ bv1)

!
+ bv2

=

 
X

v12V1

wv1!v2av1(x, ✓)

 
X

v02V0

wv0!v1xv0 + bv1

!!
+ bv2

=

Ö
X

v02V0
v12V1

wv1!v2av1(x, ✓)wv0!v1xv0

è

+

 
X

v12V1

wv1!v2av1(x, ✓)bv1

!
+ bv2

=

Ö
X

v02V0
v12V1

xv0wv0!v1av1(x, ✓)wv1!v2

è

+

 
X

v12V1

bv1av1(x, ✓)wv1!v2

!
+ bv2

which proves (15), when L = 2.

Now let L � 3 and suppose (15) holds for all ReLU networks with L� 1 layers. Let us consider a
network with L layers.
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Let us denote by g✓(x) the output of the L � 1 first layers of the network pre-activation (before
applying the ReLUs of the layer L� 1). The function g✓ is that of a ReLU network with L� 1 layers,
and we have

f✓(x) = WL�(g✓(x)) + bL.

Let vL 2 VL. We thus have

f✓(x)vL =
X

vL�12VL�1

wvL�1!vL�(g✓(x)vL�1) + bvL . (16)

By the induction hypothesis, for all vL�1 2 VL�1, g✓(x)vL�1 can be expressed with (15). Considering
that �(g✓(x)vL�1) = avL�1(x, ✓)g✓(x)vL�1 and replacing g✓(x)vL�1 by its expression using (15),
(16) becomes

f✓(x)vL =
X

vL�12VL�1

wvL�1!vLavL�1(x, ✓)

" 
X

v02V0

...
vL�22VL�2

xv0wv0!v1

L�2Y

l=1

avl(x, ✓)wvl!vl+1

!

+

 
L�2X

l=1

X

vl2Vl

...
vL�22VL�2

bvl

L�2Y

l0=l

avl0 (x, ✓)wvl0!vl0+1

!
+ bvL�1

#
+ bvL

=

 
X

v02V0

...
vL�12VL�1

wvL�1!vLavL�1(x, ✓)xv0wv0!v1

L�2Y

l=1

avl(x, ✓)wvl!vl+1

!

+

 
L�2X

l=1

X

vl2Vl

...
vL�12VL�1

wvL�1!vLavL�1(x, ✓)bvl

L�2Y

l0=l

avl0 (x, ✓)wvl0!vl0+1

!

+

 
X

vL�12VL�1

wvL�1!vLavL�1(x, ✓)bvL�1

!
+ bvL

=

 
X

v02V0

...
vL�12VL�1

xv0wv0!v1

L�1Y

l=1

avl(x, ✓)wvl!vl+1

!

+

 
L�1X

l=1

X

vl2Vl

...
vL�12VL�1

bvl

L�1Y

l0=l

avl0 (x, ✓)wvl0!vl0+1

!
+ bvL ,

which proves (15) holds for ReLU networks with L layers. This ends the induction, and we conclude
that (15) holds for all ReLU networks.

We can now use this expression to prove Proposition 13. The first sum in (15) is taken over all the
paths p = (v0, . . . , vL�1) 2 P0, and each summand can be written as

xv0wv0!v1

L�1Y

l=1

avl(x, ✓)wvl!vl+1 =

 
xv0

L�1Y

l=1

avl(x, ✓)

! 
L�1Y

l=0

wvl!vl+1

!
= ↵p(x, ✓)�p,vL(✓).
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For all l 2 J1, L � 1K, the inner sum of the double sum in (15) is taken over all the paths p =
(vl, . . . , vL�1) 2 Pl, and each summand can be written as

bvl

L�1Y

l0=l

avl0 (x, ✓)wvl0!vl0+1
=

 
L�1Y

l0=l

avl0 (x, ✓)

! 
bvl

L�1Y

l0=l

wvl0!vl0+1

!
= ↵p(x, ✓)�p,vL(✓).

And finally, we can also write
bvL = ↵�(x, ✓)��,vL(✓).

Joining all these sums and denoting �:,vL(✓) = (�p,vL(✓))p2P 2 RP , we have

f✓(x)vL =
X

p2P
↵p(x, ✓)�p,vL(✓) = ↵(x, ✓)�:,vL(✓),

so in other words,
f✓(x)

T = ↵(x, ✓)�(✓).

We restate here and prove Proposition 2.
Proposition 14. For all n 2 N⇤, for all X 2 Rn⇥V0 , the mapping

↵X : RE
⇥ RB

�! Rn⇥P

✓ 7�! ↵(X, ✓)

appearing in (3) is piecewise-constant, with a finite number of pieces. Furthermore, the boundary of
each piece has Lebesgue measure zero. We call �X the union of all the boundaries. The set �X is
closed and has Lebesgue measure zero.

Proof. Let us first notice that for any i 2 J1, nK, for any l 2 J1, L� 1K,
�
av(x

i, ✓)
�
v2V1[···[Vl�1

2 {0, 1}V1[···[Vl�1

takes at most 2N1+···+Nl�1 distinct values, so the mapping ✓ 7!
�
av(xi, ✓)

�
v2V1[···[Vl�1

is piecewise
constant, with a finite number of pieces.

Let i 2 J1, nK. Let l 2 J1, L� 1K and v 2 Vl. Recall the definition of fl�1, as given in Section 2.1.
The function ✓ ! av(xi, ✓) takes only two values, 1 or 0, and its values are determined by the sign
of X

v02Vl�1

wv0!vfl�1(x
i)v0 + bv. (17)

For all v0 2 Vl�1, the value of fl�1(xi)v0 depends on ✓. On a piece P ⇢ RE
⇥ RB such that�

av00(xi, ✓)
�
v002V1[···[Vl�1

is constant, this dependence is polynomial. Thus, on P , the value of (17)
is a polynomial function of ✓, and since the coefficient applied to bv is equal to 1, the corresponding
polynomial is non constant. Since the values of av(xi, ✓) are determined by the sign of (17), inside
P , the boundary between {✓ 2 RE

⇥ RB , av(xi, ✓) = 0} and {✓ 2 RE
⇥ RB , av(xi, ✓) = 1} is

included in the set of ✓ for which (17) equals 0. This piece of boundary is thus contained in a level
set of a non constant polynomial, whose Lebesgue measure is zero.

Since there is a finite number of pieces P , the Lebesgue measure of the boundary between {✓ 2
RE
⇥ RB , av(xi, ✓) = 0} and {✓ 2 RE

⇥ RB , av(xi, ✓) = 1}, which is contained in the union of
the boundaries on all the pieces P , is thus equal to 0.

Since this is true for all l 2 J1, L � 1K and all v 2 Vl, the boundary of a piece over which�
av(xi, ✓)

�
v2V1[···[VL�1

is constant also has Lebesgue measure zero.

Now since, for all xi, the value of ↵(xi, ✓) only depends on
�
av(xi, ✓)

�
v2V1[···[VL�1

and since ↵X(✓) is a matrix whose lines are the vectors ↵(xi, ✓), we can conclude that
↵X : RE

⇥ RB
�! Rn⇥P

✓ 7�! ↵(X, ✓)
is piecewise-constant, with a finite number of pieces, and that

the boundary of each piece has Lebesgue measure zero.

A boundary is, by definition, closed. Finally, a finite union of closed sets with Lebesgue measure 0,
as �X is, is closed and has Lebesgue measure 0.
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For convenience, we introduce the two following notations. Let l 2 J0, LK. For any l0 2 J0, lK and
any path pi = (vl0 , . . . , vl) 2 Vl0 ⇥ · · ·⇥ Vl, we denote

✓pi =

®Ql�1
k=0 wvk!vk+1 if l0 = 0

bl0
Ql�1

k=l0 wvk!vk+1 if l0 � 1,
(18)

where as a classic convention, an empty product is equal to 1. In particular, if l = 0, for any
pi = (v0) 2 V0, we have ✓pi = 1. For any path po = (vl, . . . , vL) 2 Vl ⇥ · · ·⇥ VL, we denote

✓po =
L�1Y

k=l

wvk!vk+1 , (19)

with again the convention that an empty product is equal to 1, so if l = L, ✓po = 1.

Some attention must be paid to the fact that for any l0 2 J1, LK, if we take pi in the case l = L and po
in the case l = l0, it is possible to have

pi = (vl0 , . . . , vL) = po,

but in that case we DO NOT have ✓pi = ✓po , since ✓pi = bl0
QL�1

k=l0 wvk!vk+1 and ✓po =QL�1
k=l0 wvk!vk+1 . We will always denote the paths pi and po with an i (as in ‘input’) or an o

(as in ‘output’) to clarify which definition is used.

When considering another parameterization ✓̃ 2 RE
⇥RB , we denote by ✓̃pi and ✓̃po the correspond-

ing objects.

We establish different characterizations of the set S defined in Section 2.3 that will be useful in the
proofs. As mentioned in Section 2.3, the subset of parameters

�
RE
⇥ RB

�
\S is close to the notion

of ‘admissible’ parameter in [39], but is slightly larger since the condition w•!v 6= 0 is replaced by
(w•!v, bv) 6= (0, 0), for each hidden neuron v.
Proposition 15. Let ✓ 2 RE

⇥ RB . The following statements are equivalent.

i) ✓ 2
�
RE
⇥ RB

�
\S.

ii) For all l 2 J1, L�1K and all vl 2 Vl, there exist l0 2 J0, lK, a path pi = (vl0 , . . . , vl) 2 Vl0⇥· · ·⇥Vl

and a path po = (vl, . . . , vL) 2 Vl ⇥ · · ·⇥ VL such that
✓pi 6= 0 and ✓po 6= 0.

iii) For all l 2 J1, L� 1K and all vl 2 Vl, there exist l0 2 J0, lK, a path p = (vl0 , . . . , vl, . . . , vL�1) 2
Pl0 and vL 2 VL such that

�p,vL(✓) 6= 0.

