
Under review as a conference paper at ICLR 2023

TOWARDS UNDERSTANDING ROBUST MEMORIZATION
IN ADVERSARIAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial training is a standard method to train neural networks to be robust to
adversarial perturbation. However, in contrast with benign overfitting in the stan-
dard deep learning setting, which means that over-parameterized neural networks
surprisingly generalize well for unseen data, while adversarial training method
is able to achieve low robust training error, there still exists a significant robust
generalization gap, which promotes us exploring what mechanism leads to robust
overfitting during learning process. In this paper, we propose an implicit bias
called robust memorization in adversarial training under the realistic data assump-
tion. By function approximation theory, we prove that ReLU nets with efficient
size have the ability to achieve robust memorization, while robust generalization
requires exponentially large models. Then, we demonstrate robust memorization
in adversarial training from both empirical and theoretical perspectives. In partic-
ular, we empirically investigate the dynamics of loss landscape over input, and we
also provide theoretical analysis of robust memorization on data with linear sepa-
rable assumption. Finally, we prove novel generalization bounds based on robust
memorization, which further explains why deep neural networks have both high
clean test accuracy and robust overfitting at the same time.

1 INTRODUCTION

Although deep learning has made a remarkable success in many application fields, such as computer
vision (Voulodimos et al., 2018) and natural language process (Devlin et al., 2018), it is well-known
that only small but adversarial perturbations additional to the natural data can make well-trained
classifiers confused (Szegedy et al., 2013; Goodfellow et al., 2014), which promotes designing ad-
versarial robust learning algorithms. In practice, adversarial training methods (Madry et al., 2017;
Shafahi et al., 2019; Zhang et al., 2019) are widely used to improve the robustness of models by
regarding perturbed data as training data. However, while these robust learning algorithms are able
to achieve high robust training accuracy, it still leads to a non-negligible robust generalization gap
(Raghunathan et al., 2019), which is also called robust overfitting (Rice et al., 2020; Yu et al., 2022).

To explain this puzzling phenomenon, a series of works have attempted to provide theoretical under-
standings from different perspectives. Despite these aforementioned works seem to provide a series
of convincing evidence from theoretical views in different settings, there still exists a gap between
theory and practice for at least two reasons.

First, although previous works have shown that adversarial robust generalization requires more data
and larger models (Schmidt et al., 2018; Li et al., 2022), it is unclear that what mechanism, during
adversarial training process, directly causes robust overfitting. In other words, we know there is no
robust generalization gap for a trivial model that only guesses labels totally randomly (e.g. deep
neural networks with random initialization), which implies that we should take learning process into
consideration to analyze robust generalization.

Second and most importantly, while some works (Tsipras et al., 2018; Zhang et al., 2019) point
out that achieving robustness may hurt clean test accuracy, in most of the cases, it is observed that
drop of robust test accuracy is much higher than drop of clean test accuracy in adversarial training
(Schmidt et al., 2018; Raghunathan et al., 2019) (see in Table 1). Namely, a weak version of benign
overfitting, which means that overparameterized deep neural networks can both fit random data
powerfully and generalize well for unseen clean data, remains after adversarial training.
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Table 1: Train and test performances on CIFAR-10 (Raghunathan et al., 2019)

Clean training Adversarial training
Robust test 3.5% 45.8%
Robust train − 100%
Clean test 95.2% 87.3%
Clean train 100% 100%

Therefore, it is natural to ask the following question:

What happens, during adversarial learning process, resulting in both benign clean overfitting and
significant robust overfitting at the same time?

In this paper, we provide a theoretical understanding of the adversarial training process by proposing
a novel implicit bias called robust memorization under the realistic data assumption, which explains
why adversarial training leads to both high clean test accuracy and robust generalization gap.

The fundamental data structure that we leverage is that data can be clean separated by a neural
network fclean with moderate size but this neural classifier is non-robust on data with small margin,
which is consistent with the common practice that well-trained neural networks have good clean
performance but fail to classify perturbed data due to the close distance between small margin data
and decision boundary. The existence of small and large margin data for image classification has
been empirically verified (Banburski et al., 2021). And we also assume that data is well-separated,
which means that there exists a robust classifier in general (Yang et al., 2020). However, this robust
classifier may be hard to approximate by neural networks (Li et al., 2022). In other words, clean
training often finds simple but non-robust solution, although robust classifier always exists.

Specifically, we consider the underlying data distribution D where µ proportional data is with small
margin, which can be perturbed as adversarial example, and 1 − µ proportional data is with large
margin, which can be robustly classified by the neural network fclean. In adversarial training, we
access N instances S randomly drawn from D as training data. In fact, by applying concentra-
tion technique in high dimensional probability, we know that there roughly exist µN small margin
training data and (1− µ)N large margin training data.

In order to answer the question that we ask, under the above realistic data assumption, we consider
the following classifier,

fadv(x) :=
∑

(xi,yi)∈Ssmall

yiI{∥x− xi∥p ≤ δ}

︸ ︷︷ ︸
robust local indicators on small margin data

+ fclean(x)I
{

min
(xi,yi)∈Ssmall

∥x− xi∥p > δ

}
︸ ︷︷ ︸

clean classifier on other data

,

where Ssmall is the small margin part of training dataset, and δ denotes adversarial perturbation radius,
which is smaller than the separation between data in our setting.

Indeed, the classifer fadv satisfies all main characteristics of deep models outputted by adversarial
training (Proposition 3.2): First, adversarial training error with respect to fadv achieves zero; second,
fadv has a good clean performance because the classifier is robust within the neighborhood of training
data with small margin and it performs as the same as the clean classifier on other data; third,
although this classifier has low robust training error, it is non-robust on other data since it only
robustly memorizes training data with small margin, which results in robust overfitting.

Inspired by the ideal model fadv, we then propose a conjecture that deep neural networks converge
to solution similar to fadv in adversarial training, which is a novel implicit bias of adversarial train-
ing, and we call it robust memorization, which provides a theoretical understanding of adversarial
training, including why solution found by adversarial training has both good clean generalization
and robust generalization gap.

