Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 CONVERGENCE RESULTS

The CE method aims to choose the sampling probability density ¢(.), from the parametric families of
densities {p(.; §)} such that the Kullback-Leibler (KL)-divergence between the optimal importance
sampling probability density ¢* (., a; \), given by (2), and p(.; §) is minimized. Thus, the CE-Optimal
solution 0* is obtained as

0* = argeminKL (q*(.,a;S\)Hp(.;G)) = arg;naxE;\ [HS(X)ZQ 1np(X;9)]
p(X; 5\)]
= argmaxE; |I Inp(X;0)——= 3
gg d [S(X)>a Inp()p(X;H) 3
for any prior parameter 6 ecO. Letay,...,zy beiid samples from p(.; 5). Then the empirical
estimate of 6* is given by
p(zx; A)
6 = argmax— E Is(z0)> — lnp(xk;0). 4)
k 1 ()= ap(xk;e)

In the case of rare events, where /() < 1075, solving the optimization problems (3) and (4) does
not help us estimate the probability of the rare event (see (Homem-de Mello & Rubinstein, 2002)).
Algorithm 3 presents the multi-stage CE approach proposed in (Homem-de Mello & Rubinstein,
2002) to overcome this problem. In this multi-stage algorithm, an auxiliary threshold sequence 7,
t > 0, is introduced and the algorithm iterates between updating -y, and ¢;. More precisely, initially,
choose p and (X, p) so that (), p) is the (1 — p)-quantile of S(X) under density p(.;\). And,
in general, let v(ﬁt, p¢) be the (1 — p;)-quantile of S(X) under the probability density p(X; Gt).
Furthermore, the prior parameter ¢ introduced in (3) and (4) is replaced by the optimum parameter
obtained in iteration t — 1, i.e., 0;_1.

Algorithm 3 CE Method for rare-event estimation

I: t <1, po < p, 0o < A
2: while y(0;_1,p:-1) < ado

3: Ye—1 < min(a, y(0r—1, pr—1)) -

4: 0, € argmaxyee Ex [Is(x)>, , Inp(X;0)] = argmingcg KL(q* (., ve—1; A)|[p(.; 6))
5: Set p; such that v(6:, p¢) > min(a, ¥(0:—1, pt—1) +) for some fix § > 0.

6: t<+—t+1.

From (3), we notice that Step 3 in Algorithm 3 is equlvalent to minimizing the KL-divergence
between the following two densities, g(z,7¢-1;A) = ¢ Ig(z)>, ,p(x;A) and p(z;6), where
c= fﬂs(x)>7t 1p(:zc Ndzx, v:—1 = min(o, ¥(0:_1, ps_1)). We will show later that one can always
choose a small § in Step 5, which will determine the number of times the while loop is executed. The
CE method in Algorithm 3 essentially creates a sequence of probability densities p(.; 61),p(;;62), . ..
that are steered toward the direction of the theoretically optimal density ¢*(., «;) in an iterative
manner.

Suppose that Algorithm 3 terminates with an estimate 61 of §*. Letting x1,...,xy be indepen-
dent and identically distributed (i.i.d.) samples from the probability density p(., O1), the unbiased
empirical estimator of [can be obtained as

i p(zx; M))
Pt S Zap (2hy Ok)

=
||

In order to use Algorithm 3 in an optimization framework where the goal is to maximize S(X) and
there is no specific level parameter «, one can use any desired stopping criteria to terminate the
while loop in Algorithm 3 (see (Botev et al., 2013)). For example, one can stop the algorithm when

12

Under review as a conference paper at ICLR 2021

no change in the value of S(X) is observed after a certain number of iterations (see (Rubinstein &
Kroese, 2013) page 134).

The following theorem which was first proved by Homem-de Mello & Rubinstein (2002) asserts that
Algorithm 3 terminates. We provide a proof of Theorem A.1 in the following.

Theorem A.1. Assume thatl > 0. Then, Algorithm 3 converges to a CE-optimal solution in a finite
number of iterations.

Proof. Let t be an arbitrary iteration of the algorithm, and let p,, := P(S(X) > «;0;). It can be
shown by induction that p, > 0. Note that this is also true if p(z; 8) > 0 for all §, 2.. Next, we show
that for every p; € (0, pa), Y(01, pr) > a. By the definition of 7y, we have

P(S(X) > (6, p:);0) > pr,
P(S(X) <y(0e.p0);0) 21— pr > 1= pa. (6)

Suppose by contradiction, that y(6;, p;) < «. Then, we get
P(S(X) < (0, p1);0%) < P(S(X) < ;0;) = 1 — pa,

which contradicts (6). Thus, (6, p;) > «. This implies that Step 5 can always be carried out for any
d > 0. Consequently, Algorithm 3 terminates after T iterations with T < [«/d]. Thus at time T', we
have
07 € argmax Ex [Ig(x)>q In P(X;0)],
90O
which implies that 67 is a CE-Optimal solution. Therefore, Algorithm 3 converges to a CE-Optimal
solution in a finite number of iterations. O

Note that we can re-write the maximization step of the Algorithm 3, as follows

p(X;A)
0, € argergax Egt_l [HS(X)Zmin(a,’y(9t1,pt1))m lnp(X; 9) . (7)