Proof. Let us show successively that i)) ii), ii)) iii) and iii)) i).

i)! ii) Let ✓ 2
�
RE
⇥ RB

�
\S. Let us show ii) holds.

Let l 2 J1, LK and vl 2 Vl. To form a path pi satisfying the condition, we follow the proce-
dure:
pi  (vl)
k  l
while k � 1 and bk = 0 do

9vk�1 2 Vk�1, wvk�1!vk 6= 0
pi  (vk�1, pi)
k  k � 1

end while

l0  k

The existence of vk�1 in the loop is guaranteed by the fact that ✓ 62 S and bk = 0 in the condition
of the while loop. In the end, we obtain a path pi = (vl0 , . . . , vl) with either l0 > 0 and bl0 6= 0, or
l0 = 0. In both cases, we have by construction

✓pi 6= 0.

We do similarly the other way to form a path po = (vl, . . . , vL). We follow the procedure:
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po  (vl)
k  l
while k  L� 1 do

9vk+1 2 Vk+1, wvk!vk+1 6= 0
po  (po, vk+1)
k  k + 1

end while

The existence of vk+1 in the loop is guaranteed by the fact that ✓ 62 S. In the end, we obtain a path
po = (vl, . . . , vL) satisfying by construction

✓po 6= 0.

ii)! iii) Let l 2 J1, L � 1K and vl 2 Vl. There exist l0 2 J0, lK, a path pi = (vl0 , . . . , vl) 2
Vl0 ⇥ · · ·⇥ Vl and a path po = (vl, . . . , vL) 2 Vl ⇥ · · ·⇥ VL such that

✓pi 6= 0 and ✓po 6= 0.

Denoting p = (vl0 , . . . , vl, . . . , vL�1), we have
�p,vL(✓) = ✓pi✓po 6= 0.

iii)! i) Let us show the contrapositive: let ✓ 2 S, and let us show the statement iii) is not true.
Indeed, if ✓ 2 S, there exist l 2 J1, L�1K and vl 2 Vl such that (w•!vl , bvl) = (0, 0) or wvl!• = 0.
Consider a path p = (vl0 , . . . , vl, . . . , vL�1) and vL 2 VL. We have

�p,vL(✓) =

®
bvl0wvl0!vl0+1

. . . wvl�1!vlwvl!vl+1 . . . wvL�1!vL if l0 � 1

wv0!v1 . . . wvl�1!vlwvl!vl+1 . . . wvL�1!vL if l0 = 0.

If (w•!vl , bvl) = (0, 0), either l0 = l and bvl0 = 0 so �p,vL(✓) = 0, or l0 < l and since wvl�1!vl = 0,
we have �p,vL(✓) = 0.

If wvl!• = 0, wvl!vl+1 = 0 so �p,vL(✓) = 0. Thus iii) is not satisfied.

We restate and prove Proposition 4.
Proposition 16. For all ✓, ✓̃ 2 RE

⇥ RB , we have

✓
R
⇠ ✓̃ =) �(✓) = �(✓̃),

and thus in particular
✓ ⇠ ✓̃ =) �(✓) = �(✓̃).

Proof. Let ✓, ✓̃ 2 RE
⇥ RB such that ✓ R

⇠ ✓̃. There exists a family (�0, . . . ,�L) 2 (R⇤)V0 ⇥ · · ·⇥

(R⇤)VL , with �0 = 1V0 and �L = 1VL , such that for all l 2 J1, LK, for all (vl�1, vl) 2 Vl�1 ⇥ Vl, (6)
holds. We consider first a path p = (v0, . . . , vL�1) 2 P0 and vL 2 VL. Using (6) and the fact that
�0v0 = �LvL = 1, we have

�p,vL(✓) =
LY

l=1

wvl�1!vl =
LY

l=1

�lvl

�l�1
vl�1

w̃vl�1!vl =
�LvL
�0v0

LY

l=1

w̃vl�1!vl = �p,vL(✓̃).

Similarly, for l 2 J1, L � 1K and a path p = (vl, . . . , vL�1) 2 Pl, and for all vL 2 VL, we have,
using (6) and the fact that �LvL = 1,

�p,vL(✓) = bvl

LY

l0=l+1

wvl0�1!vl0 = �lvl b̃vl

LY

l0=l+1

�l
0

vl0

�l
0�1
vl0�1

w̃vl0�1!vl0 = �LvL b̃vl

LY

l0=l+1

w̃vl0�1!vl0

= �p,vL(✓̃).

Finally, for p = � and vL 2 VL, we have

�p,vL(✓) = bvL = �LvL b̃vL = b̃vL = �p,vL(✓̃).

This shows �(✓) = �(✓̃).

For the second implication, we simply use the fact that if ✓ ⇠ ✓̃, in particular, ✓ R
⇠ ✓̃.
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Corollary 17. The set
�
RE
⇥ RB

�
\S is stable by rescaling equivalence: if ✓ 2

�
RE
⇥ RB

�
\S,

and ✓̃ 2 RE
⇥ RB satisfies ✓ R

⇠ ✓̃, then ✓̃ 2
�
RE
⇥ RB

�
\S.

Proof. Let ✓ 2
�
RE
⇥ RB

�
\S and ✓̃ 2 RE

⇥ RB such that ✓ R
⇠ ✓̃. Proposition 16 shows that

�(✓̃) = �(✓).

Let l 2 J1, LK and v 2 Vl. Since ✓ 2
�
RE
⇥ RB

�
\S, according to Proposition 15 there exists

l0 2 J0, lK, a path p = (vl0 , . . . , vl, . . . , vL�1) and vL 2 VL such that �p,vL(✓) 6= 0. We have

�p,vL(✓̃) = �p,vL(✓) 6= 0,

and since this is true for any l 2 J1, LK and v 2 Vl, Proposition 15 shows that ✓̃ 2
�
RE
⇥ RB

�
\S.

We restate and prove Proposition 5.

Proposition 18. For all ✓ 2
�
RE
⇥ RB

�
\S, for all ✓̃ 2 RE

⇥ RB ,

�(✓) = �(✓̃) =) ✓
R
⇠ ✓̃.

Proof. Let us choose (�0, . . . ,�L) 2 (R⇤)V0 ⇥ · · · ⇥ (R⇤)VL as follows. For all l 2 J1, L � 1K
and all vl 2 Vl, since ✓ 2

�
RE
⇥ RB

�
\S, Proposition 15 shows that there exists a path po(vl) =

(vl, . . . , vL) 2 Vl ⇥ · · · ⇥ VL such that ✓po(vl) 6= 0. Let us define �0 = 1V0 , �L = 1VL and for all
l 2 J1, L� 1K,

�lvl =
✓̃po(vl)

✓po(vl)
.

The value of �lvl a priori depends on the choice of the path po(vl), but the first of the two following
facts, that we are going to prove, shows it only depends on vl, since in (20), pi does not depend on
po(vl).

• For all l 2 J0, LK, for all vl 2 Vl, for any l0 2 J0, lK and any pi = (vl0 , . . . , vl) 2
Vl0 ⇥ · · ·⇥ Vl,

✓pi = �lvl ✓̃pi . (20)

• For all l 2 J0, LK, for all vl 2 Vl, �lvl 6= 0.

Indeed, let l 2 J0, LK and let us consider l0 2 J0, lK and a path pi = (vl0 , . . . , vl) 2 Vl0 ⇥

· · · ⇥ Vl. Let vl+1, . . . , vL 2 Vl+1 ⇥ · · · ⇥ VL such that po(vl) = (vl, vl+1, . . . , vL). Let
p = (vl0 , . . . , vl, . . . , vL�1) 2 Pl0 so that pi [ po(vl) = p [ (vL). We have by hypothesis

✓pi✓po(vl) = �p,vL(✓) = �p,vL(✓̃) = ✓̃pi ✓̃po(vl),

thus

✓pi =
✓̃po(vl)

✓po(vl)
✓̃pi = �lvl ✓̃pi ,

which proves the first point. To prove the second point, we simply use Proposition 15 to consider a
path pi such that ✓pi 6= 0, and (20) shows that �lvl 6= 0.

Let us now prove the rescaling equivalence. Let l 2 J1, LK, and let (vl�1, vl) 2 Vl�1 ⇥ Vl. Let us
consider, thanks to Proposition 15, l0 2 J0, l� 1K and a path pi = (vl0 , . . . , vl�1) 2 Vl0 ⇥ · · ·⇥ Vl�1

such that ✓pi 6= 0. The relation (20) shows we also have ✓̃pi 6= 0. Let p0i = pi [ (vl). Using (20) with
✓p0

i
we have

✓piwvl�1!vl = ✓p0
i
= �lvl ✓̃p0

i
= �lvl ✓̃piw̃vl�1!vl .

At the same time, using (20) with ✓pi we have,

✓piwvl�1!vl = �l�1
vl�1

✓̃piwvl�1!vl ,
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so combining both equalities, we have

�lvl ✓̃piw̃vl�1!vl = �l�1
vl�1

✓̃piwvl�1!vl .

Using the fact that ✓̃pi 6= 0 and �l�1
vl�1
6= 0, we finally obtain, for all l 2 J1, LK and all (vl�1, vl) 2

Vl�1 ⇥ Vl:

wvl�1!vl =
�lvl
�l�1
vl�1

w̃vl�1!vl .

For all l 2 J1, LK and all vl 2 Vl, using (20) with pi = (vl), we obtain

bvl = �lvl b̃vl .

This shows that (6) is satisfied for all (vl�1, vl) 2 Vl�1 ⇥ Vl, and thus ✓ R
⇠ ✓̃.

The following proposition is useful in the proof of Theorem 26 and allows to improve identifiability
modulo rescaling into identifiability modulo positive rescaling.

Proposition 19. For all ✓ 2
�
RE
⇥ RB

�
\S, there exists ✏ > 0 such that for all ✓̃ 2 RE

⇥ RB ,

k✓ � ✓̃k1 < ✏ and ✓ R
⇠ ✓̃ =) ✓ ⇠ ✓̃.