Based on function approximation theory, we can prove that, for d−dimensional training dataset
S with N samples, ReLU networks with Õ(µNd + poly(d)) parameters are able to represent the
target functions fadv that we mention for robust memorization (Theorem 3.3 and Corollary 3.4).
However, we still prove a lower bound for the network size that is exponential in the data dimension
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d to make robust generalization (Theorem 3.5), and it manifests that robust classifier has higher
representation complexity than the classifier with robust memorization, which potentially explain
why adversarial training converges to robust memorization regime rather than finds robust classifier
due to the inductive bias of low representation complexity.

To further demonstrate robust memorization in adversarial training, we empirically investigate the
dynamics of loss landscape over input during adversarial learning process. Concretely, for the loss
function L(f(x), y) over classifier f and on data point (x, y), we verify whether f̂ outputted by
adversarial training is with robust memorization by certain measure — maximum gradient norm
within the neighborhood of training data input,

1

N

N∑
i=1

max
∥ξ∥p≤δ

∥∇xL(f(xi + ξ), yi)∥q,

where {(xi, yi)}Ni=1 denotes the training dataset, and 1
p + 1

q = 1.

This measure reflects the local flatness of loss landscape over input on training dataset. In robust
memorization regime, the loss landscape will be very flat within the adversarial training perturbation
radius but very sharp outside the neighborhood. Through numerical experiments, the dynamics of
the measure observed in different perturbation radius δ and different training epoch shows that the
behavior of models trained by adversarial training is very similar to robust memorization. More
details are presented in Section 4.

To further support our conjecture, we theoretically analyze the optimization process of adversarial
training under a simple linear separable data set. Our results (Theorem 5.1 and Theorem 5.2) show
that clean classification on large margin data implies good clean performance on small margin data,
and ReLU networks with moderate size can robustly memorize small margin data efficiently. In
other words, we prove that after adversarial training, the network exactly learns the function we
described in Section 3.

Finally, motivated by robust memorization, we propose clean and robust generalization bounds. On
one hand, clean generalization bound (Theorem 6.2) shows that clean sample complexity is polyno-
mial in data dimension d. On the other hand, we derive a upper bound of robust generalization gap
(Theorem 6.3) that only relies on the number of samples and global flatness of loss landscape over
input. Since adversarial training only promotes model robustly memorizing training data, the global
flatness of landscape has no guarantee, and it is also verified by numerical results, which explains
why robust generalization gap is large although robust training error can be very low in adversarial
training,

2 RELATED WORK

Adversarial Examples and Adversarial Training (AT). Szegedy et al. (2013) first made an intrigu-
ing discovery: even state-of-the-art deep neural networks are vulnerable to adversarial examples.
Then, Goodfellow et al. (2014) proposes FGSM to seek adversarial examples, and it also introduce
the adversarial training framework to enhance the defence of models against adversarial perturba-
tions. Madry et al. (2017) designs PGD to make adversarial attack and uses it to improve adversarial
training, which can be viewed as the multi-step vision of FGSM. In general, FGSM-based AT and
PGD-based AT are commonly regarded as the standard methods for adversarial training.

Robust Generalization Gap (Robust Overfitting). One surprising behavior of deep learning is
that over-parameterized neural networks can generalize well, which is also called benign overfitting
that deep models have not only the powerful memorization but a good performance for unseen data
(Zhang et al., 2017; Belkin et al., 2019). However, in contrast to the standard (non-robust) gener-
alization, for the robust setting, Rice et al. (2020) empirically investigates robust performance of
models based on adversarial training methods, which are designed to improve adversarial robust-
ness (Szegedy et al., 2013; Madry et al., 2017), and the work shows that robust overfitting can be
observed on multiple datasets.

Theoretical Understanding of Robust Overfitting. Schmidt et al. (2018); Balaji et al. (2019);
Dan et al. (2020) study the sample complexity for adversarial robustness, and their works mani-
fest that adversarial robust generalization requires more data than the standard setting, which gives
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an explanation of the robust generalization gap from the perspective of statistical learning theory.
And another line of works (Tsipras et al., 2018; Zhang et al., 2019) propose a principle called the
robustness-accuracy trade-off and have theoretically proven the principle in different setting, which
mainly explains the widely observed drop of robust test accuracy due to the trade-off between adver-
sarial robustness and clean test accuracy. Recently, Li et al. (2022) investigates the robust expressive
ability of neural networks, which demonstrates that, for the well-separated dataset, robust general-
ization requires exponentially large models, so the hardness of robust generalization may stem from
the expressive power of practical models.

Memorization in Adversarial Training. Dong et al. (2021); Xu et al. (2021) empirically and
theoretically explore the memorization effect in adversarial training for promoting a deeper under-
standing of model capacity, convergence, generalization, and especially robust overfitting of the
adversarially trained models. However, different from their works, the concept robust memorization
proposed in our paper focuses on both robust overfitting and high clean test accuracy, which means
that there is surprisingly no clean memorization or clean overfitting.

3 ROBUST MEMORIZATION IN ADVERSARIAL TRAINING

In this section, we first introduce some preliminaries in our theoretical framework.

We consider a binary classification task X → Y , where we use X ∈ [0, 1]d,Y = {−1, 1} to
denote the supporting set of all data input and ground-truth labels, respectively, and the data input
dimension is d. Let D be the underlying data distribution. We use clean 0− 1 loss to evaluate clean
performance of classifier as Lclean

D (f) := E(x,y)∼D[I{sgn(f(x)) ̸= y}].
Then, we assume that data can be clean separated by a ReLU network with reasonable size (width
and depth). Specifically, we assume that there exists a ReLU network classifier fclean such that
Lclean
D (fclean) = 0, where the clean classifier is defined as

fclean(x) := WLσ(WL−1σ(. . . σ(W1x+ b1) . . . ) + bL−1) + bL,

where Wi ∈ Rmi×mi−1 , bi ∈ Rmi , 1 ≤ i ≤ L,m0 = d,mL = 1, and we use σ(·) to denote ReLU
activation function, which is defined as σ(·) = max{0, ·}. Besides, we consider that the width
max{m0,m1, · · · ,mL} is O(d), and the depth L is constant.