In practice, we calculate the expectation of line 4 of Algorithm 3 with sample averages. Therefore,
letting z1, ..., zy be a sample from the probability density obtained in iteration ¢ — 1, i.e., p(z; ét_1),
A(X, pt—1) be the the sample (1 — p;_1)-quantile of S(z1),...,S(zxN) and using equation (7) above,
we replace line 4 of Algorithm 3 with

N -
5 1 p(zis A)

6 € argmax — 3 Ls(a)>5 PN b 0). 8
! ar%e@ N = . l)ZVN(X’pt_l)p(CCi;@—l) np(e:;6) ®

Calculating the expectation line 4 of Algorithm 3 with sample averages might prevent satisfying the
stopping criterion of the algorithm. For example, the samples drawn at two consecutive iterations
might be the same. Indeed, the following theorem proved by Homem-de Mello & Rubinstein (2002),
shows that replacing line 4 of Algorithm 3 with (8), the stopping criterion is still reachable and the
while loop in Algorithm 3 terminates, when N is large enough.

Theorem A.2. Suppose the assumption in Theorem A.1 hold. Let 0 € © and X1, X, ... be i.i.d
samples with probability density p(x; 0). Then there exists po, > 0 and N, > 0 such that for all
p € (0,pq) and all N > N, we have Y (X, p) > « with probability one. Moreover, the probability
that 4 (X, p) > a.for a given N goes to one exponentially fast with N.

Proof. Let the function g(X, {) be as

mxo—{“‘WX—OiMSX7

p(C — X) it > X, ®

We claim that ¢* is the (1 — p)-quantile of a random variable X if and only if (* €
arg min. [E [g(X, ()]. Indeed, noting that the subdifferential of E [g(X;, ()] is

OE[p—P(X =(),—(1—-p)+ P(X <()].

13

Under review as a conference paper at ICLR 2021

Then, ¢* is an optimal solution if and only if 0 € O.E [¢(X, ¢)]. This implies that (* is an optimal
solution if and only if

—(1—p)+ P(X <¢*) >0, (10)

which means that ¢* is a (1 — p)-quantile of X. Let ¢* be the (1 — p)-quantile of a sample
Xi,...,Xy. Following the similar argument as above, one can see that (* is the solution to the
Sample Average Approximation (SAA) problem min; + vazl 9(X;, ¢). Furthermore, from the

results by Rubinstein & Shapiro (1993) and Shapiro et al. (2014), |¢* — (*| — 0 ans N — oc. Let
X1, ..., Xn beii.dsamples with probability density p(z; 6). Let 45 (X, p*) be the (1 — p*)-quantile
of S(X1),...,5(Xy). Given a threshold «, we consider two cases, i.e., P(S(X) > a) > 0 and
P(S(X) > a) = 0. For the case P(S(X) > a) > 0, set p, = P(S(X) > a) > 0. Then following
the same argument as in the proof of Theorem A.1, for every p* € (0, p,), we get v (6, p*) > 0.
As mentioned earlier, we have |y (6, p*) — An (X, p*)| = 0 ans N — co. Furthermore, following
the results by Kaniovski et al. (1995) and Shapiro et al. (2014), the probability that ¥ (X, p*) > «
goes to one exponentially fast. Now, we consider the other case, where we assume that « is the
maximum value achieved by S(X), i.e., P(S(X) > «;0) = 0. By the assumption of the theorem,
setting po 1= P(S(X) = «;0), po > 0 and for every p* € (0, po), we have v(6, p*) = a. Now
considering the random variable Y := allg(x)—q, 7(#, p*) = a is a unique (1 — p*)-quantile of the
random variable Y. Setting Y o = ally(x,p+)=qa, and Y; = allg(x,)—a, fori € {1,..., N}, YN .o
is a sample (1 — p*)-quantile of Y7,...,Yx. Now noting that the random variable Y has a finite
support and using the results by Shapiro & Homem-de Mello (2000), we have Yy, = 7(0, p*) = «
with probability one with large enough N. Furthermore, the probability that 4y o = v(6, p*) = «
for a given N goes to one exponentially fast. The fact that 9 , = « if and only if 45 (X, p*) = «
completes the proof.]

Consider the Jensen-Shannon (JS) divergence between q(z,v; 1;\) = c_lﬂs(m)zwqp(x; A) and
p(x;), where ¢ = f]IS(I)Z%flp(x; A)dzx, yi—1 = min(a, y(04—1, pt—1)), which is

JS(q(x,vi-1; N)||p(;0)) =

1 B _
SEL (C (@5 MIsx)z v |

1 _
5 (P NIsx), +P(~’C?9))> +

1 1 _
FKL (030 1| 5 (@i Vs, +0(50)). an

Motivated by the well-known fact that the symmetric J.S divergence is more robust than the asym-
metric K L divergence (Goodfellow, 2016; Arjovsky & Bottou, 2017), we modify Algorithm 3 by
minimizing the JS-divergence in (11) instead of the KL-divergence of (2) and (3) to obtain Algo-
rithm 1, which naturally leads to the proposed GA-NAS scheme. In fact, the differences between
GANS (relying on JS-divergence) and Variational Auto Encoders (VAEs, which rely on KL diver-
gence), in terms of comparing objectives, are comprehensively discussed on page 14 of (Goodfellow,
2016) as well as page 2 of (Arjovsky & Bottou, 2017). Let the real and generated data are from the
probability distribution Py, (.) and P, (.), respectively. According to the discussion in (Arjovsky
& Bottou, 2017), asymmetric KL-divergence fails to work properly in two extreme cases. In the case
Preai(z) > Pyen(x), Preai(x) > 0, and Py, () goes to zero, the generator “does not cover parts of
data”, and in the case Py, () > Preqi() . Pyen(z) > 0, and Py () goes to zero, the generator
generates “fake looking samples”. Therefore, it is a general belief in the literature that the symmetry
of JS-divergence with respect to Py () and Py, () causes GANs to generate samples of better
quality than VAEs.