Proof. Let ✓ 2
�
RE
⇥ RB

�
\S. We define

✏ = min
⇣�

|wv!v0 |, v ! v0 2 E and wv!v0 6= 0
 
[
�
|bv|, v 2 B and bv 6= 0

 ⌘
.

Let ✓̃ 2 RE
⇥ RB such that k✓ � ✓̃k1 < ✏ and ✓ R

⇠ ✓̃. To prove ✓ ⇠ ✓̃, we simply have to
prove sign(✓) = sign(✓̃). There exists (�0, . . . ,�L) 2 (R⇤)V0 ⇥ · · ·⇥ (R⇤)VL , with �0 = 1V0 and
�L = 1VL , such that, for all l 2 J1, LK, for all (vl�1, vl) 2 Vl�1 ⇥ Vl, (6) holds. Let us show that
sign(✓) = sign(✓̃).

Indeed, let l 2 J1, LK, and let (v, v0) 2 Vl�1 ⇥ Vl. If wv!v0 6= 0, then since |wv!v0 � w̃v!v0 | < ✏
and by definition ✏  |wv!v0 |, we have sign(wv!v0) = sign(w̃v!v0). Otherwise, if wv!v0 = 0, (6)
shows that we have

w̃v!v0 =
�l�1
v

�lv0
wv!v0 = 0,

so we still have sign(wv!v0) = sign(w̃v!v0).

Now let l 2 J1, LK and let v 2 Vl. Similarly, if bv 6= 0, we have |bv � b̃v| < ✏  |bv|, so
sign(bv) = sign(b̃v), and if bv = 0, we have

b̃v =
bv
�lv

= 0,

so again sign(bv) = sign(b̃v).

This shows sign(✓) = sign(✓̃), so ✓ ⇠ ✓̃.

C The smooth manifold structure of ⌃⇤
1

In this section, we prove Theorem 7, which is restated as Theorem 25. Before doing so, we establish
intermediary results, some of which are evoked in Section 3.

Let us discuss the cardinal of F✓ defined in Section 3. The set F✓ is obtained by removing the edges
of the form v ! s✓max(v) for v 2 V1 [ · · ·[ VL�1. Note that we do not remove the edges of the form
v ! s✓max(v) for v 2 V0. For all l 2 J1, L�1K, there are precisely Nl edges of the form (v, s✓max(v))
with v 2 Vl, so

|F✓| = |E|� (N1 + · · ·+NL�1)

= N0N1 + · · ·+NL�1NL �N1 � · · ·�NL�1.
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As a consequence, since |B| = N1 + · · ·+NL, we have in particular

|F✓|+ |B| = N0N1 + · · ·+NL�1NL �N1 � · · ·�NL�1 +N1 + · · ·+NL

= N0N1 + · · ·+NL�1NL +NL. (21)

The following proposition is a first step towards Proposition 21, which states that  ✓ is a homeomor-
phism.
Proposition 20. For all ✓ 2

�
RE
⇥ RB

�
\S, the function  ✓ : U✓ ! RP⇥VL is injective.

Proof. Let ⌧, ⌧̃ 2 U✓ such that  ✓(⌧) =  ✓(⌧̃). Let us show ⌧ = ⌧̃ . We have �(⇢✓(⌧)) = �(⇢✓(⌧̃))
and by definition of U✓, ⇢✓(⌧) 2

�
RE
⇥ RB

�
\S, so by Proposition 18 we have the rescaling

equivalence
⇢✓(⌧)

R
⇠ ⇢✓(⌧̃).

By definition of the rescaling equivalence, in its formulation (6), there exists (�0, . . . ,�L) 2 (R⇤)V0⇥

· · ·⇥(R⇤)VL , with �0 = 1V0 and �L = 1VL , such that, for all l 2 J1, LK, for all (vl�1, vl) 2 Vl�1⇥Vl,
(
⇢✓(⌧)vl�1!vl =

(�l)vl
(�l�1)vl�1

⇢✓(⌧̃)vl�1!vl

bvl = �lvl b̃vl .
(22)

Let l 2 J2, LK and let vl�1 2 Vl�1. Let vl = s✓max(vl�1). According to (22) we have

⇢✓(⌧)vl�1!vl =
(�l)vl

(�l�1)vl�1

⇢✓(⌧̃)vl�1!vl .

But since vl = s✓max(vl�1) and vl�1 2 Vl�1 with l � 1 2 J1, L� 1K, we have vl�1 ! vl 2 E\F✓,
so by definition of ⇢✓ in (9),

⇢✓(⌧)vl�1!vl = wvl�1!vl = ⇢✓(⌧̃)vl�1!vl 6= 0,

so (�l)vl
(�l�1)vl�1

= 1.

We have shown that for all l 2 J2, LK, for all vl�1 2 Vl�1, there exists vl 2 Vl such that

(�l�1)vl�1 = (�l)vl .

As a consequence, if l is such that �l = 1Vl , then �l�1 = 1Vl�1 .

Starting from �L = 1VL , this shows by induction that for all l 2 J1, LK,

�l = 1Vl .

By hypothesis we also have �0 = 1V0 . Using (22), this shows that

⇢✓(⌧) = ⇢✓(⌧̃).

The injectivity of ⇢✓ allows us to conclude that

⌧ = ⌧̃ .

The following proposition shows, as mentioned in Section 3, that  ✓ is a homeomorphism. This is a
necessary step to prove that (V✓, ( ✓)�1)✓2(RE⇥RB)\S is an atlas of ⌃⇤

1.

Proposition 21. For all ✓ 2
�
RE
⇥ RB

�
\S,  ✓ is a homeomorphism from U✓ onto its image V✓.

Proof. We already know from Proposition 20 that  ✓ is injective, so we need to prove that  ✓ is
continuous and its inverse is continuous. The function ⇢✓ is affine and � is a polynomial function, so
the function  ✓ = � � ⇢✓ is a polynomial function, and in particular it is continuous.

To prove that ( ✓)�1 is continuous, we consider a sequence (⌧n) taking values in U✓ and ⌧ 2 U✓
such that  ✓(⌧n)!  ✓(⌧), and we want to show that ⌧n ! ⌧ .
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Let us first show that for all v 2 B, (⌧n)v ! ⌧v. Indeed, let l 2 J1, LK and let vl 2 Vl, so that vl is
an arbitrary element of B. Let us define vl+1 = s✓max(vl), then vl+2 = s✓max(vl+1) and so on up to
vL = s✓max(vL�1). Since for all l0 2 Jl, L� 1K, vl0+1 = s✓max(vl0), by definition of F✓ and ⇢✓ (see
(8) and (9)), we have

⇢✓(⌧n)vl0!vl0+1
= wvl0!vl0+1

, (23)
and

⇢✓(⌧)vl0!vl0+1
= wvl0!vl0+1

. (24)

In particular, since ✓ 62 S, for all l0 2 Jl, L � 1K we have wvl0!• 6= 0, so by definition of s✓max,
wvl0!vl0+1

6= 0. We thus have

wvl!vl+1 . . . wvL�1!vL 6= 0. (25)

If we denote p = (vl, . . . , vL�1), we have, using the definition of � and (23),

 ✓p,vL
(⌧n) = (⌧n)vlwvl!vl+1 . . . wvL�1!vL

and using (24),
 ✓p,vL

(⌧) = (⌧)vlwvl!vl+1 . . . wvL�1!vL .

Using (25) and the fact that
 ✓(⌧n)!  ✓(⌧),

we conclude that
(⌧n)vl ! ⌧vl .

Let us now prove that for all (v, v0) 2 E, (⌧n)v!v0 ! ⌧v!v0 . Let us show by induction on l 2 J1, LK
the following hypothesis

8l0 2 J1, lK, 8(v, v0) 2 (Vl0�1 ⇥ Vl0) \ F✓, (⌧n)v!v0 �! ⌧v!v0 . (Hl)

Initialization. Let (v0, v1) 2 (V0 ⇥ V1) \ F✓. We define v2 = s✓max(v1), then we define v3 =
s✓max(v2), and so on up to vL = s✓max(vL�1). Let p = (v0, . . . , vL�1) 2 P .

As above, using the definition of ⇢✓, F✓ and �, we have

 ✓p,vL
(⌧n) = (⌧n)v0!v1wv1!v2 . . . wvL�1!vL

and
 ✓p,vL

(⌧) = (⌧)v0!v1wv1!v2 . . . wvL�1!vL ,

and since ✓ 62 S, we also have , as above,

wv1!v2 . . . wvL�1!vL 6= 0. (26)

Since
 ✓(⌧n) �!  ✓(⌧)

we conclude using (26) that
(⌧n)v0!v1 �! ⌧v0!v1 .

We have shown H1.

Induction step. Let l 2 J2, LK and let us assume that Hl�1 holds.

Let (vl�1, vl) 2 (Vl�1 ⇥ Vl) \ F✓. We define vl+1 = s✓max(vl), vl+2 = s✓max(vl+1), and so on up to
vL = s✓max(vL�1). Let us denote po = (vl, . . . , vL). Recalling the notation defined in (19), we have

⇢✓(⌧n)po = wvl!vl+1 . . . wvL�1!vL = ⇢✓(⌧)po 6= 0. (27)

At the same time, since ⌧ 2 U✓, Proposition 15 shows there exist l0 2 J0, l � 1K and a path
pi = (vl0 , . . . , vl�2, vl�1) such that

⇢✓(⌧)pi 6= 0. (28)
If l0 � 1, we have shown in the first part of the proof that (⌧n)vl0 �! ⌧vl0 . Moreover, whatever the
value of l0 is, for k 2 Jl0, l � 2K, if (vk, vk+1) 2 E\F✓,

⇢✓(⌧n)vk!vk+1 = wvk!vk+1 = ⇢✓(⌧)vk!vk+1 ,
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and if (vk, vk+1) 2 F✓, according to Hl�1,

⇢✓(⌧n)vk!vk+1 = (⌧n)vk!vk+1 �! ⌧vk!vk+1 = ⇢✓(⌧)vk!vk+1 .