To understand adversarial robustness by a geometry way, we then introduce a notion called decision
boundary. Formally, the decision boundary of a classifier f is defined as,

DB(f) := {x ∈ X | f(x) = 0, ∀ϵ > 0, ∃x′, x′′ ∈ Bp(x, ϵ), s.t.f(x
′)f(x′′) < 0}.

Notice that this definition is different from that in Zhang et al. (2019), since it requires that the sign of
the neighborhood of the decision boundary can be changed, which helps us to establish the relative
between decision boundary and adversarial robust margin. We define lp adversarial margin over
classifier f and data point (x, y) as min∥ξ∥p≤δ yf(x+ ξ), then we have the following proposition.
Proposition 3.1. (The equivalent between adversarial margin and distance from decision boundary)
Assume that the distance between data point and decision boundary is well-defined, then it holds that,

{x ∈ X | min
∥ξ∥p≤δ

yf(x+ ξ) ≥ 0} = {x ∈ X | distp(x,DB(f)) ≥ δ},

{x ∈ X | min
∥ξ∥p≤δ

yf(x+ ξ) < 0} = {x ∈ X | distp(x,DB(f)) < δ},

where we use distp(·, C) to denote lp distance between point · and curve C.

Proposition 3.1 shows that the classifier is robust on data with large distance from decision boundary,
and is non-robust on data with small distance from decision boundary. Thus, according distance from
decision boundary, we can divide all data into two classes, large margin data and small margin data.
Namely, the former is defined as Xlarge = {x ∈ X | distp(x,DB(fclean)) ≥ δ}, and the latter is
defined as Xsmall = {x ∈ X | distp(x,DB(fclean)) < δ}. We also consider P(x,y)∼D{x ∈ Xsmall} =
µ and P(x,y)∼D{x ∈ Xlarge} = 1− µ, where 0 < µ < 1 is a proportional constant.

Another key notion of data in our setting is well-separated, which means that data is far from each
other although there exists small margin data. This property is widely observed in Yang et al.
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(2020), and it is clear that this assumption is foundation of robust classifier. Formally, we consider
the supporting set X = A ∪ B ⊂ [0, 1]d, where two disjoint sets A,B denote positive class and
negative class, respectively. And we assume that distp(A,B) > R, where we use distp(·, ·) to
denote lp distance between two sets.

3.1 ROBUST MEMORIZATION UNDER THE REALISTIC DATA ASSUMPTION

In this subsection, we consider adversarial training with access to N−sample training dataset S =
{(x1, y1), (x2, y2), · · · , (xN , yN )} i.i.d drawn from the data distribution D, we minimize 0 − 1

adversarial robust training loss as Ladv,δ
S (f) := 1

N

∑N
i=1 max∥ξ∥p≤δ I{sgn(f(xi + ξ)) ̸= yi},where

δ is the perturbation radius.

Indeed, we can also divide S into two sets, small margin training dataset and large margin training
dataset. Specifically, let Ssmall be the set {(xi, yi) ∈ S | distp(xi, DB(fclean)) < δ}, and Slarge be
the set {(xi, yi) ∈ S | distp(xi, DB(fclean)) ≥ δ}.

To evaluate robust performance of models, we use 0− 1 adversarial robust test loss as Ladv,δ
D (f) :=

E(x,y)∼D
[
max∥ξ∥p≤δ I{sgn(f(x+ ξ)) ̸= y}

]
. The final goal of adversarial training is to find good

solution with low robust test loss.

Now, we present the concept that we mainly discuss in this work, robust memorization. Concretely,
we consider the following classifier

fadv(x) :=
∑

(xi,yi)∈Ssmall

yiI{∥x− xi∥p ≤ δ}+ fclean(x)I
{

min
(xi,yi)∈Ssmall

∥x− xi∥p > δ

}
.

Under the above realistic data assumption, we can derive the following result.
Proposition 3.2. Assume that data within the lp δ− neighborhood of training data has local con-
stant label (which means data within neighborhood of a certain data has the same label), then the
classifier fadv has the following properties:

• For adversarial robust training error, Ladv,δ
S (fadv) = 0;

• For clean test error, Lclean
D (fadv) = 0;

• For adversarial robust test error, Ladv,δ
D (fadv) = Ω

(
Ladv,δ
D (fclean)

)
.

This proposition shows that the classifier fadv has the same behavior as deep models trained by
adversarial training. They have the common performance that they achieve low robust training error
and high clean test accuracy, but fail to robust classify the data population D.

Motivated by this, we conjecture that adversarial training can learn functions that are close to this
form, which is called robust memorization, an implicit bias of adversarial training. In the later sec-
tions, we formally analyze the properties of this function and adversarial training systematically
from different views, including representation complexity, empirical evidence and theoretical evi-
dence. Finally, based on robust memorization, we establish generalization guarantees to explain
good clean generalization and robust generalization gap.

3.2 ON THE REPRESENTATION COMPLEXITY OF ROBUST MEMORIZATION

Next, we study the representation complexity of robust memorization, which asks how many param-
eters are enough to express the robust memorization classifier fadv via deep neural networks. In fact,
only Õ(µNd + poly(d)) weights are sufficient for ReLU nets to uniformly approximate the target
function fadv, which is stated as the following theorem.
Theorem 3.3. Assume that the perturbation radius satisfies δ < R/2, then there exists a classifier
f̂ represented by a ReLU net with at most

Õ(µNd+ poly(d))

parameters such that |f̂ − fadv| < ϵ for all x ∈ [0, 1]d.
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Proof sketch of Theorem 3.3 Although an exponentially large number of parameters is necessary
to approximate a smooth function in general (DeVore et al., 1989), some simple functions can be
approximate by neural networks more efficiently Telgarsky (2017). By leveraging this benefit, we
use ReLU nets with few parameters to approximate the distance function di(x) := ∥x−xi∥p, and we
notice that the exact indicator I(·) can be approximated by a soft indicator with two ReLU neurons.
Combined with these results, we can derive Theorem 3.3.

