
Published as a conference paper at Deep RL Workshop, NeurlIPS 2022

SUPPLEMENTARY MATERIALS OF LEARNING EFFI-
CIENT MULTI-AGENT COOPERATIVE VISUAL EXPLO-
RATION

Chao Yu1, Xinyi Yang1∗, Jiaxuan Gao2∗, Huazhong Yang1, Yu Wang1, Yi Wu23

1 Department of Electronic Engineering, Tsinghua University
2 Institute for Interdisciplinary Information Sciences, Tsinghua University
3 Shanghai Qi Zhi Institute

A APPENDIX

We would suggest to visit https://sites.google.com/view/maans for more information.

A.1 MAANS DETAILS

A.1.1 NEURAL SLAM MODULE AND THE LOCAL POLICY

We reuse the neural SLAM module and the local policy from origin ANS paper (Chaplot et al., 2020).
We briefly explain the functionality of neural SLAM module and the local policy here, while for full
detailed description, please refer to Chaplot et al. (2020).

The neural SLAM module takes in as input current RGB observation oi, current and last noised
sensor readings of pose x′i−1:i, last pose estimation x̂i−1 and last map prediction m̂i−1, and outputs a
map prediction m̂i and a pose estimation x̂i. The neural SLAM module consists of two components,
a mapper that first predicts the egocentric map and combines it with last map prediction m̂i−1 to
obtain current map prediction m̂i, and a pose estimator that predicts the pose change d̂xi and outputs
current pose estimation x̂i = x̂i−1 + d̂xi.

The local policy takes as input the relative angle and distance to the short-term goal and current
RGB observations and then outputs an navigational action. Note that each agent itself maintains a
reconstructed map based purely on its own previous observations, so at every environment step every
agent independently runs the SLAM module to update his map.

A.1.2 SPATIAL COORDINATION PLANNER

Input Representation

Spatial Coordination Planner is the core component of MAANS. In SCP, each CNN-based feature
extractor’s input map, i.e. one feature extractor per agent, is a 240 × 240 map with 7 channels,
including

• Obstacle channel: Each pixel value denotes the probability of being an obstacle.

• Explored region channel: A probability map for each pixel being explored.

• One-hot position channel: The only one none-zero grid denotes the position of the agent.

• Trajectory channel: This is used to represent the agent’s history trace. To reflect time-passing,
this channel is updated in an exponentially decaying weight manner. More precisely, an
agent’s trajectory channel V t at timestep t is updated as following,

V tx,y =

{
1 if agent is near (x, y)
εV t−1x,y otherwise

where the agent is regarded as near (x, y) when the grid-level distance between them is less
than 3.
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• One-hot global goal channel: This channel is a one-hot image demonstrating the position of
last-step global goal.

• Goal history channel: This records all the previous global goals of the agent.

• Agent ID channel: This is a constant channel to reflect the agent’s identity so as to distinguish
among different agents. The value of every cell in the map is a normalized ID.

All mapping-related channels are transformed into world-view to save SCP from learning to align
all agents’ information, which might involve rotation and translation. To enhance agent identity, the
value of the trajectory channel, the one-hot position channel, the one-hot global goal channel and the
goal history channel are all multiplied by a normalized ID, just like the normalized one in the agent
ID channel. The normalized ID of agent k(1 ≤ k ≤ n) is defined as k

n(n+1)/2 . The decay parameter
ε is 0.9.

To ensure fully awareness of the decision agent k, that agent is always put in the first place, that is,
his related input maps are always fed into the first feature extractor.

Hierarchical Action Space

Through SCP, every agent chooses a long-term goal (a point) from the whole space. A natural choice
is to model the agent’s policy as a multi-variable Gaussian distribution to select points from a plane.
However, in our exploration setting, an agent’s policy could be extremely multi-modal especially
during early stage of exploration since many points could induce similar effects on the agent’s path.
To fix this issue, we adopt a hierarchical design. We first divide the whole map into 8× 8 regions,
from which the agent chooses a desired region. Then, similar to previous choice, a point in this region
is selected as the long-term goal. Formally, the policy of agent k, could be described as,

gr, gc ∼ Cat(rθ)
xl, yl ∼ N (µθ,Σθ)

x′l = sigmoid(xl), y
′
l = sigmoid(yl)

xg = (gr + x′l)/8, yg = (gc + y′l)/8

where θ is the model parameter, Cat(rθ) is the 8× 8 categorical distribution for choosing the region,
gr, gc are the row and column indexes of the sampled region, µθ,Σθ are the mean and covariance
matrix of the Gaussian distribution to choose the local point within the region and (xg, yg) is the final
sampled long-term goal.