We say 6* is a JS-optimal solution, if

0" € arg;rginJS(q(cc,%,l;5\)||p(x;9)). (12)
€

Then we have the following corollary.

Corollary A.1. Assuming the condition in Theorem A.1 holds, Algorithm 1 converges to a JS-optimal
solution.

14

Under review as a conference paper at ICLR 2021

Generate
New Archs
As Fake
Current S ; Generate
T e —~As Truth—> Train Discriminator —Reward—> Train Generator ——> Now Atchs
Step + Validity
Reward
Update, Performance
Query

Figure 2: An illustration of the flow of the proposed GA-NAS algorithm.

Proof. First, we assume that we have been able to minimize the JS-divergence between q(x,v;—1; A)
and p(z; 0;—1) exactly by the end of iteration ¢ — 1. Then, following the same arguments in the proof
of Theorem A.1, the assertion of Theorem A.1 still holds. Furthermore, drawing samples from p(z; 6)
as in Theorem A.2, the arguments in the proof of Theorem A.2 still hold and Algorithm 1 converges
to a JS-optimal solution. a

A.2 MODEL DETAILS

A.2.1 GA-NAS ALGORITHM FLoOwW

Figure 2 provides an illustrative view of the components and steps in the proposed GA-NAS algorithm.

A.2.2 PAIRWISE ARCHITECTURE DISCRIMINATOR

For ease of presentation, we focus on a discriminator for cell-based micro search, i.e., we search for a
cell architecture C where each node is an operator like Conv3x3, Maxpooling, etc, and edges direct
the flow of information between nodes, although the model can easily be generalized to macro search.
Under this definition, the input to D is a pair of cells (C”“e, C'), where C true denotes a cell from the
current truth data, while C’ is a cell from either the truth data or the generator’s learned distribution.
We transform each cell in the pair into a node embedding vector E using a shared k-GNN model. £
has a size of N x M with N being the number of nodes in the cell and M being the dimension of
the node embedding. The GNN encodes each node, corresponding to a row in E, by incorporating
features from neighboring nodes. The graph embeddings for Ct"“¢ and C’ are denoted by the last
rows of Ectrue and Fe/, respectively, as they encompass the features of the whole graph architectures.
The graph embedding vectors of the two input cells are then concatenated and passed to an MLP for
classification. The output of D is a two-dimensional logits vector describing the probability that C’ is
from the truth data distribution (1) or not (0). We train D in a supervised fashion and minimize the
cross-entropy loss between the target labels and the predictions.

To create the training data for D, we first sample 7 unique cells from the current truth data. We create
positive training samples by pairing each truth cell against every other truth cell, hence, creating | 7|2
pairs with a label of 1. We then let the generator generate |7 | unique and valid cells as fake data. We
pair each truth cell against all the generated cells and assign them a label of 0. This ensures balanced
positive and negative pairs.

We want to emphasize that the same concept for D can be easily transferred to macro search, where
now each input cell C to the discriminator is actually a macro network of blocks, e.g., a single-path
network.

A.2.3 ARCHITECTURE GENERATOR

A complete architecture is constructed in an auto-regressive fashion. We define the state at the ¢-th
time step as C;, which is a partially constructed graph. Given the state C;_1, the actor inserts a new
node. The action a; is composed of an operator type for this new node selected from a predefined

15

Under review as a conference paper at ICLR 2021

i Node indices H Emlt:c:rifng ‘ ‘
1 : d GNN — Node embedding —> Sum —> Graph embedding
Adjacency : l = ——
matrix '
' Feedforward —J‘ Softmax 4»{ Operaicr ‘
. prob
Current cell nit hidden
Take i-th row as input to GRU
[
GRU GRU
step 1 step 2

Discretize
by max
Edge Edge
prob prob

Figure 3: The structure of a GNN architecture generator for cell-based micro search.

operation space, including the output node, as well as its connections to other previous nodes. We set
the common starting state Cy as a cell that consists of only the input node(s). We define an episode
by a trajectory 7 of length IV as the state transitions from Cy to Cy—_1, i.e., 7 = {Co,C1,...,Cn—_1},
where NV is an upper bound that limits the number of steps allowed in graph construction.

Specifically, at time step ¢, the actor takes the cell state C;_; as an input and outputs a probability
distribution over all actions using an Encoder-Decoder framework. Similar to the discriminator, the
encoder is a multi-layer k-GNN (Morris et al., 2019). The decoder consists of a Feedforward-Softmax
setup that outputs the operator probability distribution and a uni-directional Gated Recurrent Unit
(Chung et al., 2014) that recursively determines the edge connections to all previous nodes. The
actor samples from this distribution to decide a new operator and its connections to all the previously
chosen operators and update the state to C;. The architecture construction terminates when the actor
generates a terminal output node or the final state Cy_; is reached.