By applying the result of Theorem 3.3, we have the following corollary, and it manifests that a neural
network with Õ(µNd+ poly(d)) weights can achieve robust memorization.
Corollary 3.4. Assume that the perturbation radius satisfies δ < R/2, then there exists a classifier
f̂ represented by a ReLU net with Õ(µNd+ poly(d)) parameters such that

• For adversarial robust training error, Ladv,δ
S (f̂) = o(1);

• For clean test error, Lclean
D (f̂) = o(1);

• For adversarial robust test error, Ladv,δ
D (f̂) = Ω

(
Ladv,δ
D (fclean)

)
.

However, while the previous results have shown that achieving both low robust training error and
high clean test accuracy is representatively efficient for ReLU nets, robust generalization still re-
quires exponentially large models even with our data assumption.
Theorem 3.5. Let ϵ ∈ (0, 1) be a small constant and Fn be the set of functions represented by
ReLU networks with at most n parameters. There exists a sequence Nd = exp(Ω(d)), d ≥ 1 and a
universal constant C1 > 0 such that the following holds: for any c ∈ (0, 1), there exists a underlying
data distribution D that satisfies all above data assumptions and is µ0-balanced, such that for any
R > 2δ and robust radius cϵ, we have

inf
{
Ladv,cϵ
D (f) : f ∈ FNd

}
≥ C1µ0.

where µ0-balanced means that there exists a uniform probability measure m0 on X and the distri-
bution D satisfies that inf

{
D(E)
m0(E) : E is Lebesgue measurable and m0(E) > 0

}
≥ µ0.

In other words, the robust generalization error cannot be lower that a constant α = C1µ0 unless the
ReLU network has size larger than exp(Ω(d)).

Therefore, we get the following representation complexity inequality,

Representation Complexity: Clean Classifier︸ ︷︷ ︸
poly(d)

< Robust Memorization︸ ︷︷ ︸
Õ(µNd+poly(d))

< Robust Classifier︸ ︷︷ ︸
exp(Ω(d))

.

This inequality shows that, while functions achieving robust memorization have mildly higher repre-
sentation complexity than clean classifiers, adversarial robustness requires excessively higher com-
plexity, which may lead to adversarial training converges to robust memorization regime.

4 ROBUST MEMORIZATION ON REAL IMAGE DATASETS

In this section, we demonstrate that, on real image datasets, adversarial training can learn classifiers
in robust memorization regime. Indeed, we need to study whether models trained by adversarial
training tend to memorize data points by approximating local robust indicators on training data.

Concretely, for training data (x, y), we use two measures, maximum gradient norm within the
neighborhood of training data, max∥ξ∥∞≤δ ∥∇xL(f(x+ ξ), y)∥1 and maximum loss function value
change max∥ξ∥∞≤δ[L(f(x + ξ), y) − L(f(x), y)]. The former measures the δ−local flatness on
(x, y), and the latter measures δ−local adversarial robustness on (x, y), which both describe the key
information of loss landscape over input.

Experiment Settings. In numerical experiments, we mainly focus on two common real-image
datasets, MNIST and CIFAR10. During adversarial training, we use cyclical learning rates and
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(a) MNIST: Grad (b) MNIST: Change (c) CIFAR10: Grad (d) CIFAR10: Change

Figure 1: (a)(b): Robust Memorization on MNIST with Training l∞ Perturbation Radius ϵ = 0.1;
(c)(d): Robust Memorization on CIFAR10 with Training l∞ Perturbation Radius ϵ = 8/255.

(a) MNIST: Train (b) MNIST: Test (c) CIFAR10: Train (d) CIFAR10: Test

Figure 2: (a)(b): Learning Process on MNIST with Training l∞ Perturbation Radius ϵ = 0.1; (c)(d):
Learning Process on CIFAR10 with Training l∞ Perturbation Radius ϵ = 8/255.

mixed precision technique (Wong et al., 2020). On MNIST, we use a LeNet5 architecture and train
total 20 epochs. On CIFAR10, we use a Resnet9 architecture and train total 15 epochs.

Robust Memorization. To verify robust memorization in adversarial training, we first use the
standard AT to train models by a fixed perturbation radius ϵ0, and then we compute empirical average
of maximum gradient norm and maximum loss change on training data within different perturbation
radius ϵ. We can see numerical results in Figure 1, and it shows that loss landscape has flatness within
the training radius, but is very sharp outside, which practically demonstrates robust memorization
on real image datasets, including MNIST and CIFAR10.

Learning Process. We also focus on the dynamics of loss landscape over input during the adver-
sarial learning process. Thus, we compute empirical average of maximum gradient norm within
different perturbation radius ϵ and in different training epochs. The numerical results are plotted in
Figure 2. On both MNIST and CIFAR10, with epochs increasing, it is observed that the training
curve descents within training perturbation radius, which implies models learn the local robust indi-
cators to robustly memorize training data. However, while the test curve of MNIST has the similar
behavior to training, on CIFAR10, the test curve ascents within training radius instead, which poten-
tially explains why robust generalization gap on CIFAR10 is more significant than that on MNIST.

5 THEORETICAL ANALYSIS OF ADVERSARIAL TRAINING ON LINEAR
SEPARABLE DATA

In this section, we theoretically demonstrate robust memorization by analyzing the convergence of
adversarial training on a certain synthetic dataset.

Specifically, we assume that data x ∈ Rd can be formalized as cyw∗ + ξ, where w∗ is the target
direction (∥w∗∥2 = 1), y ∈ {−1,+1} is the label, c is the norm scale that is α for large margin data
and is β for small margin data (β ≪ α), and ξ ∼ N (0, Id − w∗w∗T) is a random Guassian noise
orthogonal to w∗.

Indeed, this synthetic dataset captures the main characteristics of data assumption that we mention
in Section 3. On one hand, there exists a simple but non-robust classifier fclean(x) = w∗Tx that can
clean classify data but is non-robust for small margin data. On the other hand, due to the randomness
of noise, in the high-dimensional setting, small data is also well-separated.
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We consider a mixed learner model as f(x) = w0
Tx+

∑m
i=1 aiϕ(wi

Tx), where the neuron ϕ(t) =
σ(t− b), σ(·) is ReLU activation function and b is a threshold.