A.1.3 REWARD FUNCTION

We use 4 kinds of team-based reward, including a coverage reward, a success reward, an overlap
penalty and a time penalty. In the following part, Ratiot denotes the total coverage ratio at timestep
t. Let Expt be the merged explored map at timestep t and Exptk be the explored map of agent k.
Ideally both Expt and Exptk can be considered as sets of explored points. Then define ∆Expt =
Expt\Expt−1 as the newly discovered region at timestep t by the whole team with regard of the
merged explored area. Specially, we model an individual’s effort by ∆Exptk = Exptk\Expt−1, that
is agent k’s contribution at timestep k based on the whole team’s previous exploration. Note that
∆Exptk is not defined based on the agent’s previous exploration, i.e. ∆Exptk 6= Exptk\Exp

t−1
k . In

practice, the exploration and obstacle maps are stored as real numbers, denoting probability of being
explored and occupied. The reward gained by agent k at timestep t has 4 parts,

• Coverage Reward: The coverage reward consists of two parts, a team coverage reward
and an individual coverage reward. The team coverage reward is proportional to area of the
exploration increment ∆Expt. The individual coverage reward, as the name suggests, is
proportional to the individual contribution, i.e., the area of ∆Exptk. The coefficients for
both parts are 0.02.

• Success Reward: Agent k gets a success reward of 1 ·Ratiot when 95% coverage rate is
reached and 0.5 ·Ratiot when 90% coverage rate is achieved.

2



Published as a conference paper at Deep RL Workshop, NeurlIPS 2022

• Overlap Penalty: The overlap penalty roverlap is designed to encourage agents to reduce
repetitive exploration and learn to cooperate with others. It is defined as

roverlap =

 −Aoverlap × 0.01, Ratiot < 0.9
−Aoverlap × 0.006, 0.9 ≤ Ratiot < 0.95
0, 0.95 ≤ Ratiot

where Aoverlap is the increment of overlapped explored area between agent k and other
agents. Ideally the overlapped area between agent k and agent u could be described as
Overlaptk,u = Exptk∩Exptu, while in practice the values of all explored maps are real num-
bers denoting the probability, hence in our implementation a grid is considered overlapped
only when the sum of this grid’s occupancy probabilities at the two agents’ explored maps
is greater than 1.2. We define ∆Overlaptk,u = Overlaptk,u\Overlap

t−1
k,u . Then Aoverlap

is the sum of ∆Overlaptk,u’s area over all other agents, i.e. u ∈ {1, · · · , n}\{k}.
• Time Penalty: The time penalty rtime is designed to encourage agents’ exploration effi-

ciency. It is defined as

rtime =

 −0.002, Ratiot < 0.9
−0.001, 0.9 ≤ Ratiot < 0.95
−0.0002, 0.95 ≤ Ratiot < 0.97

The final team-based reward is simply the sum of all these terms. All the explored and obstacle maps
are represented under discretization of 5cm and all the area computations are taken in m2.

A.1.4 ARCHITECTURE

Our models are trained and implemented using Pytorch (Paszke et al., 2017). We reuse the neural
SLAM module and local policy from Chaplot et al. (2020) and we briefly summarize their architec-
tures here. Neural SLAM module has two components, a Mapper and a Pose Estimator. The Mapper
is composed of ResNet18 convolutional layers, 2 fully-connected layers, and 3 deconvolutional layers.
The Pose Estimator consists of 3 convolutional layers and 3 fully connected layers. Similarly, the
local policy has Resnet18 convolutional layers, fully-connected layers and a recurrent GRU layer.

Table 1: CNN Block Hyperparameter

Layer Out Channels Kernel Size Stride Padding

1 32 3 1 1
2 64 3 1 1
3 128 3 1 1
4 64 3 1 1
5 32 3 2 1

The Spatial Coordination Planner (SCP) has three main components, including CNN-based feature
extractors, a transformer-based relation encoder and a spatial action decoder.