We therefore have
⇢✓(⌧n)pi �! ⇢✓(⌧)pi , (29)

and in particular, since ⇢✓(⌧)pi 6= 0, there exists n0 2 N such that for all n � n0,

⇢✓(⌧n)pi 6= 0. (30)

We can write
 ✓p,vL

(⌧n) = ⇢✓(⌧n)pi (⌧n)vl�1!vl ⇢✓(⌧n)po

and
 ✓p,vL

(⌧) = ⇢✓(⌧)pi (⌧)vl�1!vl ⇢✓(⌧)po ,

so using (27), (30) and (29), we have

(⌧n)vl�1!vl =
 ✓p,vL

(⌧n)

⇢✓(⌧n)pi⇢✓(⌧n)po

�!
 ✓p,vL

(⌧)

⇢✓(⌧)pi⇢✓(⌧)po

= ⌧vl�1!vl .

We have shown Hl, which concludes the induction step.

In particular, HL is satisfied, and finally ⌧n ! ⌧ .

This shows that  ✓ is a homeomophism.

The following lemma is necessary for the proof of Proposition 23.
Lemma 22. Let ✓ 2

�
RE
⇥ RB

�
\S. Let (v, v0) 2 E (resp. v 2 B). If wv!v0 6= 0 (resp. bv 6= 0),

then there exists ✏ > 0 such that for all ✓̃ 2 RE
⇥ RB , if k�(✓) � �(✓̃)k1 < ✏, then w̃v!v0 6= 0

(resp. b̃v 6= 0).

Proof. Let ✓ 2
�
RE
⇥ RB

�
\S and (v, v0) 2 E such that wv!v0 6= 0. Denote l 2 J0, L� 1K such

that v 2 Vl. If l = 0, we take pi = (v) so that by convention ✓pi = 1 6= 0, and if l � 1, we use
Proposition 15 which states that there exists l0 2 J0, l � 1K and a path pi = (vl0 , . . . , vl�2, v) such
that ✓pi 6= 0. Similarly, if l = L � 1, we take po = (v0) so that by convention ✓po = 1 6= 0 and if
l < L� 1, we use Proposition 15 which states that there exists a path po = (v0, vl+1, . . . , vL) such
that ✓po 6= 0. If we denote

p =

8
<

:

(v, v0, vl+2, . . . , vL�1) if l = 0
(vl0 , . . . , vl�1, v, v0) if l = L� 1
(vl0 , . . . , vl�1, v, v0, vl+2, . . . , vL�1) otherwise,

we have
�p,vL(✓) = ✓piwv!v0✓po 6= 0.

We define ✏ = |�p,vL(✓)| > 0. For all ✓̃ 2 RE
⇥ RB such that k�(✓̃)� �(✓)k1 < ✏ we have

�p,vL(✓̃) 6= 0.

Since �p,vL(✓̃) = ✓̃piw̃v!v0 ✓̃po , this implies in particular that

w̃v!v0 6= 0.

The proof is similar in the case v 2 B and bv 6= 0.

The following proposition, which states that for any ✓ 2
�
RE
⇥ RB

�
\S, V✓ =  ✓(U✓) is open with

respect to the topology induced on ⌃⇤
1 by the standard topology of RP⇥VL , is necessary to show that

(V✓, ( ✓)�1)✓2(RE⇥RB)\S is an atlas of ⌃⇤
1.

Proposition 23. For any ✓ 2
�
RE
⇥ RB

�
\S, for any ⌧ 2 U✓, there exists ✏ > 0 such that

⌃⇤
1 \B1( ✓(⌧), ✏) ⇢ V✓.
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Proof. Let us first construct ✏ and then consider an element of the set on the left of the inclusion and
prove it belongs to V✓. Let ✓ 2

�
RE
⇥ RB

�
\S and ⌧ 2 U✓. For all l 2 J1, L� 1K, for all v 2 Vl, by

definition of F✓ and ⇢✓, we have ⇢✓(⌧)v!s✓max(v)
= wv!s✓max(v)

, and since ✓ 62 S, by definition of
s✓max, wv!s✓max(v)

6= 0, so according to Lemma 22 there exists ✏v > 0 such that for all ✓̃ 2 RE
⇥RB ,

k�(⇢✓(⌧))� �(✓̃)k1 < ✏v =) w̃v!s✓max(v)
6= 0.

Let ✏ = minv2V1[···[VL�1 ✏v .

Let us now show the inclusion: let ✓̃ 2
�
RE
⇥ RB

�
\S such that k�(⇢✓(⌧)) � �(✓̃)k1 < ✏, and

let us show that �(✓̃) 2 V✓. Notice first that for all l 2 J1, L � 1K and v 2 Vl, by definition of ✏,
wv!s✓max(v)

6= 0 and w̃v!s✓max(v)
6= 0. We are going to define ⌧̃ 2 U✓ such that ⇢✓(⌧̃)

R
⇠ ✓̃, so that

using Proposition 16,  ✓(⌧̃) = �(✓̃).

Let us define recursively a family (�0, . . . ,�L) 2 (R⇤)V0 ⇥ · · ·⇥ (R⇤)VL as follows:

• we define �L = 1VL ;

• for all l 2 J1, L� 1K, for all v 2 Vl, we define

�lv =
w̃v!s✓max(v)

wv!s✓max(v)
�l+1
s✓max(v)

. (31)

• we define finally �0 = 1V0 .

Note that for all l 2 J0, LK and for all v 2 Vl, �lv 6= 0. Also note that for all l 2 J2, LK, for all
v 2 Vl�1, reformulating (31) in a way that will be useful later, we have

�ls✓max(v)

�l�1
v

=
wv!s✓max(v)

w̃v!s✓max(v)
. (32)

We then define ⌧̃ 2 RF✓ ⇥ RB by:

• for all l 2 J1, LK, for all (v, v0) 2 (Vl�1 ⇥ Vl) \ F✓,

⌧̃v!v0 =
�lv0

�l�1
v

w̃v!v0 ; (33)

• for all l 2 J1, LK, for all v 2 Vl,
⌧̃v = �lv b̃v. (34)

Let us show ⇢✓(⌧̃)
R
⇠ ✓̃. Indeed, let l 2 J1, LK and let (v, v0) 2 Vl�1 ⇥ Vl. If v 2 V0 or v 2

V1 [ · · · [ VL�1 and v0 6= s✓max(v), then by definition (8) of F✓, we have v ! v0 2 F✓, so using (9)
and (33) we have

⇢✓(⌧̃)v!v0 = ⌧̃v!v0 =
�lv0

�l�1
v

w̃v!v0 . (35)

If v 2 V1 [ · · · [ VL�1 and v0 = s✓max(v), then by definition (8) of F✓, we have v ! v0 2 E\F✓,
and since in that case, l � 2, using (9) and (32), we see that

⇢✓(⌧̃)v!v0 = wv!v0 =
�lv0

�l�1
v

w̃v!v0 . (36)

If v 2 B, using (9) and (34), we have

⇢✓(⌧̃)v = ⌧̃v = �lv b̃v. (37)

Equations (35), (36) and (37) prove that

⇢✓(⌧̃)
R
⇠ ✓̃.
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Using Corollary 17, since ✓̃ 2
�
RE
⇥ RB

�
\S and ⇢✓(⌧̃)

R
⇠ ✓̃, we also have ⇢✓(⌧̃) 2

�
RE
⇥ RB

�
\S.

Since, by definition, U✓ = ⇢�1
✓

��
RE
⇥ RB

�
\S

�
, we have ⌧̃ 2 U✓. We have shown

⌃⇤
1 \B1( ✓(⌧), ✏) ⇢ V✓.

The following proposition is necessary in order to show that (V✓, ( ✓)�1)✓2(RE⇥RB)\S is an atlas of
⌃⇤

1.

Proposition 24. For all ✓ 2
�
RE
⇥ RB

�
\S, the function  ✓ is C1 and its differential D ✓(⌧) is

injective for all ⌧ 2 U✓.

Proof. Let ✓ 2
�
RE
⇥ RB

�
\S. First of all,  ✓ is a polynomial function as a composition of � and

⇢✓ which are both polynomial functions. So,  ✓ is C1.

In order to show the injectivity of the differential D ✓(⌧) for all ⌧ 2 U✓, let us compute the partial
derivatives of  ✓p,vL

(⌧). Let p 2 P and vL 2 VL. Using the definition of  ✓ and �, three cases are
possible.

Case 1. The path p is of the form (v0, v1, . . . , vL�1). We have

 ✓p,vL
(⌧) = ⇢✓(⌧)v0!v1 . . . ⇢✓(⌧)vL�1!vL .

Case 2. The path p is of the form (vl, . . . , vL�1) with l 2 J1, L� 1K. We have, for all ⌧ 2 U✓,

 ✓p,vL
(⌧) = ⌧vl⇢✓(⌧)vl!vl+1 . . . ⇢✓(⌧)vL�1!vL .

Case 3. For p = �, we have, for all ⌧ 2 U✓,

 ✓p,vL
(⌧) = ⌧vL .

Let (v, v0) 2 F✓, and let us compute
@ ✓

p,vL
@⌧v!v0

(⌧).

Case 1. We have p = (v0, . . . , vL�1) 2 P0. If {v, v0} ⇢ {v0, . . . , vL}, there exists l 2 J0, L� 1K
such that (v, v0) = (vl, vl+1), in which case, since (v, v0) 2 F✓, ⇢✓(⌧)vl!vl+1 = ⌧vl!vl+1

and
@ ✓p,vL

@⌧v!v0
(⌧) =

Y

k2J0,L�1K
k 6=l

⇢✓(⌧)vk!vk+1 . (38)

Otherwise if {v, v0} 6⇢ {v0, . . . , vL},

@ ✓p,vL

@⌧v!v0
(⌧) = 0.