With N−sample training dataset S = Ssmall ∪ Slarge i.i.d. drawn from the underlying distribution D,
we minimize the exponential loss as Lexp,adv,δ

S (f) = 1
N

∑N
i=1 max∥δi∥2≤δ exp(−yif(xi + δi)).

By using the standard adversarial training algorithm, FGSM (Goodfellow et al., 2014), we have the
following result.
Theorem 5.1. With large margin data Slarge as training data, we use FGSM to train the model f
when only w0 is activated and zero initialized, deriving a parameter iteration sequence {wk

0}k=1,....

Then, with high probability over the sampled set, we have limk→∞

∥∥∥ wk
0

∥wk
0∥2

− w∗
∥∥∥
2
= o(1).

Theorem 5.1 shows that, under the linear separable data assumption, high clean test accuracy on large
margin data implies good clean performance on small margin data, which can help us understand
clean generalization better in adversarial training (see Theorem 6.2 in Section 6).
Theorem 5.2. By using a modified adversarial training algorithm on all training dataset S , we de-
rive a parameter sequence {θk = (wk

i )
m
i=0}k=1,.... Then, with high probability, for 0−1 adversarial

training loss L0−1,adv,δ
S , it holds that limk→∞ L0−1,adv,δ

S (θk) = 0.

In fact, the above theorems show that adversarial training method on linear separable data will
converge to the normalized target solution, f(x) = w∗Tx +

∑
xi∈Ssmall

yiϕ(ξ
T
i x), which is exactly

the robust memorization function mentioned in Section 3.

6 GENERALIZATION GUARANTEES BASED ON ROBUST MEMORIZATION

Standard generalization bound can not directly explain high clean test accuracy after adversarial
training. In general, standard generalization bound can be stated as the following form. With high
probability over random sampled training data, we have

Lclean
D (f) ≤ Lclean

S (f) +

√
Complexity(F )

N
.

where N is the number of samples, and Complexity(F ) denotes a complexity measure of function
family F , such as VC dimension and Rademacher complexity.

However, this standard generalization bound can not explain high clean test accuracy after ad-
versarial training. In order to have enough capacity for achieving low robust training error (i.e.
minf∈F Ladv,δ

S (f) = 0), we need to set Complexity(F ) = O(Nd) (due to Corollary 3.4 and the
relation between VC dimension and the number of parameters (Bartlett et al., 2019)), which causes
the above bound too loose to use.

6.1 IMPROVED GENERALIZATION BOUND ANALYSIS BASED ON ROBUST MEMORIZATION

Fortunately, we notice that the robust memorization function fadv has much lower complexity on all
large margin data (poly(d))) than the complexity on only sampled small large margin data (O(Nd)).
Inspired by this, we can prove a novel generalization bound by leveraging it.
Assumption 6.1. We assume that, for any classifier f outputted by adversarial training under the
realistic data assumption that we mention in Section 3, we have Lclean

Dsmall
(f) = O

(
Lclean
Dlarge

(f)
)

, where
we use Dsmall,Dlarge to denote small margin part and large margin part in the population D.

This assumption has been theoretically verified in Section 5, which means that the clean test accuracy
on small margin data can be bounded by the clean test accuracy on large margin data. Indeed, it holds
for any homogeneous classifier when we assume that small margin data also has small norm. We
leverage this property to prove the following clean generalization bound.
Theorem 6.2. Let D be the underlying distribution that satisfies all assumption in Section 3 and
Assumption 6.1. With access to N−sample training dataset S = {(x1, y1), (x2, y2), . . . , (xN , yN )}
is i.i.d. drawn from D, there exists a modified adversarial training algorithm with perturbation
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(a) (b)

Figure 3: Left: Local and Global Flatness During Adversarial Training on CIFAR10; Right: The
Relation Between Robust Generalization Gap and Global Flatness on CIFAR10.

radius δ, Aδ : DN → FS , where FS denotes the hypothesis class, such that f̂ = Aδ(S) satisfies

Ladv,δ
S (f̂) = 0, and it holds with probability high probability that Lclean

D (f̂) ≲ Lclean
S (f̂)+

√
poly(d)

N .

This result implies that the sample complexity of adversarial training is polynomial in the data
dimension d, which provides a theoretical guarantee for benign overfitting in adversarial training.

However, we still prove the following theorems to illustrate the hardness of robust generalization.
In contrast to the clean generalization, we have an another robust generalization bound that mainly
depends on global flatness of loss landscape over input.
Theorem 6.3. Let D be the underlying distribution with a smooth density function, and N−sample
training dataset S = {(x1, y1), (x2, y2), . . . , (xN , yN )} is i.i.d. drawn from D. Then, it holds with
probability 1−∆ over sampled set S that,

Ladv,δ
D (f)− Ladv,δ

S (f) ≲ N− 1
d+2

E(x,y)∼D

[
max

∥ξ∥∞≤δ
∥∇xL(f(x+ ξ), y)∥1

]
︸ ︷︷ ︸

global flatness

+
C(D,L)√

∆

 ,

where C(D,L) is a constant that only depends on the distribution D and the loss function L(·, ·).

This robust generalization bound shows that robust generalization gap can be controlled by global
flatness of loss landscape over input rather than local flatness. And we also derive the lower bound
of robust generalization gap stated as follow.
Proposition 6.4. Let D be the underlying distribution with a smooth density function, then we have

Ladv,δ
D (f)− Lclean

D (f) = Ω
(
δE(x,y)∼D [∥∇xL(f(x), y)∥1]

)
.

Theorem 6.3 and Proposition 6.4 manifest that robust generalization gap is very related to global
flatness. However, although adversarial training achieves good local flatness via robust memoriza-
tion, models lack global flatness, which leads to robust overfitting. This point is also verified by
numerical experiment on CIFAR10 (see results in Figure 3). First, global flatness grows much faster
than local flatness in practice. Second, with global flatness increasing during training process, it
leads to a increase of robust generalization gap.