1. Each CNN-based feature extractor contains 5 consecutive CNN blocks. Their corresponding
parameters are shown in Tab. 1. We use ReLU as the activation function. After each of the
front four CNN blocks, we attach a 2D max pooling layer with 2 kernel size.

2. The transformer-based relation encoder consists of embeddings for agent-specific position
and an attention layer. Embeddings are used to better capture spatial information. The
attention layer has 4 heads, with 32 dimension size for each head.

3. The spatial action decoder simply uses a CNN projector and linear transformations to turn
the feature map output from the transformer-based relation encoder to corresponding logits
for Categorical distribution (region head) and means and standard deviations of the Gaussian
distribution (point heads).

The critic also utilizes a similar architecture as SCP, except replacing the spatial action decoder with
fully-connected layers to output value predictions. For full details about the architecture, please refer
to the open-source code.
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Table 2: MAPPO hyperparameters

common hyperparameters value

gradient clip norm 10.0
GAE lambda 0.95

gamma 0.99
value loss huber loss

huber delta 10.0
mini batch size batch size / mini-batch

optimizer Adam
optimizer epsilon 1e-5

weight decay 0
network initialization Orthogonal

use reward normalization True
use feature normalization True

learning rate 2.5e-5
episode length 300

number of local steps 15

A.2 TRAINING DETAILS

Algorithm 1 MAPPO

Initialize θ, the parameters for policy π and φ, the parameters for critic V , using Orthogonal
initialization (Hu et al., 2020)
Set learning rate α
while step ≤ stepmax do

set data buffer D = {}
for i = 1 to num_rollouts do
τ = [] empty list
for t = 1 to T do

for all agents a do
p
(a)
t = π(o

(a)
t ; θ)

u
(a)
t ∼ p(a)t
v
(a)
t = V (s

(a)
t ;φ)

end for
Execute actions ut, observe rt, st+1,ot+1

τ += [st,ot,ut, rt, st+1,ot+1]
end for
Compute advantage estimate Â via GAE on τ
Compute reward-to-go R̂ on τ and normalize
D = D ∪ τ

end for
for epoch k = 1, . . . ,K do
b← sequence of random mini-batches from D with all agent data
for batch c in b do

Adam update θ on L(θ) with batch c
Adam update φ on L(φ) with batch c

end for
end for

end while

We use the neural SLAM module and the local policy and directly use the trained model provided in
origin ANS paper (Chaplot et al., 2020).

The multi-agent reinforcement learning (MARL) framework for SCP training is Multi-Agent PPO
(MAPPO) (Yu et al., 2021a), which is an extension of PPO (Schulman et al., 2017) to multi-agent
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scenarios. The pseudocode of MAPPO is provided in Algo. 1. Hyperparameters are shown in Tab. 2.
Note that global goals are chosen every 15 steps, yielding 20 global planning steps in one episode.

To further improve our solution’s generalization ability, we use a final training-and-distillation
solution. To be more explicit, we first train scene-specific teachers over all training scenes and then
train a student model MAANS-TD by running policy distillation over these teachers. Suggested
by Czarnecki et al. (2019), our training procedure is on-policy manner. During each episode, we
parallelly collect data in all the training environments using the student and then run behavior cloning
between the student and the teachers using these on-policy data. We use KL divergence loss for the
region head and MSE loss for the point heads. Formally speaking, we try to minimize following loss,

L(θ) =
∑
t

Eπθs [DKL(rθs ||rθt) + ||µθs − µθt ||2|t]

where θs is the parameter of the student model, θt is the parameter of the teacher model, rθs , rθt are
the 8 × 8 categorical distributions for region selection, µθs and µθt are the mean of the Gaussian
distribution for point selection. Here the expectation is conditional on t because we have an expert for
every training scene, conditioning on t means the training environment is the corresponding scene.

For each episode, the epoch size is 4. Note that we only need to train the actor of the student since
we do not need a critic to produce value estimations. We use an Adam optimizer with a learning rate
of 0.000025.