Figure 3 provides an illustration of an architecture generator for cell-based micro search, which is
used in our NAS-Bench-101 and 201 experiments. The encoder is a multi-layer £-GNN (Morris
et al., 2019) that transforms an input cell C with N nodes into an embedding vector Eg(’de of size

N x M. Then, a graph embedding EZ"“” " of size 1 x M is derived for C by summing the first
dimension. In the decoder, a Feedforward + Softmax setup takes in the graph embedding and outputs
the probability distribution for the new node. For the edge probabilities, we employ a uni-GRU.
Each step examines one of the existing nodes in B, starting from the latest one, and determines the
probability of a connection. Aside from the decoder, we also supply EZ"*" " to another Feedforward
layer to implement the value function network V'(C;), which is required for PPO training. The output
of V(C;) is a scalar value for the state C;.

A.2.4 TRAINING PROCEDURE OF THE ARCHITECTURE GENERATOR

The state transition is captured by a policy my(a;|C;), where the action a; includes predictions on a
new node type and its connections to previous nodes. To learn g (a:|C;) in this discrete action space,
we adopt the Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm with generalized
advantage estimation. The actor is trained by maximizing the cumulative expected reward of the
trajectory. For a trajectory 7 with a maximum allowed length of N, this objective translates to

max E[R(7)] = max E[Rstep(T)] + E[Rfinal(7)] st |7| < N, (13)

where Rgtep and Ry;nq; correspond the per-siep reward and the final reward, respectively, which will
be decribed in the following.

In the context of cell-based micro search, there is a step reward [25;¢,, Which is given to the actor after
each action, and a final reward R f;,,4;, Which is only assigned at the end of a multi-step generation
episode. For R, we assign the generator a step reward of 0 if a, is valid. Otherwise, we assign
—0.1 and terminate the episode immediately.

Rfinai consists of two parts. The first part is a validity score R,. For a completed cell Cgep,, if
it is a valid DAG and contains exactly one output node, and there is at least one path from every

16

Under review as a conference paper at ICLR 2021

other node to the output, then the actor receives a validity score of R, (Cgm) = 0. Otherwise, the
validity score will be —0.1 multiplied by the number of validity violations. In our search space, we
define four possible violations: 1) There is no output node; 2) There is a node with no incoming
edges; 3) There is a node with no outgoing edges; 4) There is a node with no incoming or outgoing
edges. The second part of R ;41 is Rp(Cyer), Which represents the probability that the discriminator
classifies Cge, as a cell from the truth data distribution pgaq (). In order to receive Rp(Cyep) from
the discriminator, C,e,, must have a validity score of 0 and C.,, cannot be one of the current truth

cells {C} ..li =1,2,..K}.

true

Formally, we express the final reward R ¢, for a generated architecture Cge,, as

R . (C) — {R’U(C(]En) lf R’U(C(]ETL) < O or C(]ETL E {Cgrue“ = 17 25 "'K}5
final>gen R,(Cyen) + Rp(Cyer,) otherwise.

(14)
We compute Rp(Cger,) by conducting pairwise comparisons against the current truth cells, then
take the maximum probability that the discriminator will predicta 1, i.e., Rp = max; P(Cgepn, €

Pdata()|Cyen, Clrves D), for j = 1,2, ... K, as the discriminator reward.

Maintaining the right balance of exploration/exploitation is crucial for a NAS algorithm. In GA-NAS,
the architecture generator and discriminator provide an efficient way to utilize learned knowledge,
i.e., exploitation. For exploration, we make sure that the generator always have some uncertainties in
its actions by tuning the multiplier for the entropy loss in the PPO learning objective (Schulman et al.,
2017). The entropy loss determines the amount of randomness, hence, variations in the generated
actions. Increasing its multiplier would increase the impact of the entropy loss term, which results
in more exploration. In our experiments, we have tuned this multiplier extensively and found that a
value of 0.1 works well for the tested search spaces.

Last but not least, it is worth mentioning that the above formulation of the reward function also works
for the single-path macro search scenario, such as EfficientNet and ProxylessNAS search spaces, in
which we just need to modify Rsiep and Rp(Cger) according to the definitions of the new search
space.

A.3 EXPERIMENTATION

In this section, we present ablation studies and the results of additional experiments. We also provide
more details on our experimental setup. We implement GA-NAS using PyTorch 1.3 (Paszke et al.,
2017). We also use the PyTorch Geometric library (Fey & Lenssen, 2019) for the implementation of
k-GNN.

A.3.1 ABLATION STUDIES

We report the results of ablation studies to show the effect of different components of GA-NAS on its
performance.

Usefulness of the Discriminator: We are interested in how much the discriminator in GA-NAS
contributes to the superior search performance. Therefore, we perform an ablation study on NAS-
Bench-101 by creating a RL-NAS algorithm for comparison. RL-NAS removes the discriminator in
GA-NAS and directly queries the accuracy of a generated block from NAS-Bench-101 as the reward
for training. We test the performance of RL-NAS under two setups that differ in the total number of
queries made to NAS-Bench-101. Table 7 reports the results.