7 CONCLUSION

This paper provides a theoretical understanding of adversarial training by proposing a implicit bias
called robust memorization. We first explore the representation complexity of robust memorization
under the realistic data assumption. Then, we empirically demonstrate robust memorization on real-
image datasets. And we also theoretical analyze adversarial training in the linear separable data
setting. Finally, we prove generalization guarantees inspired by robust memorization, which can
explain why both good clean performance and robust overfitting happen in adversarial training.

9
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A PROOF OF SECTION 3

Theorem A.1 (Restatement of Proposition 3.1). Assume that the distance between data point and
decision boundary is well-defined, then it holds that,

{x ∈ X | min
∥ξ∥p≤δ

yf(x+ ξ) ≥ 0} = {x ∈ X | distp(x,DB(f)) ≥ δ},

{x ∈ X | min
∥ξ∥p≤δ

yf(x+ ξ) < 0} = {x ∈ X | distp(x,DB(f)) < δ},

where we use distp(·, C) to denote lp distance between point · and curve C.

Proof. On one hand, we assume that a data point x ∈ X with label y = 1 satisfies that
distp(x,DB(f)) < δ. By definition of decision boundary in Section 3, we know that there ex-
ists a point x′ ∈ DB(f) such that r = ∥x − x′∥p < δ, where we use r to denote the distance
between x and x′. And there also exists a point x′′ such that ∥x′′−x′∥p < (δ−r)/2 and f(x′′) < 0.
So we have ∥x−x′′∥p < ∥x−x′∥p + ∥x′ −x′′∥p < δ and yf(x′′) < 0, which implies that we only
need to set ξ = x′′ − x.

On the other hand, we assume that min∥ξ∥p≤δ yf(x + ξ) < 0. Let ξ0 be the perturbation such
that yf(x + ξ0) < 0. By the continuity of ReLU networks, we know that there must be a point
x′ = x+ θξ0 (where θ ∈ (0, 1)) such that x′ ∈ DB(f). Thus, we complete the proof.

Theorem A.2 (Restatement of Theorem 3.3). Assume that the perturbation radius satisfies δ < R/2,
then there exists a classifier f̂ represented by a ReLU net with at most

Õ(µNd+ poly(d))

parameters such that |f̂ − fadv| < ϵ for all x ∈ [0, 1]d.

Proof. We first consider the case when p = ∞, and present two key lemmas to prove the theorem.

Lemma A.3 ((Yarotsky, 2017)). Let ϵ > 0, 0 < a < b and B ≥ 1 be given. There exists a function
×̃ : [0, B]2 → [0, B2] computed by a ReLU network with

(
log2

(
ϵ−1B

))
parameters such that

sup
x,y∈[0,B]

∣∣×̃(x, y)− xy
∣∣ ≤ ϵ,

and ×̃(x, y) = 0 if xy = 0.

Lemma A.4. The l∞ distance function between points can be represented by ReLU nets with at
most O(d) parameters.

Proof of Lemma A.4 Let x(i) denote the i-th coordinate of x, then ∥x− x0∥∞ =

max1≤i≤d

∣∣∣x(i) − x
(i)
0

∣∣∣. Since |a| = 1
2 (max{a, 0}+max{−a, 0}), we can see that x(i) →∣∣∣x(i) − x

(i)
0

∣∣∣ can be represented by a constant-size ReLU network. Moreover, the function

max{a, b} = 1
2 (|a+ b|+ |a− b|), so that the function (a1, a2, · · · , ad) → max1≤i≤d ad can be

represented with (d) parameters. To summarize, x → ∥x− x0∥∞ can be represented using a ReLU
network of size O(d), as desired.

Return to our main proof back, indeed, functions computed by ReLU networks are piecewise linear
but the indicator functions are not continuous, so we need to relax the indicator such that Îsoft(x) = 1

for x ≤ δ + ϵ0, Îsoft(x) = 0 for x ≥ R − δϵ0 and Îsoft is linear in (δ + ϵ0, R − δϵ0) by using only
two ReLU neurons, where ϵ0 is sufficient small for approximation.

Now, we notice that the robust memorization function has the following form,

fadv(x) :=
∑

(xi,yi)∈Ssmall

yiI{∥x− xi∥∞ ≤ δ}+ fclean(x)I
{

min
(xi,yi)∈Ssmall

∥x− xi∥∞ > δ

}
.

and fclean is ReLU nets with O(poly(d) parameters. By applying Lemma A.3, Lemma A.4 and the
above relaxed indicator, we can derive Theorem A.2.
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Then, we consider the case when p = 2, which requires approximating l2 distance between points
instead. The following lemma solves this problem.

Lemma A.5. The function f(x) = x2 on the segment [0, 1] can be approximated with any error
ϵ > 0 by a ReLU network having the depth and the number of weights and computation units
O(log(1/ϵ)).

Indeed, by applying the above result, we can derive the case when p = 2.

Theorem A.6 (Restatement of Theorem 3.5). Let ϵ ∈ (0, 1) be a small constant and Fn be the
set of functions represented by ReLU networks with at most n parameters. There exists a sequence
Nd = exp(Ω(d)), d ≥ 1 and a universal constant C1 > 0 such that the following holds: for any
c ∈ (0, 1), there exists a underlying data distribution D that satisfies all above data assumptions
and is µ0-balanced, such that for any R > 2δ and robust radius cϵ, we have

inf
{
Ladv,cϵ
D (f) : f ∈ FNd

}
≥ C1µ0.

where µ0-balanced means that there exists a uniform probability measure m0 on X and the distri-
bution D satisfies that inf

{
D(E)
m0(E) : E is Lebesgue measurable and m0(E) > 0

}
≥ µ0.

Proof. Here, we consider the case when p = 2, and the case when p = ∞ is similar.

First, we present two lemmas about VC dimension as follows.

Lemma A.7. (Bartlett et al., 2019, Theorem 6) Consider a ReLU network with L layers and W
total parameters. Let F be the set of (real-valued) functions computed by this network. Then we
have VC-dim(F ) = O(W log(WL)).

The growth function is connected to the VC-dimension via the following lemma; see e.g. (Anthony
et al., 1999, Theorem 7.6).