A.3 PLANNING-BASED BASELINES

We demonstrate some details about the four planning-based baselines here.

Utility: A method that always chooses frontier that maximizes information gain (Burgard et al.,
2005).

Nearest: A method that always chooses the nearest frontier as long-term goal (Yamauchi, 1997).
The distance to a frontier is computed using breadth first search on the occupancy map.

APF: Artificial Potential Field (APF) (Yu et al., 2021b) plans a path for each agent based on a
computed potential field. The end of the path, which is a frontier, is the selected goal. For every
agent, an artificial potential field F is computed in the discretized map, with consideration of distance
to frontiers, presence of obstacles and potential exploration reward. APF also introduces resistance
force as a simple mechanism. Finally the path is generated along the fastest decreasing direction of
F , starting from the agent’s current position.

RRT: This baseline is adopted from Umari & Mukhopadhyay (2017). Rapid-exploring Random Tree
(RRT) is originally a path planning algorithm based on random sampling and is used as a frontier
detector in Umari & Mukhopadhyay (2017). After collecting enough frontiers through random
exploration, RRT chooses frontier p with the largest utility u(p) = IG(p)−N(p), where IG(p) and
N(p) are respectively the normalized information gain and navigation cost of p.

To avoid visual blind area and ensure that selected frontiers are far enough, the area within 2.5m
from each agent is considered explored when making global planning. The information gain of a
frontier p is computed as the number of unexplored grids within 1.5m to p. All these baselines do
re-planning every 15 environment steps, which is consistent to SCP.

Pseudocode of APF is shown in Algo. 2. Line 6-12 computes the resistance force between every
pair of agents where D is the influence radius. In line 13-18, distance maps starting from cluster
centers are computed and the corresponding reciprocals are added into the potential field so as one
agent approaches the frontier, the potential drops. Here wc is the weight of cluster c, which is the
number of targets in this cluster. Consequently an agent would prefer to seek for frontiers that are
closer and with more neighboring frontiers. Line 20-25 shows the process to find the fastest potential
descending path, at each iteration the agent moves to the cell with the smallest potential among all
neighboring ones. T is the maximum number of iterations and Crepeat is repeat penalty to avoid
agents wandering around cells with same potentials.

Pseudocode of RRT is shown in Algo. 3. In each iteration, a random point p is draw and a new
node t is generated by expanding from s to p with distance L, where s is the closest tree node to
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Algorithm 2 Artificial Potential Field (APF)

Input : Map M , number of agents n and agent locations loc1 . . . locn.
Output : Selected goals

1: P ← frontiers in M
2: C ← clusters of frontiers P
3: goals← an empty list
4: for i = 1→ n do
5: F ← zero potential field, i.e., a 2d array
6: for j = 1→ n do
7: for empty grid p ∈M do
8: if j 6= i and ||p− locj ||2 < D then
9: Fp ← Fp + kD · (D − ||p− locj ||2)

10: end if
11: end for
12: end for
13: for c ∈ C do
14: Run breadth-first search to compute distance map dis starting from c
15: for empty grid p ∈M do
16: Fp ← Fp − dis−1p · wc
17: end for
18: end for
19: u← loci, cnt← 0
20: while u /∈M and Fu is not a local minima and cnt < T do
21: cnt← cnt+ 1
22: Fu ← Fu + Crepeat
23: u← arg minv∈Neigh(u) Fv
24: end while
25: append u to the end of goals
26: end for
27: return goals

Algorithm 3 Rapid-exploring Random Tree (RRT)

Input : Map M and agent location loc.
Output : Selected frontier goal

1: NodeList← {loc}, Targets← {}
2: i← 0
3: while i < T and |Targets| < Ntarget do
4: i← i+ 1
5: p← a random point
6: s← arg minu∈NodeList ||u− p||2
7: t← Steer(s, p, L)
8: if No_Collision(M, s, t) then
9: if t lies in unexplored area then

10: Targets← Targets+ {t}
11: else
12: NodeList← NodeList+ {t}
13: end if
14: end if
15: end while
16: C ← clusters of points in Targets.
17: goal← arg minc∈C IG(c)−N(c)
18: return goal
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p. If segment (s, t) has no collision with obstacles in M , t is inserted into the target list or the
tree according to whether t is in unexplored area or not. Finally, the goal is chosen from the target
list with the largest utility u(c) = IG(c)−N(c) where IG(c) is the information gain and N(c) is
the navigation cost. IG(c) is computed by the number of unexplored grids within 1.5m to c, as
mentioned above. N(c) is computed as the euclidean distance between the agent location and point c.
To keep these two values at the same scale, we normalize IG(·) and N(·) to [0, 1] w.r.t all cluster
centers.