Compared to GA-NAS-

Setup2, RL-NAS-1 makes Algorithm Mean Acc Mean Rank Average #Q
3x more queries to NAS- ["RL-NAS-T 94.144 £ 0.100 208 7093.2 %+ 3903.8
Bench-101 yet it is still RL-NAS-2 93.781 4+ 0.141 919.0 314.0 + 300.0
unable to outperform both | GA-NAS-Setupl | 94.221+ 4.45¢-5 2.9 647.5 £ 433.4
GA-NAS setups. If we | GA-NAS-Setup2 | 94.2274 7.43¢-5 25 1561.8 + 802.1

instead limits the number
of queries as in RL-NAS-2 Table 7: Results of ablation study on NAS-Bench-101 by removing

then the search performance the discriminator and directly queries the benchmark for reward.
deteriorates significantly. Therefore, we conclude that the discriminator in GA-NAS is crucial for

17

Under review as a conference paper at ICLR 2021

reducing the number of queries, i.e. number of evaluations in real-world search problems, as well as
for finding architectures with better performance.

Standard versus Pairwise Discriminator: In order to investigate the effect of pairwise discriminator
in GA-NAS explained in section 3, we perform the same experiments as in Table 2, with the standard
discriminator where each architecture € 7 is compared against a generated architecture € F. The
results presented in Table 8 indicate that using pairwise discriminator leads to a better performance
compared to using standard discriminator.

Algorithm Mean Acc Mean Rank Average #Q
GA-NAS-Setupl with pairwise discriminator | 94.221+ 4.45e-5 2.9 647.5 +433.43
GA-NAS-Setupl without pairwise discriminator 94.22+ 0.0 3 771.8 +427.51
GA-NAS-Setup2 with pairwise discriminator | 94.227+ 7.43e-5 2.5 1561.8 = 802.13
GA-NAS-Setup2 without pairwise discriminator 94.22+ 0.0 3 897 £ 465.20

Table 8: The mean accuracy and rank, and average number of queries over 10 runs.

Uniform versus linear sample size increase with fixed number of evaluation budget: Once the
generator in Algorithm 2 is trained, we sample |X;| architectures X;. Intuitively, as the algorithm
progresses, G becomes more and more accurate, thus, increasing the size of &} over the iterations
should prove advantageous. We provide some evidence that this is the case. More precisely, we
perform the same experiments as in Table 2; however, keeping the total number of generated cell
architectures during the 10 iterations of the algorithm the same as that in the setup of Table 2, we
generate a constant number of cell architectures of 225 and 450 in each iteration of the algorithm in
setupl and setup2, respectively. The results presented in Table 9 indicate that a linear increase in the
size of generated cell architectures leads to a better performance.

Algorithm Mean Acc Mean Rank Average #Q

GA-NAS-Setupl ([X;[= [X,—1[+ 50, V£ > 2) | 94.221 & 4.45¢-5 2.9 647.5 £ 433.43
GA-NAS-Setupl (|X:| = 225, Vt > 2) 9421+ 0.000262 3.4 987.7 &+ 394.79
GA-NAS-Setup2 (| X;| = [X;—1| + 50, V¢ > 2) | 94.227+ 7.43e-5 2.5 1561.8 + 802.13
GA-NAS-Setup2 (|X| = 450, Vt > 2) 94.22+ 0.0 3 1127.6 &+ 363.75

Table 9: The mean accuracy and rank, and average number of queries over 10 runs.

A.3.2 PARETO FRONT SEARCH RESULTS ON NAS-BENCH-101

In addition to constrained search, we search through Pareto frontiers to further illustrate our algo-
rithm’s ability to learn any given truth set. We consider test accuracy vs. normalized training time
and found that the truth Pareto front of NAS-Bench-101 contains 41 cells. To reduce variance, we
always initialize with the worst 50% of cells in terms of accuracy and training time, which amounts to
82,329 cells. We modify GA-NAS to take a Pareto neighborhood of size 4 in each iteration, which is
defined as iteratively removing the cells in the current Pareto front and finding a new front using the
remaining cells, until we have collected cells from 4 Pareto fronts. We run GA-NAS for 10 iterations
and compare with a random search baseline. GA-NAS issued 2,869 unique queries (#Q) to the
benchmark, so we set the #Q for random search to 3,000 for a fair comparison. Figure 4 showcases
the effectiveness of GA-NAS in uncovering the Pareto front. While random search also finds a Pareto
front that is close to the truth, a small gap is still visible. In comparison, GA-NAS discovers a better
Pareto front with a smaller number of queries. GA-NAS finds 10 of the 41 cells on the truth Pareto
front, and random search only finds 2.

A.3.3 HYPER-PARAMETER SETUP

Table 10 reports the key hyper-parameters used in our NAS-Bench-101 and 201 experiments, which
includes (1) best-accuracy search by querying the true accuracy (Acc), (2) best-accuracy search using
the supernet (Acc-WS), (3) constrained best-accuracy search (Acc-Cons), and (4) Pareto front search
(Pareto).

Here, we include a brief description for some parameters in Table 10.

18

Under review as a conference paper at ICLR 2021

©
&

GA-NAS Pareto Front on NAS-Bench-101 Random Search Pareto Front on NAS-Bench-101

©
&

By i&m—:::::::: :::: Hogmm=TTT X

[} © ©
@ o N

Test Accuracy (%)

=]
-3

©
by
0y

1 [

Truth
-@ GA-NAS; iter 10; #Q=2869

Test Accuracy (%)
o
N

=]
-3

©
by

01 02 03

04

05 06 07 08

Normalized Train Time

©
o
!