Case 2. We have p = (vl, . . . , vL�1) 2 Pl, for l 2 J1, L � 1K. If {v, v0} ⇢ {vl, . . . , vL}, there
exists l0 2 Jl, L � 1K such that (v, v0) = (vl0 , vl0+1), in which case, since (v, v0) 2 F✓,
⇢✓(⌧)vl0!vl0+1

= ⌧vl0!vl0+1
and

@ ✓p,vL

@⌧v!v0
(⌧) = ⌧vl

Y

k2Jl,L�1K
k 6=l0

⇢✓(⌧)vk!vk+1 . (39)

Otherwise if {v, v0} 6⇢ {vl, . . . , vL},

@ ✓p,vL

@⌧v!v0
(⌧) = 0.
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Case 3. We have p = �. In that case, we have

@ ✓p,vL

@⌧v!v0
(⌧) = 0.

Now let v 2 B, and let us compute
@ ✓

p,vL
@⌧v

(⌧).

Case 1. We have p = (v0, . . . , vL�1) 2 P0 and

@ ✓p,vL

@⌧v
(⌧) = 0.

Case 2. We have p = (vl, . . . , vL�1) 2 Pl for l 2 J1, L� 1K. If v = vl, then

@ ✓p,vL

@⌧v
(⌧) =

Y

k2Jl,L�1K
⇢✓(⌧)vk!vk+1 .

If v 6= vl,
@ ✓p,vL

@⌧v
(⌧) = 0.

Case 3. We have p = � and
@ ✓p,vL

@⌧v
(⌧) =

®
1 if v = vL
0 if v 6= vL.

Now that we know the partial derivatives, let us show D ✓(⌧) is injective for all ⌧ 2 U✓. Let ⌧ 2 U✓
and let h 2 RF✓ ⇥ RB such that

D ✓(⌧) · h = 0.

We need to prove that h = 0.

Let us show first that for all v 2 B, hv = 0. Let l 2 J1, L�1K, and let vl 2 Vl so that vl is arbitrary in
B\VL. Let us define vl+1 = s✓max(vl), then vl+2 = s✓max(vl+1), and so on up to vL = s✓max(vL�1).
Let us denote p = (vl, . . . , vL�1). We have

 ✓p,vL
(⌧) = ⌧vlwvl!vl+1 . . . wvL�1!vL ,

so
⇥
D ✓(⌧) · h

⇤
p,vL

=
@ ✓p,vL

@⌧vl

(⌧)hvl = wvl!vl+1 . . . wvL�1!vLhvl .

Since
⇥
D ✓(⌧) · h

⇤
p,vL

= 0 and wvl!vl+1 . . . wvL�1!vL 6= 0, we conclude that hvl = 0. Now let
vL 2 VL. We consider p = � and we have

⇥
D ✓(⌧) · h

⇤
p,vL

= hvL .

Since
⇥
D ✓(⌧) · h

⇤
p,vL

= 0, we also conclude in that case that hvL = 0.

Let us now show that for all (v, v0) 2 F✓, hv!v0 = 0. Let l 2 J1, LK and let (vl�1, vl) 2
(Vl�1 ⇥ Vl) \ F✓ so that (vl�1, vl) is arbitrary in F✓. If l = 1, we define pi = (vl�1) and we
have by convention ✓pi = 1 6= 0. If l > 1, using Proposition 15 there exist l0 2 J0, l � 1K and
a path pi = (vl0 , . . . , vl�1) such that ⇢✓(⌧)pi 6= 0. If l < L, we define vl+1 = s✓max(vl), then
vl+2 = s✓max(vl+1), and so on up to vL = s✓max(vL�1), and we denote p = pi[ (vl�1, vl, . . . , vL�1).
If l = L, we denote p = pi. Let us show the following expression.

⇥
D ✓(⌧) · h

⇤
p,vL

=
X

k2Jl0,l�1K
(vk,vk+1)2F✓

@ ✓p,vL

@⌧vk!vk+1

(⌧)hvk!vk+1 (40)
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Indeed, if l0 � 1, we have

 ✓p,vL
(⌧) = ⌧vl0

l�1Y

k=l0

⇢✓(⌧)vk!vk+1

L�1Y

k=l

wvk!vk+1 ,

with the classical convention that if l = L, the product on the right is empty thus equal to 1. We thus
have

⇥
D ✓(⌧) · h

⇤
p,vL

=
@ ✓p,vL

@⌧vl0
(⌧)hvl0 +

X

k2Jl0,l�1K
(vk,vk+1)2F✓

@ ✓p,vL

@⌧vk!vk+1

(⌧)hvk!vk+1

=
X

k2Jl0,l�1K
(vk,vk+1)2F✓

@ ✓p,vL

@⌧vk!vk+1

(⌧)hvk!vk+1 ,

since we have already shown that hvl0 = 0.

If l0 = 0, we have

 ✓p,vL
(⌧) =

l�1Y

k=0

⇢✓(⌧)vk!vk+1

L�1Y

k=l

wvk!vk+1 ,

with the same convention that when l = L the product on the right is equal to 1, so again

⇥
D ✓(⌧) · h

⇤
p,vL

=
X

k2J0,l�1K
(vk,vk+1)2F✓

@ ✓p,vL

@⌧vk!vk+1

(⌧)hvk!vk+1 .

This concludes the proof of (40).

We can now show by induction the following statement, for l 2 J0, LK.

8l0 2 J1, lK, 8(v, v0) 2 (Vl0�1 ⇥ Vl0) \ F✓, hv!v0 = 0. (Hl)

Since J1, 0K = ;, H0 is trivially true. Now let l 2 J1, LK and suppose Hl�1 is true. We consider
(vl�1, vl) 2 (Vl�1 ⇥ Vl)\F✓, and l0 2 J0, lK, pi and p just as before. Since for all k 2 J0, l� 2K, the
induction hypothesis guarantees that hvk!vk+1 = 0, (40) becomes

⇥
D ✓(⌧) · h

⇤
p,vL

=
@ ✓p,vL

@⌧vl�1!vl

(⌧)hvl�1!vl .

Using (38) and (39), we obtain

⇥
D ✓(⌧) · h

⇤
p,vL

=

®
⇢✓(⌧)piwvl!vl+1 . . . wvL�1!vLhvl�1!vl if l < L
⇢✓(⌧)pihvl�1!vl if l = L.

Since ⇢✓(⌧)pi 6= 0, and for l < L, wvl!vl+1 . . . wvL�1!vL 6= 0, we conclude that hvl�1!vl = 0 and
that Hl holds.

This induction leads to the conclusion that h = 0 and D ✓(⌧) is injective.

We are now equipped to prove Theorem 7, which we restate here.
Theorem 25. ⌃1

⇤ is a smooth manifold of RP⇥VL of dimension

|F✓|+ |B| = N0N1 +N1N2 + · · ·+NL�1NL +NL,

and the family (V✓, ( ✓)�1)✓2(RE⇥RB)\S is an atlas.

Proof. Our goal is to show that the family (V✓, ( ✓)�1)✓2(RE⇥RB)\S is a smooth atlas, which will
show that ⌃⇤

1 is a smooth manifold.

We already know from Proposition 23 that for any ✓ 2
�
RE
⇥ RB

�
\S, V✓ is an open subset of

⌃⇤
1 and from Proposition 21 that ( ✓)�1 is a homeomorphism from V✓ onto U✓. Since for any
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⌘0
•

⌧0
•

⌧1
• U✓̃U✓

V✓̃V✓

⌃⇤
1

 ✓̃ ✓

Figure 3: The points ⌘0, ⌧0, ⌧1 and the inverse charts  ✓ and  ✓̃.

✓ 2
�
RE
⇥ RB

�
\S, ⌧✓ 2 U✓, we have �(✓) =  ✓(⌧✓) 2 V✓ which shows that (V✓)✓2(RE⇥RB)\S

covers ⌃⇤
1.

Let ✓, ✓̃ 2
�
RE
⇥ RB

�
\S, let us show that the transition map

( ✓)�1
�  ✓̃ : ( ✓̃)�1(V✓ \ V✓̃) ! ( ✓)�1(V✓ \ V✓̃)

is smooth.

Let ⌧0 2 U✓̃ such that ⌧0 2 ( ✓̃)�1(V✓ \ V✓̃). We are going to show that the function ( ✓)�1
�  ✓̃ is

C1 in a neighborhood of ⌧0.

For ease of reading, let us denote  ✓̃(⌧0) by ⌘0. By definition, ⌘0 2 V✓ \ V✓̃. In particular, since
⌘0 2 V✓, we can define ⌧1 = ( ✓)�1(⌘0). See Figure 3 for a representation.

Let T = ImD ✓(⌧1), and let us consider a linear subspace G such that T � G = RP⇥VL . Let
NC = |P|NL � |F✓|� |B| = dim(G). Let i : RNC ! G be linear and invertible. Let us consider
the function

'✓ : U✓ ⇥ RNC �! RP⇥VL

(⌧, x) 7�!  ✓(⌧) + i(x).

We are going to show that there exist an open neighborhood Ũ of (⌧1, 0) in (RF✓ ⇥ RB) ⇥ RNC

and an open neighborhood Ṽ of ⌘0 in RP⇥VL such that '✓ is a C1 diffeomorphism from Ũ onto Ṽ
satisfying

'✓

Å ⇥
(RF✓ ⇥ RB)⇥ {0}NC

⇤
\ Ũ

ã
= ⌃⇤

1 \ Ṽ .

Let us first show that '✓ is a C1-diffeomorphism from a neighborhood of (⌧1, 0) in (RF✓ ⇥ RB)⇥
RNC onto a neighborhood of ⌘0 in RP⇥VL . As shown in Proposition 24,  ✓ is C1 and i is a
linear function, so '✓ is C1. Let us prove that the differential D'✓(⌧1, 0) is injective. For all
(⌧, x) 2

�
RF✓ ⇥ RB

�
⇥ RNC ,

D'✓(⌧1, 0) · (⌧, x) = D ✓(⌧1) · ⌧ + i(x).