A.4 EVALUATION METRIC

A.4.1 ACCUMULATIVE COVERAGE SCORE (ACS)

we proposed Accumulative Coverage Score (ACS) as our performance metric. let Ratiot denote the
coverage rate, i.e., the ratio of explored region to the total explorable area, at timestep t for an episode.
The ACS number at timestep k, ACSk, is computed by ACSk =

∑k
t=0Ratio

t. A higher ACS
number implies faster exploration. We take the ACS number at timestep 200 in all our experiments.

A.4.2 BEHAVIOR STATISTICS

we also consider 3 additional behavior statistics measurement to capture different characteristics of a
particular exploration strategy. Let Overlapti,j denote the ratio of the overlapped area explored by
agent i and j to total explorable area at timestep t.

• Coverage Ratio: The final ratio of explored area to total area when an episode terminates,
i.e., RatioT where T is the episode length.

• Steps: The timesteps that the agents use to reach a 90% coverage, which is defined as
min{t|Ratiot ≥ 90%}.

• Overlap Ratio: The ratio of average overlapped area explored by each pair of agents to the
current explored area when 90% coverage is reached. Formally, the overlap ratio metric is
defined as 1

n(n−1)/2
∑
i<j Overlap

t̃
i,j/Ratio

t̃ where t̃ = min{t|Ratiot ≥ 90%}.

A.5 ADDITIONAL EXPERIMENT RESULTS

A.5.1 TRAINING PERFORMANCE

Fig. 1 shows the within-episode exploration efficiency and ACS performance of 2 agents and 3 agents
on training maps by different trained policies.

A.5.2 COMPARISON WITH OTHER ANS VARIANTS

We measure the ACS, Steps and the Overlap Ratio metric over these 3 maps and demonstrate the
training curves in Fig. 2.

A.5.3 ABLATION STUDY ON SCP

Fig.3 shows ablation studies on SCP vs. SCP w.o. AE. on 3 representative training maps.

Fig.4 shows ablation studies on SCP vs. SCP w.o. RE. on 2 representative training maps.

Fig.5 shows ablation studies on SCP vs. SCP-merge on 3 representative training maps.

7



Published as a conference paper at Deep RL Workshop, NeurlIPS 2022

(a) 2 agents

(b) 3 agents
Figure 1: The left two figures show within-episode exploration efficiency on training maps by different
trained policies. We measure the coverage rate w.r.t. episode step (left, higher the better) and overlap
ratio w.r.t. coverage ratio (right, lower the better). As exploration proceeds, agents by MAANS cover
explorable space much faster with a significantly lower overlap ratio. The rightmost figure shows the
comparison of ACS performance between MAANS and other planning-based methods.

(a) ACS

(b) Steps

(c) Overlap Ratio

Figure 2: Comparison between MAANS and other ANS variants on 3 representative training maps.
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(a) ACS

(b) Steps

(c) Overlap Ratio

Figure 3: Ablation Studies on SCP vs. SCP w.o. AE. on 3 representative training maps.
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(a) ACS

(b) Steps

(c) Overlap Ratio

Figure 4: Ablation Studies on SCP vs. SCP w.o. RE. on 2 representative training maps.
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(a) ACS

(b) Steps

(c) Overlap Ratio

Figure 5: Ablation Studies on SCP vs. SCP-merge on 3 representative training maps.

11


	appendix
	MAANS Details
	Neural SLAM Module and the Local Policy
	Spatial Coordination Planner
	Reward Function
	Architecture

	Training Details
	Planning-based Baselines
	Evaluation Metric
	Accumulative Coverage Score (ACS)
	Behavior Statistics

	Additional Experiment Results
	Training Performance
	Comparison with Other ANS Variants
	Ablation Study on SCP