Lemma A.8. Suppose that VC-dim(F) = k, then Πm(F) ≤
∑k

i=0

(
m
i

)
. In particular, we have

Πm(F) ≤ (em/k)
k for all m > k + 1.

Now, we notice that ReLU networks are piece-wise linear functions. Montufar et al. (2014) study
the number of local linear regions, which provides the following result.

Proposition A.9. The maximal number of linear regions of the functions computed by any ReLU
network with a total of n hidden units is bounded from above by 2n.

Thus, for a given clean classifier fclean represented by a ReLU net with poly(d) parameters, we know
there exists at least a local region V such that decision boundary of fclean is linear hyperplane in V .
And we assume that the hyperplane is x(d) = 1

2 .

Then, let V ′ be the projection of V on the decision boundary DB(fclean), and P be an 2ϵ-packing of
V ′. Since the packing number P(V ′, ∥ · ∥, 2ϵ) ≥ C(V ′, ∥ · ∥2, 2ϵ) = exp(Ω(d)), where C(Θ, ∥ · ∥, ϵ)
is the ϵ-covering number of a set Θ. For any ϵ0 ∈ (0, 1), we can consider the construction

Sϕ =

{(
x,

1

2
+ ϵ0 · ϕ(x)

)
: x ∈ P

}
,

where ϕ : P → {−1,+1} is an arbitrary mapping. It’s easy to see that all points in Sϕ with first
d − 1 components satisfying ∥x∥2 ≤

√
1− ϵ20 are in V ′, so that by choosing ϵ0 sufficiently small,

we can guarantee that |Sϕ ∩ V | = exp(Ω(d)). For convenience we just replace Sϕ with Sϕ ∩ V
from now on.

Let Aϕ = Sϕ ∩
{
x ∈ V : x(d) > 1

2

}
, Bϕ = Sϕ − Aϕ. It’s easy to see that for arbitrary ϕ, the

construction is linear-separable and satisfies 2ϵ-separability.

Assume that for any choices of ϕ, the induced sets Aϕ and Bϕ can always be robustly classified with
(cϵ, 1 − α)-accuracy by a ReLU network with at most M parameters. Then, we can construct an
enveloping network Fθ with M − 1 hidden layers, M neurons per layer and at most M3 parameters
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such that any network with size ≤ M can be embedded into this envelope network. As a result, Fθ

is capable of (cϵ, 1 − α)-robustly classify any sets Aϕ, Bϕ induced by arbitrary choices of ϕ. We
use Rϕ to denote the subset of Sϕ = Aϕ ∪ Bϕ satisfying |Rϕ| = (1 − α) |Sϕ| = exp(Ω(d)) such
that Rϕ can be cϵ-robustly classified.

Next, we estimate the lower and upper bounds for the cardinal number of the vector set

R := {(f(x))x∈P |f ∈ FNd
}.

Let n denote |P|, then we have

R = {(f(x1), f(x2), ...f(xn))|f ∈ FNd
},

where P = {x1, x2, ..., xn}.

On one hand, we know that for any u ∈ {−1, 1}n, there exists a v ∈ R such that dH(u, v) ≤ αn,
where dH(·, ·) denotes the Hamming distance, then we have

|R| ≥ N ({−1, 1}n, dH , αn) ≥ 2n∑αn
i=0

(
n
i

) .
On the other hand, by applying Lemma A.8, we have

2n∑αn
i=1

(
n
i

) ≤ |R| ≤ ΠFNd
(n) ≤

l∑
j=0

(
n

j

)
.

where l is the VC-dimension of FNd
. In fact, we can derive l = Ω(n) when α is a small constant.

Assume that l < n− 1 , then we have
∑l

j=0

(
n
j

)
≤ (en/l)l and

∑αn
i=1

(
n
i

)
≤ (e/α)αn, so

2n

(e/α)
αn ≤ |R| ≤ (en/l)l.

We define a function h(x) as h(x) = (e/x)x, then we derive

2 ≤
( e
α

)α( e

l/n

)l/n

= h(α)h(l/n).

When α is sufficient small, l/n ≥ C(α) that is a constant only depending on α, which implies
l = Ω(n). Finally, by using Lemma A.7 and n = |P| = exp(Ω(d)), we know Nd = exp(Ω(d)).

Finally, by definition of balanced distribution, we complete the proof of Theorem A.6.
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B PROOF OF SECTION 5

Theorem B.1 (Restatement of Theorem 5.1). With large margin data Slarge as training data, we use
FGSM to train the model f when only w0 is activated and zero initialized, deriving a parameter
sequence {wk

0}k=1,.... Then, with high probability over sampled set, we have∥∥∥∥ lim
k→∞

wk
0

∥wk
0∥2

− w∗
∥∥∥∥
2

= o(1).

Proof. We first introduce the following lemma, which is proposed in Li et al. (2020).

Lemma B.2. We use N ′ to denote (1− µ)N , and assume that {(x1, y1), (x2, y2), . . . , (xN ′ , yN ′)}
is the large margin part in S . And we defined max-margin weight as

u = argmax
∥w∥2=1

min
i=1,...,N ′

min
∥δi∥2≤δ

yi (xi + δi)
T
w.

Then, we have

lim
k→∞

wk
0

∥wk
0∥2

= u.

By applying Lemma B.2, we only need to consider how to determine u in Lemma B.2.

In fact, according to Cauchy inequality, we know that we only need to solve the problem as

u = argmax
∥w∥2=1

min
i=1,...,N ′

yixi
Tw.

In other words, we need to solve the max-min problem as

γ = max
∥w∥2=1

min
i=1,...,N ′

yixi
Tw.

Recall that xi = αw∗ + ξi, where ξi is i.i.d. Guassian random variable. Then, we have

γ = max
∥w∥2=1

min
i=1,...,N ′

yixi
Tw ≤ max

∥w∥2=1

1

N ′

N ′∑
i=1

yixi
Tw

= max
∥w∥2=1

αw∗Tw +
1

N ′

N ′∑
i=1

yiξi
Tw.

By using the technique of concentration, we know that, with high probability, ∥u−w∗∥2 = o(1).