Since D ✓(⌧1) · ⌧ 2 T , i(x) 2 G, and T and G are in direct sum, if D'✓(⌧1, 0) · (⌧, g) = 0, then
we have ®

D ✓(⌧1) · ⌧ = 0
i(x) = 0.

Since as shown in Proposition 24 D ✓(⌧1) is injective, and since i is invertible, we have
(⌧, x) = (0, 0).
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Hence, D'✓(⌧1, 0) is injective. Since dim(
�
RF✓ ⇥ RB

�
⇥ RNC ) = |F✓| + |B| + NC = |P|NL,

the differential D'✓(⌧1, 0) is bijective. Using the inverse function theorem, there exists an open
set U ⇢ U✓ ⇥ RNC containing (⌧1, 0), an open set V ⇢ RP⇥VL containing ⌘0 such that '✓ is a
C1-diffeomorphism from U onto V .

We have
'✓

Å ⇥
(RF✓ ⇥ RB)⇥ {0}NC

⇤
\ U

ã
⇢ V✓ \ V.

In fact, if V is small enough, this inclusion is an equality. We are going to construct open subsets
Ũ ⇢ U and Ṽ ⇢ V so that it is the case. Let us define

O = {⌧ 2 U✓, (⌧, 0) 2 U}.

Since U is an open set containing (⌧1, 0), O is an open set containing ⌧1 = ( ✓)�1(⌘0). Since,
according to Proposition 21,  ✓ is a homeomorphism,  ✓(O) is an open subset of V✓ so there exists
✏ > 0 such that

V✓ \B1(⌘0, ✏) ⇢  ✓(O). (41)

We can now define Ṽ = V \B1(⌘0, ✏), and Ũ = {(⌧, x) 2 U, '✓(⌧, x) 2 Ṽ }, which are open sets
such that (⌧1, 0) 2 Ũ , ⌘0 2 Ṽ , and '✓ is a C1-diffeomorphism from Ũ onto Ṽ . Let us show that

'✓

Å ⇥
(RF✓ ⇥ RB)⇥ {0}NC

⇤
\ Ũ

ã
= V✓ \ Ṽ . (42)

The direct inclusion is immediate: if (⌧, 0) 2
⇥
(RF✓ ⇥ RB)⇥ {0}NC

⇤
\ Ũ , then

'✓(⌧, 0) =  ✓(⌧) 2 V✓ \ Ṽ .

For the reciprocal inclusion, if ⌧ 2 U✓ is such that  ✓(⌧) 2 V✓ \ Ṽ , then by definition of ✏ and Ṽ ,
(41) guarantees, since  ✓ is injective, that ⌧ 2 O. By definition of O, we have (⌧, 0) 2 U , and since

'✓(⌧, 0) =  ✓(⌧) 2 Ṽ ,

this shows (⌧, 0) 2 Ũ . This shows the reciprocal inclusion, and thus (42) holds.

Let us now define
P✓ : RF✓ ⇥ RB

⇥ RNC �! RF✓ ⇥ RB

(⌧, x) 7�! ⌧

the restriction to the first component, and let us observe that over V✓ \ Ṽ , we have

P✓ � ('✓)
�1 = ( ✓)�1. (43)

Indeed, if ⌘ 2 V✓ \ Ṽ , then by (42) there exists ⌧ 2 U✓ such that (⌧, 0) 2 Ũ and '✓(⌧, 0) = ⌘. Since
'✓(⌧, 0) =  ✓(⌧), this shows that ⌧ = ( ✓)�1(⌘) and thus

( ✓)�1(⌘) = P✓(⌧, 0) = P✓ � ('✓)
�1(⌘).

Now recall that ⌘0 =  ✓̃(⌧0). By continuity of  ✓̃, there exists ✏0 > 0 such that B1(⌧0, ✏0) ⇢

( ✓̃)�1(V✓ \ V✓̃) and
 ✓̃(B1(⌧0, ✏

0)) ⇢ Ṽ .

For any ⌧ 2 B1(⌧0, ✏0), we have  ✓̃(⌧) 2 V✓ \ Ṽ so, as we just proved with (43), ( ✓)�1
� ✓̃(⌧) =

P✓ � ('✓)�1
�  ✓̃(⌧). Since the functions  ✓̃, ('✓)�1 and P✓ are all C1, we conclude that the

transition map ( ✓)�1
�  ✓̃ is C1 over B1(⌧0, ✏0), for all ⌧0 2 ( ✓̃)�1(V✓ \ V✓̃). We conclude that

( ✓)�1
�  ✓̃ is C1 over ( ✓̃)�1(V✓ \ V✓̃).

We have showed that (V✓, ( ✓)�1)✓2(RE⇥RB)\S is a smooth atlas, and thus that ⌃⇤
1 is a smooth

submanifold of RP⇥VL . As computed in (21), its dimension is

|F✓|+ |B| = N0N1 +N1N2 + · · ·+NL�1NL +NL.
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D Conditions of local identifiability

Let us restate (using Definition 6) and prove Theorem 8.
Theorem 26. For any X 2 Rn⇥V0 and ✓ 2

�
RE
⇥ RB

�
\(S [�X), the two following statements

are equivalent.

i) ✓ is locally identifiable from X .

ii) There exists ✏ > 0 such that B1(�(✓), ✏) \ ⌃⇤
1 \N(X, ✓) = {�(✓)}.

Proof.

i)) ii) Suppose i) is satisfied for some ✏1 > 0. We first construct ✏0 > 0 and then consider ⌘ 2
B1(�(✓), ✏0) \⌃⇤

1 \N(X, ✓), and we prove that ⌘ = �(✓). Since ✓ 2
�
RE
⇥ RB

�
\(S [�X) and

since, according to Proposition 14, �X is closed, there exists ✏2 > 0 such that for any ✓̃ 2 B1(✓, ✏2),

↵(X, ✓) = ↵(X, ✓̃),

i.e.
A(X, ✓) = A(X, ✓̃).

Consider ✏ = min(✏1, ✏2). Since, according to Proposition 21, ⇢✓ � ( ✓)�1 is continuous at �(✓) 2
 ✓(U✓), and since ⇢✓ � ( ✓)�1(�(✓)) = ⇢✓(⌧✓) = ✓, there exists ✏0 > 0 such that for all ⌧ 2 U✓,

k ✓(⌧)��(✓)k1 < ✏0 =) k⇢✓(⌧)�✓k1 = k⇢✓�( 
✓)�1( ✓(⌧))�⇢✓�( 

✓)�1(�(✓))k1 < ✏.
(44)

Since �(✓) =  ✓(⌧✓), Proposition 23 guarantees that, modulo a decrease of ✏0, we can assume that

B1(�(✓), ✏0) \ ⌃⇤
1 ⇢  

✓(U✓). (45)

Now let ⌘ 2 B1(�(✓), ✏0) \ ⌃⇤
1 \ N(X, ✓). Let us prove that ⌘ = �(✓). Using (45), there exists

⌧ 2 U✓ such that ⌘ =  ✓(⌧). Since k�(✓)� ⌘k1 < ✏0, we have using (44)

k⇢✓(⌧)� ✓k1 < ✏. (46)

Since ✏ < ✏2, we have
A(X, ✓) = A(X, ⇢✓(⌧)). (47)

Since  ✓(⌧) = ⌘ 2 N(X, ✓), we have by definition of N(X, ✓) that  ✓(⌧)� �(✓) 2 KerA(X, ✓),
so

A(X, ✓) ·  ✓(⌧) = A(X, ✓) · �(✓) (48)

Using successively (3), (47), (48) and (3) again, we have

f⇢✓(⌧)(X) = A(X, ⇢✓(⌧)) · �(⇢✓(⌧))

= A(X, ✓) · �(⇢✓(⌧))

= A(X, ✓) · �(✓)

= f✓(X).

Since the hypothesis i) holds for ✏1, using (46) and the fact that ✏ < ✏1, we have

✓ ⇠ ⇢✓(⌧).

We conclude using Proposition 16 that

⌘ = �(⇢✓(⌧)) = �(✓),

which shows
B1(�(✓), ✏0) \ ⌃⇤

1 \N(X, ✓) ⇢ {�(✓)}.

The converse inclusion trivially holds and therefore ii) holds.
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ii)) i) Suppose ii) is satisfied for some ✏0 > 0.

We first construct ✏ and prove i) holds. Since ✓ 2
�
RE
⇥ RB

�
\(S [�X), using Proposition 14,

there exists ✏1 > 0 such that for all ✓̃ 2 B1(✓, ✏1),

↵(X, ✓) = ↵(X, ✓̃),

i.e.
A(X, ✓) = A(X, ✓̃). (49)

Since � is continuous, there exists ✏2 > 0 such that

k✓ � ✓̃k1 < ✏2 =) k�(✓)� �(✓̃)k1 < ✏0.

Using Proposition 19, there exists ✏3 > 0 such that

✓
R
⇠ ✓̃ and k✓ � ✓̃k1 < ✏3 =) ✓ ⇠ ✓̃.

Since ✓ 62 S and S is closed, there exists ✏4 > 0 such that for all ✓̃ 2 RE
⇥ RB , if k✓ � ✓̃k1 < ✏4,

then
✓̃ 62 S.

Let ✏ = min(✏1, ✏2, ✏3, ✏4). Let ✓̃ 2 B1(✓, ✏), and suppose

f✓(X) = f✓̃(X).

Let us prove that ✓ ⇠ ✓̃. Reformulating the above equality using (3) for both sides, and using the
definition of A given in the beginning of Section 4, we have

A(X, ✓) · �(✓) = A(X, ✓̃) · �(✓̃).