[}
@
L

== Truth

-& RS; #Q=3000

01

02

03 04

05 06 07

Normalized Train Time

08

Figure 4: Pareto Front search on NAS-Bench-101. Observe that GA-NAS nearly recovers the truth
Pareto Front while Random Search (RS) only discovers one close to the truth. #Q represents the total
number of unique queries made to the benchmark. Each marker represents a cell on the Pareto front.

Table 10: Key hyper-parameters used by our NAS-Bench-101 and 201 experiments. Among multiple runs of an
experiment, the same hyper-parameters are used and only the random seed differs.

NAS-Bench-101 NAS-Bench-201
Parameter Acc (2 setups) Acc-WS | Acc-Cons Pareto Acc (3 datasets)
G optimizer Adam(Kingma & Ba, 2014) Adam Adam Adam Adam
G learn rate 0.0001 0.0001 0.0001 0.0001 0.0001
D optimizer Adam Adam Adam Adam Adam
D learn rate 0.001 0.001 0.001 0.001 0.001
GNN layers 2 2 2 2 2
Iterations (7) 10 5 5 10 5
Eval base (|X1]) 100 100 200 500 60
Eval inc (|X:| — | Xe—1]) 50, 100 100 200 100 10
Init method Random Random Random | Worst 50% Random
Init size (| X)) 50, 100 100 100 82329 60
Truth set size (| 7) 25,50 50 50 4 fronts 40

e # Eval base (|X}]) is the number of unique, valid cells to be generated by G after the first
iteration of D and G training, i.e., last step of an iteration of Algorithm. 2.

e # Eval inc (|X;| — | X;—1]) is the increment to the number of generated cells after completing
an iteration. From the CE method and importance sampling described in Sec. 3.1, the early
generator distribution is not close enough to the well-performing cell architecture. To lower
the number of queries to the benchmark without sacrificing the performance, we propose an
incremental increase in the number of generated cell architectures at each iteration.

o [nit method describes how to choose the initial set of cells, from which we create the initial
truth set. For most experiments, we randomly choose || number of cells as the initial set.
For the Pareto front search, we initialize with cells that rank in the lower 50% in terms of
both test accuracy and training time (which constitutes 82,329 cells in NAS-Bench-101).

o Truth set size (T) controls the number of truth cells for training D. For best-accuracy
searches, we take the top most accurate cells found so far. For Pareto front searches, we
iteratively collect the cells on the current Pareto front, then remove them from the current
pool, then find a new Pareto front, until we visit the desired number of Pareto fronts.

For the complete set of hyper-parameters, please check out our code.

A.3.4 SUPERNET TRAINING AND USAGE

To train a supernet for NAS-Bench-101, we first set up a macro-network in the same way as the
evaluation network of NAS-Bench-101. Our supernet has 3 stacks with 3 supercells per stack. A
downsampling layer consisting of a Maxpooling 2-by-2 and a Convolution 1-by-1 is inserted after

19

Under review as a conference paper at ICLR 2021

) g

(a) ResNet cell (b) Inception cell

Figure 5: Structures of the ResNet and Inception cells, which are considered hand-crafted architectures
in our constrained best-accuracy search.

the first and second stack to halve the input width/height and double the channels. Each supercell
contains 5 searchable nodes. In a NAS-Bench-101 cell, the output node performs concatenation
of the input features. However, this is not easy to handle in a supercell. Therefore, we replace the
concatenation with summation and do not split channels between different nodes in a cell.

We train the supernet on 40,000 randomly sampled CIFAR-10 training data and leave the other 10,000
as validation data. We set an initial channel size of 64 and a training batch size of 128. We adopt
a uniformly random strategy for training, i.e., for every batch of training data, we first uniformly
sample an edge topology, then, we uniformly sample one operator type for every searchable node
in the topology. Following this strategy, we train for 500 epochs using the Adam optimizer and an
initial learning rate of 0.001. We change the learning rate to 0.0001 when the training accuracy do
not improve for 50 consecutive epochs.

During search, after we acquire the set of cells (X') to evaluate, we first fine-tune the current supernet
for another 50 epochs. The main difference here compared to training a supernet from scratch is
that for a batch of training data, we randomly sample a cell from & instead of from the complete
search space. We use the Adam optimizer with a learning rate of 0.0001. Then, we get the accuracy
of every cell in X" by testing on the validation data and by inheriting the corresponding weights of the
supernet.

A.3.5 RESNET AND INCEPTION CELLS IN NAS-BENCH-101

Figure 5 illustrates the structures of the ResNet and Inception cells used in our constrained best-acc
search. Note that both cells are taken from the NAS-Bench-101 database as is, there might be small
differences in their structures compared to the original definitions. Table 5 reports that the ResNet
cell has a lot more weights than the inception cell, even though it contains fewer operators. This is
because NAS-Bench-101 performs channel splitting so that each operator in a branched path will
have a much fewer number of trainable weights.

We then present the two best cell structures found by GA-NAS that are better than the ResNet and
Inception cells, respectively, in Figure 6. Both cells are also in the NAS-Bench-101 database. Observe
that both cells contain multiple branches coming from the input node.