Theorem B.3 (Restatement of Theorem 5.2). By using a modified adversarial training algorithm
on all training dataset S , we derive a parameter sequence {θk = (wk

i )
m
i=0}k=1,.... Then, with high

probability, for 0− 1 adversarial training loss L0−1,adv,δ
S , it holds that

lim
k→∞

L0−1,adv,δ
S (θk) = 0.

Proof. Here, we use a modified adversarial training algorithm, which is the same as standard AT on
large margin data. For small large data, the update is wi = Projw0

⊥(xi), where xi denotes i−th
small margin data and m = µN .

By applying the result of Theorem 5.1, we derive that ∥w0 − w∗∥2 = o(1) and ∥wi − ξi∥2 = o(1).
Finally, according to the properties of high dimensional probability, we complete the proof.
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C PROOF OF SECTION 6

Theorem C.1 (Restatement of Theorem 6.2). Let D be the underlying distribution that satis-
fies all assumption in Section 3 and Assumption 6.1. With access to N−sample training dataset
S = {(x1, y1), (x2, y2), . . . , (xN , yN )} is i.i.d. drawn from D, there exists a modified adversarial
training algorithm with perturbation radius δ, Aδ : DN → FS , where FS denotes the hypothesis
class, such that f̂ = Aδ(S) satisfies

Ladv,δ
S (f̂) = 0,

and it holds with probability high probability over sampled set S that,

Lclean
D (f̂) = O

(
Lclean
S (f̂) +

√
poly(d)

N

)
.

Proof. The key to prove this theorem is the following modified adversarial training algorithm, which
also construct a particular hypothesis class FS depending on specific training dataset S .

Due to the clean classifier fclean represented by ReLU net with O(poly(d)) parameters, we know
that there exists a Nd = O(poly(d)) such that

inf
f∈HNd

{min{Lclean
D (f),Ladv,δ

Dlarge
(f)}} = 0,

where we use HNd
to denote the function family that can be represented by ReLU net with at most

Nd parameters. It shows that HNd
has the sufficient capacity to include the clean classifier fclean.

Thus, we first use clean training on S with the hypothesis class HNd
by ERM. We assume that the

model learns the clean classifier f̂clean, so we can know what training data is with small margin by
seeking adversarial examples on f̂clean.

Now, assume that we derive the information about Ssmall and Slarge. We design the following hypoth-
esis class

FS = {ϕ1 + ×̃(ϕ2, f) | f ∈ HNd
},

where ϕ1 is a ReLU net for approximating
∑

(xi,yi)∈Ssmall
yiI{∥x− xi∥p ≤ δ}, ϕ2 is a ReLU net for

approximating I
{
min(xi,yi)∈Ssmall ∥x− xi∥p > δ

}
, and ×̃ is the same as that in Lemma A.3.

Indeed, inff∈FS{L
adv,δ
S (f̂)} = 0. Then, we use the standard adversarial training algorithm on S

with the hypothesis class FS .

Under Assumption 6.1, we have

Lclean
D (f̂) = O(Lclean

Dsmall
(f̂)).

By the conclusion of Rademacher complexity and VC dimension, with high probability over sam-
pled set, we know

Lclean
Dsmall

(f̂) = Lclean
Ssmall

(f̂) +O(R̂Ssmall(FS))

= Lclean
Ssmall

(f̂) +O(R̂Ssmall(HNd
))

= Lclean
Ssmall

(f̂) +O

(√
VCdim(HNd

) log(1− µ)N

(1− µ)N

)

= Lclean
Ssmall

(f̂) +O

(√
poly(d)

N

)
,

where we use R̂X(F ) to denote empirical Rademacher complexity on X with F .

Thus, we complete the proof of Theorem C.1.
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Theorem C.2 (Restatement of Theorem 6.3). Let D be the underlying distribution with a smooth
density function, and N−sample training dataset S = {(x1, y1), (x2, y2), . . . , (xN , yN )} is i.i.d.
drawn from D. Then, it holds with probability 1−∆ over sampled set S that,

Ladv,δ
D (f)− Ladv,δ

S (f) ≲ N− 1
d+2

(
E(x,y)∼D

[
max

∥ξ∥∞≤δ
∥∇xL(f(x+ ξ), y)∥1

]
+

C(D,L)√
∆

)
,

where C(D,L) is a constant that only depends on the distribution D and the loss function L(·, ·).

Proof. In fact, we have the following loss decomposition,

Ladv,δ
D (f)− Ladv,δ

S (f) =
(
Lclean
D (f)− Ladv,δ

S (f)
)
+
(
Ladv,δ
D (f)− Lclean

D (f)
)
.

For the first term, by using λi to denote kernel density estimation (KDE) in Petzka et al. (2020), then
we have

Lclean
D (f)− Ladv,δ

S (f) = E(x,y)∼D[L(f(x), y)]−
1

N

N∑
i=1

max
∥ξ∥≤δ

L(f(xi + ξ, yi))

≤ E(x,y)∼D[L(f(x), y)]−
1

N

N∑
i=1

Eξ∼λi [L(f(xi + ξ), yi)]

=

∫
x

pD(x)L(f(x), y(x))dx−
∫
x

pS(x)L(f(x), y)dx

≤
∣∣∣∣∫

x

(pD(x)− ES [pS(x)])L(f(x), y(x))dx
∣∣∣∣︸ ︷︷ ︸

(I)

+

∣∣∣∣∫
x

(ES [pS(x)]− pS(x))L(f(x), y(x))dx
∣∣∣∣︸ ︷︷ ︸

(II)

,

where pS(x) is KDE of point x.

With the smoothness of density function of D and Silverman (2018), we know that (I) = O(δ2).

For (II), by applying Chebychef inequality and Silverman (2018), with probability 1−∆, we have

(II) = O(∆− 1
2N− 1

2 δ−
d
2 +N−2).

On the other hand, by Taylor expansion, we know

Ladv,δ
D (f)− Lclean

D (f) ≤ δE(x,y)∼D

[
max

∥ξ∥∞≤δ
∥∇xL(f(x+ ξ), y)∥1

]
.

When δ = N− 1
d+2 , we can derive Theorem C.2.
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