Since k✓ � ✓̃k1 < ✏  ✏1, we have the equality (49) and thus

A(X, ✓) · �(✓) = A(X, ✓) · �(✓̃).

In other words, �(✓̃) � �(✓) 2 KerA(X, ✓). Since ✏ < ✏4, �(✓̃) 2 ⌃⇤
1. Since ✏ < ✏2, �(✓̃) 2

B1(�(✓), ✏0). Summarizing,

�(✓̃) 2 B1(�(✓), ✏0) \ ⌃⇤
1 \N(X, ✓),

and using the hypothesis ii), we conclude that

�(✓̃) = �(✓).

By Proposition 18, we have ✓ R
⇠ ✓̃, and since ✏ < ✏3, we conclude that

✓ ⇠ ✓̃.

We are now going to prove Theorems 9 and 10, which we restate as Theorems 27 and 28 respectively
(using Definition 6).
Theorem 27 (Necessary condition). Let X 2 Rn⇥V0 and ✓ 2

�
RE
⇥ RB

�
\(S [�X). If CN is not

satisfied, then ✓ is not locally identifiable from X (thus not globally identifiable).
Theorem 28 (Sufficient condition). Let X 2 Rn⇥V0 and ✓ 2

�
RE
⇥ RB

�
\(S [ �X). If CS is

satisfied, then ✓ is locally identifiable from X .

To prove the theorems, we need to prove first the following lemmas.
Lemma 29. Let us denote by T = ImD ✓(⌧✓) the direction of the tangent plane to ⌃⇤

1 at �(✓). Let
us denote by H the intersection KerA(X, ✓) \ T . We have

dim(H) = |F✓|+ |B|�R�. (50)
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Proof. Let ⌘ 2 T . There exists h 2 RF✓ ⇥ RB such that ⌘ = D ✓(⌧✓) · h. We have the following
equivalence:

⌘ 2 KerA(X, ✓) () A(X, ✓) · ⌘ = 0

() A(X, ✓) �D ✓(⌧✓) · h = 0

() �(X, ✓) · h = 0

() h 2 Ker�(X, ✓).

This shows that D ✓(⌧✓)�1(KerA(X, ✓) \ T ) = Ker�(X, ✓) ⇢ RF✓ ⇥ RB .

Since D ✓(⌧✓) is injective, we thus have

dim(H) = dim(Ker�(X, ✓)) = |F✓|+ |B|�R�.

Lemma 30. Let G be a supplementary subspace of KerA(X, ✓) such that

H �G = KerA(X, ✓). (51)

If R� = RA, there exist an open set O ⇢ U✓ ⇥G containing (⌧✓, 0) and an open set V ⇢ RP⇥VL

containing �(✓) such that
⇠ : O �! V

(⌧, g) 7�!  ✓(⌧) + g

is a diffeomorphism from O onto V .

Proof. Let us first show that
T �G = RP⇥VL . (52)

Indeed, since KerA(X, ✓) = H � G and T \ KerA(X, ✓) = H , we have T \ G = {0}. We of
course have

T �G ⇢ RP⇥VL . (53)

Let us show that dim(G) = dim(RP⇥VL)� dim(T ). First note that we have

dim(KerA(X, ✓)) = dim(RP⇥VL)� rank(A(X, ✓)) = |P|NL �RA. (54)

Using (51) and (54), we have

dim(G) = dim(KerA(X, ✓))� dim(H)

= |P|NL �RA � dim(H).

Using (50) and the hypothesis R� = RA we thus have

dim(G) = |P|NL �RA +R� � |F✓|� |B|

= |P|NL � |F✓|� |B|

= |P|NL � dim(T ),

where the last equality comes from the injectivity of D ✓(⌧✓), shown in Proposition 24. Together
with (53), this proves (52).

Let us now consider the function

⇠ : U✓ ⇥G �! RP⇥VL

(⌧, g) 7�!  ✓(⌧) + g.

For all (h, g) 2 (RF✓ ⇥ RB)⇥G, we have

D⇠(⌧✓, 0) · (h, g) = D ✓(⌧✓)h+ g.

The differential D⇠(⌧✓, 0) is injective. Indeed, if

D⇠(⌧✓, 0) · (h, g) = 0,
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then since D ✓(⌧✓)h 2 T and g 2 G, we have
®
D ✓(⌧✓)h = 0
g = 0,

and since D ✓(⌧✓) is injective, h = 0 and D⇠(⌧✓, 0) is injective. Since, using (52),

dim(RF✓ ⇥ RB) + dim(G) = |P|NL,

D⇠(⌧✓, 0) is bijective.

We can thus apply the inverse function theorem: there exists an open set O ⇢ U✓ ⇥G containing
(⌧✓, 0), an open set V ⇢ RP⇥VL containing �(✓) such that ⇠ is a diffeomorphism from O into V .

We can now prove the theorems.

Proof of Theorem 27. If CN is not satisfied, then we have R� = RA < |F✓| + |B|. We can thus
apply Lemma 30: there exist an open set O ⇢ U✓⇥G containing (⌧✓, 0) and an open set V ⇢ RP⇥VL

containing �(✓) such that
⇠ : O �! V

(⌧, g) 7�!  ✓(⌧) + g

is a diffeomorphism from O onto V .

Consider ✏ > 0. We define the open set Õ = O \ ( ✓)�1(B(�(✓), ✏)⇥G and its image Ṽ = ⇠(Õ).

Using the computation of dim(H) shown in Lemma 29, we have

dim(H) = |F✓|+ |B|�R� > 0,

so there exists a nonzero w 2 H such that �(✓) + w 2 Ṽ . Since ⇠ induces a diffeomorphism from Õ

onto Ṽ , there exists (⌧, g) 2 Õ such that

�(✓) + w =  ✓(⌧) + g

i.e.
 ✓(⌧)� �(✓) = w � g. (55)

Let us denote ✓̃ = ⇢✓(⌧) and let us show that Theorem 26.ii) does not hold. By definition, �(✓̃) =
 ✓(⌧) and since (⌧, g) 2 Õ, k�(✓)� �(✓̃)k1 < ✏. Since H \G = {0}, w 2 H , g 2 G and w 6= 0,
(55) shows that

�(✓̃)� �(✓) 6= 0.

Furthermore, since w 2 H ⇢ KerA(X, ✓) and g 2 G ⇢ KerA(X, ✓), (55) shows that

�(✓̃)� �(✓) 2 KerA(X, ✓),

so
�(✓̃) 2 N(X, ✓).

Summarizing, for any ✏ > 0 there exists ✓̃ 2
�
RE
⇥ RB

�
\S such that �(✓̃) 2 B1(�(✓), ✏) \ ⌃⇤

1 \

N(X, ✓)\{�(✓)}. The second item of Theorem 26 does not hold. Since it is equivalent, the first item
of Theorem 26 does not hold either. In other words, the conclusion of Theorem 27 holds.

Proof of Theorem 28. Suppose that CS is satisfied. Using Lemma 29 and using CS , we obtain

dim(T \KerA(X, ✓)) = |F✓|+ |B|�R� = 0.

We thus have
T \KerA(X, ✓) = {0}. (56)

In order to apply Theorem 26, let us show by contradiction that there exists ✏ > 0 such that

B1(�(✓), ✏) \ ⌃⇤
1 \N(X, ✓) = {�(✓)}. (57)
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More precisely, we suppose that for all n 2 N⇤, there exists �n 2 N(X, ✓)\⌃⇤
1 such that �n 6= �(✓)

and k�(✓)� �nk1 < 1
n and prove that it leads to T \KerA(X, ✓) 6= {0}, which contradicts (56).

Using Proposition 23, there exists n0 2 N⇤ such that for all n � n0, there exists ⌧n 2 U✓ such that
�n =  ✓(⌧n). Since  ✓ is a homeomorphism and  ✓(⌧✓) = �(✓),

�n ! �(✓)

implies that
⌧n ! ⌧✓.

Moreover, for all n � n0, ⌧n 6= ⌧✓.

When n tends to infinity, we can thus write

�n � �(✓) =  ✓(⌧n)�  
✓(⌧✓) = D ✓(⌧✓) · (⌧n � ⌧✓) + o(⌧n � ⌧✓).

Let us apply A(X, ✓) and divide by k⌧n � ⌧✓k.

1

k⌧n � ⌧✓k
A(X, ✓)·(�n��(✓)) = A(X, ✓)�D ✓(⌧✓)·

Å
⌧n � ⌧✓
k⌧n � ⌧✓k

ã
+

1

k⌧n � ⌧✓k
A(X, ✓)o (⌧n � ⌧✓) .

(58)
Since �n 2 N(X, ✓) for all n 2 N⇤,

1

k⌧n � ⌧✓k
A(X, ✓) · (�n � �(✓)) = 0.

Since ⌧n�⌧✓
k⌧n�⌧✓k belongs to the unit sphere, we can extract a subsequence that converges to a limit h

with norm equal to 1. Taking the limit in (58) according to this subsequence, we obtain

0 = A(X, ✓) �D ✓(⌧✓) · h,

which shows that D ✓(⌧✓) ·h 2 KerA(X, ✓). Since h 6= 0 and D ✓(⌧✓) is injective, D ✓(⌧✓)h 6= 0
and

T \KerA(X, ✓) 6= {0}.

This is in contradiction with (56).

We have proven (57). We can now conclude thanks to Lemma 26: there exists ✏0 > 0 such that for
any ✓̃ 2 RE

⇥ RB , if k✓ � ✓̃k < ✏0, then

f✓(X) = f✓̃(X) =) ✓ ⇠ ✓̃.

E Checking the conditions numerically

We restate and prove Proposition 12.
Proposition 31. Let X 2 Rn⇥V0 and ✓ 2 RE

⇥ RB . We have

RA = NL rank (↵(X, ✓)) .

Proof. Let ⌘ 2 RP⇥VL . We have

A(X, ✓) · ⌘ = ↵(X, ✓)⌘.