A.3.6 MORE ON NAS-BENCH-101 AND NAS-BENCH-201

We summarize essential statistical information about NAS-Bench-101 and NAS-Bench-201 in Ta-
ble 11. The purpose is to establish a common ground for comparisons. Future NAS works who wish
to compare to our experimental results directly can check Table 11 to ensure a matching benchmark
setting. There are 3 candidate operators for NAS-Bench-101, (1) A sequence of convolution 3-by-3,
batch normalization (BN), and ReLLU activation (Conv3 x3-BN-ReLl.U), (2) Conv1 x 1-BN-ReL.U,
(3) Maxpool3x3. NAS-Bench-201 defines 5 operator choices: (1) zeroize, (2) skip connection, (3)
ReLU-Convlx1-BN, (4) ReLU-Conv3x3-BN, (5) Averagepool3x3. We want the re-emphasize that
for each cell in NAS-Bench-101, we take the average of the final test accuracy at epoch 108 over

20

Under review as a conference paper at ICLR 2021

S

(a) ResNet cell replacement. (b) Inception cell replacement.

Figure 6: The structures of the best two cells found by GA-NAS that are better than the ResNet and
Inception cells in terms of test accuracy, training time and number of weights.

Table 11: Key information about the NAS-Bench-101 and NAS-Bench-201 benchmarks used
in our experiments.

NAS-Bench-101 NAS-Bench-201
Dataset CIFAR-10 CIFAR-10 | CIFAR-100 | ImageNet-16-120
Cells 423,624 15,625 15,625 15,625
Highest test acc 94.32 94.37 73.51 47.31
Lowest test acc 9.98 10.0 1.0 0.83
Mean test acc 89.68 87.06 61.39 33.57
Operator choices 3 5 5 5
Searchable nodes per cell 5 6 6 6
Max # edges per cell 9

3 runs as its true test accuracy. For NAS-Bench-201, we take the labeled accuracy on the test sets.
Since there is a single edge topology for all cells in NAS-Bench-201, there is no need to predict the
edge connections; hence, we remove the GRU in the decoder and only predict the node types of 6
searchable nodes.

A.3.7 CLARIFICATION ON CELL RANKING

We would like to clarify that all ranking results reported in the paper are based on the un-rounded
true accuracy. In addition, if two cells have the same accuracy, we randomly rank one before the
other, i.e. no two cells will have the same ranking.

A.3.8 CONVERSION FROM DARTS-LIKE CELLS TO THE NAS-BENCH-101 FORMAT

DARTS-like cells, where an edge represents a searchable operator, and a node represents a feature
map that is the sum of multiple edge operations, can be transformed into the format of NAS-Bench-
101 cells, where nodes represent searchable operators and edges determine data flow. For a unique,
discrete cell, we assume that each edge in a DARTS-like cell can adopt a single unique operator. We
achieve this transformation by first converting each edge in a DARTS-like cell to a NAS-Bench-101
node. Next, we construct the dependency between NAS-Bench-101 nodes from the DARTS nodes,
which enables us to complete the edge topology in a new NAS-Bench-101 cell. Figure 7 shows
a DARTS-like cell defined by NAS-Bench-201 and the transformed NAS-Bench-101 cell. This
transformation is a necessary first step to make GA-NAS compatible with NAS-Bench-201 and NAS-
Bench-301. Notice that every DARTS-like cell has the same edge topology in the NAS-Bench-101
format, which alleviates the need for a dedicated edge predictor in the decoder of G.

A.3.9 EFFICIENTNET AND PROXYLESSNAS SEARCH SPACE

For EfficientNet experiment, we take the EfficientNet-BO network structure as the backbone and
define 7 searchable locations, as indicated by the TBS symbol in Table 12. We run GA-NAS to select
a type of mobile inverted bottleneck MBConv (Sandler et al., 2018) block. We search for different

21

Under review as a conference paper at ICLR 2021

————————— Op5

TN Yy

Input Op 2 Op 6—> Output

Op4

Figure 7: Illustration of how to transform a DARTS-like cell (top) in NAS-Bench-201 to the NAS-
Bench-101 format (bottom).

expansion ratios {1, 3 ,6} and kernel size {3, 5} combinations, which results in 6 candidate MBConv
blocks per TBS location.

We conduct 2 GA-NAS searches with different performance estimation methods. In setup 1 we
estimate the performance of a candidate network by training it on CIFAR-10 for 20 epochs then
compute the test accuracy. In setup 2 we first train a weight-sharing Supernet that has the same
structure as the backbone in Table 12, for 500 epochs, and using a ImageNet-224-120 dataset that
is subsampled the same way as NAS-Bench-201. The estimated performance in this case is the
validation accuracy a candidate network could achieve on ImageNet-224-120 by inheriting weights
from the Supernet. For setup 2, training the supernet takes about 20 GPU days on Tesla V100 GPUs,
and search takes another GPU day, making a total of 21 GPU days.

Figure 8 presents a visualization on

the three single-path networks found .

by GA-NAS (%n tlllje EfficientNet search | Operator | Resolution | #C | #Layers |
space. Compared to EfficientNet-BO, Conv3x3 224 x 224 | 32 1
GA-NAS-ENet-1 significantly reduces TBS 112 < 112 16 1

the number of trainable weights while TBS 12 x112 | 24 2
maintaining an acceptable accuracy. ¥g§ gg i gg gg %
GA-NAS-ENet-2 improves the accu- TBS 14 % 14 112 3
racy while also reducing the model size. TBS 14 x 14 192 4
GA-NAS-ENet-3 improves the accu- TBS 7% T 320 1
racy further. Convlx1 & Pooling & FC | 7 x 7 1280 1

For ProxylessNAS experiment, we take
the ProxylessNAS network structure as Table 12: Macro search backbone network for our Effi-

the backbone and define 21 searchable cientNet experiment. TBS denotes a cell position to be
locations, as indicated by the TBS sym- searched, which can be a type of MBConv block. Output
bol in Tz;ble 13. We run GA-NAS to denotes a Convixl & Pooling & Fully-connected layer.

search for MBConv blocks with differ-
ent expansion ratios {3 ,6} and kernel size {3, 5, 7} combinations, which results in 6 candidate
MBConv blocks per TBS location.

22

Under review as a conference paper at ICLR 2021

Figure 8: Structures of the single-path networks found by GA-NAS on the EfficientNet search space.

‘ Conv3x3

MBConv-e1-k5

2 x| MBConv-e6-k5

v
2 x| MBConv-e6-k3 |

v
3x| MBConv-e6k3 |

3x| MBConv-e6k3 |

4 x| MBConv-e6-k5

v
1x| MBConv-e1-k5

‘ Convixi & Pooling & FC‘

GA-NAS-ENet-1

‘ Conv3x3 ‘
v
1x| MBConv-e6-k3 |
v
2 x| MBConv-e63 |
v
2x MBConv-e3-k5
7
3x MBConv-e3-k5
IR
3 x| MBConv-e6-k5

MBConv-e6-kb

L 4
MBConv-e6-k3 |

v

‘ Convixi & Pooling & FC‘

GA-NAS-ENet-2

‘ Conv3x3 ‘

v

MBConv-e3-k5

MBConv-e6-k3 |

v
MBConv-e6-k5 |

-

MBConv-e6-k3 |

L 4
MBConv-e6-k3 |

_ \’
4 x| MBConv-e6-k5 |

1x| MBConv-e6-k5 |

‘ Convix1 & Pooling & FC‘

GA-NAS-ENet-3

In each MBConv block, e denotes expansion ratio and k stands for kernel size.

Conv3x3

'
'
2
T
o
s
=l
o |
o |
-h
'
'
'

| MBConv-e6k5 |

-k5

:

eb

v
| MBConv-e6-k5

MBConv-e6-k3

V-
MBConv-e6-k7 |

MBCon

| MBConv-e6-k5

MBConv-e3-k3

MBConv-e6-k5 |

F -
nv-e6-k3 |
v

nv-e6.

: |
 —

43 |

v-e6-k7 |

MBConv-e6-k3

MBConv-e6-k7

MBConv-e6-k3

| MBCo
[MBCO

| MBCon

7 |

| MBConv-e6-k7 |

T
K5 |

i MBConv-e6-|

i

MBConv-e6-k3

| MBCon

MBConv-e6-k5 |
MBConv-e6-k7 |

‘ MBConv-e6.

| MBConv-e6-k7 |

Pooling & FC

GA-NAS-ProxylessNAS

Figure 9: Structures of the single-path networks found by GA-NAS on the ProxylessNAS search

space.

We train a supernet on ImageNet (Russakovsky et al., 2015) for 160 epochs (which is the same
number of epochs performed by ProxylessNAS weight-sharing search (Cai et al., 2018)) for around
20 GPU days, and conduct an unconstrained search using GA-NAS for around 38 hours on 8 Tesla
V100 GPUs in the search space of ProxylessNAS (Cai et al., 2018), a major portion out of which,
i.e., 29 hours is spent on querying the supernet for architecture performance. Figure 9 presents a
visualization of the best architecture found by GA-NAS-Proxyless with better top-1 accuracy and a
comparable the number of trainable weights compared to ProxylessNAS-GPU.

23

Under review as a conference paper at ICLR 2021

| Operator | Resolution | #C | Identity |

Conv3x3 224 x 224 32 No
MBConv-el-k3 | 112 x 112 16 No
TBS 112 x 112 24 No
TBS 56 x 56 24 Yes
TBS 56 x 56 24 Yes
TBS 56 x 56 24 Yes
TBS 56 x 56 40 No
TBS 28 x 28 40 Yes
TBS 28 x 28 40 Yes
TBS 28 x 28 40 Yes
TBS 28 x 28 80 No
TBS 14 x 14 80 Yes
TBS 14 x 14 80 Yes
TBS 14 x 14 80 Yes
TBS 14 x 14 96 No
TBS 14 x 14 96 Yes
TBS 14 x 14 96 Yes
TBS 14 x 14 96 Yes
TBS 14 x 14 192 No
TBS 7Tx7 192 Yes
TBS 7Tx7 192 Yes
TBS TXT7 192 Yes
TBS 7Tx7 320 Yes
Avg. Pooling TxXT 1280 1
FC 1x1 1000 1

Table 13: Macro search backbone network for our ProxyLessNAS experiment. TBS denotes a cell
position to be searched, which can be a type of MBConv block. Identity denotes if an identity shortcut
is enabled.

24