If we denote by ⌘1, . . . , ⌘NL 2 RP the NL columns of ⌘, the columns of A(X, ✓) · ⌘ are
↵(X, ✓)⌘1, . . . ,↵(X, ✓)⌘NL . If we consider the matrix ⌘ as a family of NL vectors of RP and
the matrix A(X, ✓) ·⌘ as a family of NL vectors of Rn, the operator A(X, ✓) can then be equivalently
described as

A(X, ✓) : (RP)NL �! (Rn)NL

(⌘1, . . . , ⌘NL) 7�! (↵(X, ✓)⌘1, . . . ,↵(X, ✓)⌘NL).

The rank of such an operator is NL rank(↵(X, ✓)).
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We restate and prove Proposition 11.
Proposition 32. Let X 2 Rn⇥V0 and ✓ 2

�
RE
⇥ RB

�
\(S [�X). The function

U✓ �! Rn⇥VL

⌧ 7�! f⇢✓(⌧)(X)

is differentiable in a neighborhood of ⌧✓, and we denote by D⌧f⇢✓(⌧✓)(X) its differential at ⌧✓. We
have

D⌧f⇢✓(⌧✓)(X) = �(X, ✓). (59)

Proof. Using (3) at ⇢✓(⌧) and the definition of  ✓ in (11), we have

f⇢✓(⌧)(X) = A(X, ✓) ·  ✓(⌧).

Taking the differential of
U✓ �! Rn⇥VL

⌧ 7�! f⇢✓(⌧)(X)

at ⌧✓, and using (13), we obtain

D⌧f⇢✓(⌧✓)(X) = A(X, ✓) �D ✓(⌧✓) = �(X, ✓).

To finish with, the following proposition gives explicit expressions of the coefficients of �(X, ✓).
These expressions are given for the sake of theoretical completeness. Note that when it comes to com-
puting �(X, ✓) in practice (in order to compute R�), the correct approach is using backpropagation
as described in Section 5 rather than evaluating the expressions in Proposition 33 which involve sums
with very large numbers of summands.
Proposition 33. If we decompose it in the canonical bases of RF✓ ⇥ RB and RJ1,nK⇥VL , �(X, ✓)
is a (nNL)⇥ (|F✓|+ |B|) matrix. For lighter notations, let us drop the dependency in (X, ✓) and
denote by �i,vL the lines of �(X, ✓), for i 2 J1, nK and vL 2 VL, which satisfy (�i,vL)T 2 RF✓ ⇥RB .
For any (i, vL) 2 J1, nK⇥ VL, let us express the coefficients of �i,vL , i.e. express �i,vL

vl!vl+1
for any

vl ! vl+1 2 F✓ and express �i,vL
vl for any vl 2 B.

• For any l 2 J0, L� 1K and any (vl, vl+1) 2 Vl ⇥ Vl+1 such that vl ! vl+1 2 F✓,

�i,vL
vl!vl+1

=
X

v02V0

...
vl�12Vl�1
vl+22Vl+2

...
vL�12VL�1

xi
v0wv0!v1avl(x

i, ✓)
Y

1kL�1
k 6=l

avk(x
i, ✓)wvk!vk+1

+
LX

l0=1

X

vl02Vl0

...
vl�12Vl�1
vl+22Vl+2

...
vL�12VL�1

bvl0avl(x
i, ✓)

Y

l0kL�1
k 6=l

avk(x
i, ✓)wvk!vk+1 , (60)

where wv0!v1 = wv0!v1 and avl(x
i, ✓) = avl(x

i, ✓) except when l = 0 in which case
wv0!v1 = 1 and avl(x

i, ✓) = 1.

• For any l 2 J1, LK and any vl 2 Vl,

�i,vL
vl

=
X

vl+12Vl+1

...
vL�12VL�1

Y

lkL�1

avk(x
i, ✓)wvk!vk+1 . (61)
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Proof. Let (i, vL) 2 J1, nK⇥ VL.

Let us compute �i,vL
vl!vl+1

, for l 2 J0, L� 1K and (vl, vl+1) 2 Vl ⇥ Vl+1 such that vl ! vl+1 2 F✓.
�i,vL
vl!vl+1

is the coefficient corresponding to the line (i, vL) and the column (vl ! vl+1) of �(X, ✓).
Let us denote by hvl!vl+1 2 RF✓ ⇥ RB the vector whose component indexed by vl ! vl+1 is equal
to 1 and whose other components are zero. Let us denote by di,vL 2 Rn⇥VL the element whose
component indexed by (i, vL) is equal to 1 and whose other components are zero. Let us denote by
h·, ·iRn⇥VL the scalar product of the euclidean space Rn⇥VL . We have

�i,vL
vl!vl+1

=
⌦
di,vL , �(X, ✓) · hvl!vl+1

↵
Rn⇥VL

=
⌦
di,vL , A(X, ✓) �D ✓(⌧✓) · h

vl!vl+1
↵
Rn⇥VL

=

Æ
di,vL , A(X, ✓) ·

@ ✓

@⌧vl!vl+1

(⌧✓)

∏

Rn⇥VL

=

Æ
di,vL , ↵(X, ✓)

@ ✓

@⌧vl!vl+1

(⌧✓)

∏

Rn⇥VL

=

ñ
↵(X, ✓)

@ ✓

@⌧vl!vl+1

(⌧✓)

ô

i,vL

,

where
h
↵(X, ✓) @ ✓

@⌧vl!vl+1
(⌧✓)

i

i,vL

denotes the coefficient (i, vL) of the product

↵(X, ✓) @ ✓

@⌧vl!vl+1
(⌧✓). Let us remind the dimensions in this product. For the left factor, re-

calling the definition given in the beginning of Section D, we have ↵(X, ✓) 2 Rn⇥P . Concerning
the right factor, since for any ⌧ 2 U✓, we have  ✓(⌧) 2 RP⇥VL , the partial derivative satisfies

@ ✓

@⌧vl!vl+1
(⌧✓) 2 RP⇥VL . Hence, the dimension of the product is

↵(X, ✓)
@ ✓

@⌧vl!vl+1

(⌧✓) 2 Rn⇥VL .

To obtain the coefficient (i, vL) of this product, we keep the ith line of the left factor, which is equal

to ↵(xi, ✓), and the column vL of the right factor, which is equal to
@ ✓

vL
@⌧vl!vl+1

(⌧✓). We thus have
ñ
↵(X, ✓)

@ ✓

@⌧vl!vl+1

(⌧✓)

ô

i,vL

= ↵(xi, ✓)
@ ✓vL

@⌧vl!vl+1

(⌧✓) =
X

p2P
↵p(x

i, ✓)
@ ✓p,vL

@⌧vl!vl+1

(⌧✓).

Let p 2 P . If p = (v0, . . . , vL) 2 P0, looking at the case 1 in the proof of Proposition 24, we have
@ ✓p,vL

@⌧vl!vl+1

(⌧✓) = 1{vl!vl+12p}
Y

k2J0,L�1K
k 6=l

wvk!vk+1 .

Recalling the definition of ↵p(xi, ✓) in the case p 2 P0, given in (2), we also have

↵p(x
i, ✓) = xi

v0

L�1Y

k=1

avk(x
i, ✓),

and thus

↵p(x
i, ✓)

@ ✓p,vL

@⌧vl!vl+1

(⌧✓) = 1{vl!vl+12p} x
i
v0

L�1Y

k=1

avk(x
i, ✓)

Y

k2J0,L�1K
k 6=l

wvk!vk+1 . (62)

Now if p = (vl0 , . . . , vL) 2 Pl0 , for l0 2 J1, . . . , L � 1}, looking at the case 2 in the proof of
Proposition 24, we have

@ ✓p,vL

@⌧vl!vl+1

(⌧✓) = 1{vl!vl+12p} bvl0
Y

k2Jl0,L�1K
k 6=l

wvk!vk+1 .
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Recalling the definition of ↵p(xi, ✓) in the case p 2 Pl0 , given in (2), we also have

↵p(x
i, ✓) =

L�1Y

k=l0

avk(x
i, ✓),

and thus

↵p(x
i, ✓)

@ ✓p,vL

@⌧vl!vl+1

(⌧✓) = 1{vl!vl+12p} bvl0

L�1Y

k=l0

avk(x
i, ✓)

Y

k2Jl0,L�1K
k 6=l

wvk!vk+1 . (63)

Finally, if p = �, looking at the case 3 in the proof of Proposition 24, we have

@ ✓p,vL

@⌧vl!vl+1

(⌧✓) = 0,

and thus

↵p(x
i, ✓)

@ ✓p,vL

@⌧vl!vl+1

(⌧✓) = 0. (64)

Assembling (62), (63) and (64), we can sum over all p 2 P , and obtain

�i,vL
vl+1!vl =

X

p2P0
p=(v0,...,vL�1)

1{vl!vl+12p} x
i
v0

L�1Y

k=1

avk(x
i, ✓)

Y

k2J0,L�1K
k 6=l

wvk!vk+1

+
LX

l0=1

X

p2Pl0
p=(vl0 ,...,vL�1)

1{vl!vl+12p} bvl0

L�1Y

k=l0

avk(x
i, ✓)

Y

k2Jl0,L�1K
k 6=l

wvk!vk+1

which can be reformulated, getting rid of the zero sums when vl ! vl+1 62 p, as

�i,vL
vl+1!vl =

X

v02V0

...
vl�12Vl�1
vl+22Vl+2

...
vL�12VL�1

xi
v0wv0!v1avl(x

i, ✓)
Y

k2J1,L�1K
k 6=l

avk(x
i, ✓)wvk!vk+1

+
LX

l0=1

X

vl02Vl0

...
vl�12Vl�1
vl+22Vl+2

...
vL�12VL�1

avl(x
i, ✓)bv0

l

Y

k2Jl0,L�1K
k 6=l

avk(x
i, ✓)wvk!vk+1 ,

which shows (60).

The proof of (61) is similar to the one of (60).

39


