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Abstract

Adversarial risk quantifies the performance of classifiers on adversarially perturbed
data. Numerous definitions of adversarial risk—not all mathematically rigorous and
differing subtly in the details—have appeared in the literature. In this paper, we re-
visit these definitions, make them rigorous, and critically examine their similarities
and differences. Our technical tools derive from optimal transport, robust statistics,
functional analysis, and game theory. Our contributions include the following:
generalizing Strassen’s theorem to the unbalanced optimal transport setting with ap-
plications to adversarial classification with unequal priors; showing an equivalence
between adversarial robustness and robust hypothesis testing with∞-Wasserstein
uncertainty sets; proving the existence of a pure Nash equilibrium in the two-player
game between the adversary and the algorithm; and characterizing adversarial
risk by the minimum Bayes error between a pair of distributions belonging to
the∞-Wasserstein uncertainty sets. Our results generalize and deepen recently
discovered connections between optimal transport and adversarial robustness and
reveal new connections to Choquet capacities and game theory.

1 Introduction

Neural networks are known to be vulnerable to adversarial attacks, which are imperceptible perturba-
tions to input data that maximize loss [42, 17, 7]. Developing algorithms resistant to such attacks
has received considerable attention in recent years [10, 32, 27, 22], motivated by safety-critical
applications such as autonomous driving [20, 31], medical imaging [19, 26, 24] and law [23, 8].

A classification algorithm with high accuracy (low risk) in the absence of an adversary may have poor
accuracy (high risk) when an adversary is present. Thus, a modified notion known as adversarial risk
is used to quantify the adversarial robustness of algorithms. Algorithms that minimize adversarial risk
are deemed robust. Procedures for finding them have been effective in practice [27, 45, 32], spurring
numerous theoretical investigations into adversarial risk and its minimizers.

There is no universally agreed upon definition of adversarial risk. Even the simplest setting of
binary classification in Rd with an `2 adversary admits various definitions involving set expansions
[11, 18], transport maps [33], Markov kernels [35], and couplings [30]. These works broadly interpret
adversarial risk as a measure of robustness to small perturbations, but their definitions differ in subtle
details such as the class of adversaries and algorithms considered, budget constraints placed on the
adversary, assumptions on the loss function, and the geometry of decision boundaries.

Optimal adversarial risk is most commonly defined as the minimax risk under adversarial contam-
ination [27, 37]. Other notable characterizations include an optimal transport cost between data
generating distributions in [34, 2, 12, 13], the optimal value of a distributionally robust optimization
problem [40, 39, 44], and the value of a two-player zero-sum game [30, 33, 5, 6].

The diversity of definitions for adversarial risk makes it challenging to compare approaches. Moreover,
not all approaches are rigorous. For instance, the classes of adversarial strategies and classifier
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algorithms are often unclear, and issues of measurability are ignored. Although this may be harmless
for applied research, it has led to incorrect proofs and insufficient assumptions in some theoretical
works; a mathematically rigorous foundation for adversarial risk is essential for future research.

In this paper, we examine various notions of adversarial risk for binary classification in a non-
parametric setting, where the decision boundary (or decision region) of a classifier is an arbitrary
subset of the input space. We present rigorous definitions of adversarial risk and identify conditions
under which these definitions are equivalent. We consider the general setting of Polish spaces
(complete, separable metric spaces), and present stronger results for the Euclidean space (Rd). Our
contributions are as follows:

• We examine the definition of adversarial risk based on set expansions. For Polish spaces, we
observe that adversarial risk is not Borel measurable, and hence, not well-defined when the
decision region is an arbitrary set. We show that the problem can be resolved by considering
a Polish space equipped with the universal completion of the Borel σ-algebra and restricting
the decision regions to Borel sets. For the Euclidean space with the Lebesgue σ-algebra,
we show that adversarial risk is well-defined for any Lebesgue measurable decision region.
Our key lemma (Lemma 4.3) shows that the Lebesgue σ-algebra is preferred over the
Borel σ-algebra because set expansions are Lebesgue measurable but not necessarily Borel
measurable. These results are contained in Section 4.

• We show that the definition of adversarial risk using set expansions is identical to a notion
of risk that appears in robust hypothesis testing with∞-Wasserstein uncertainty sets. We
prove this result in Polish spaces using the theory of measurable selections [1, 47]. In Rd,
we are able to use the powerful theory of Choquet capacities [9] (in particular, Huber and
Strassen’s 2-alternating capacities [21]) to establish results of a similar nature. These results
are contained in Section 5.

• We consider the binary classification setup with unequal priors and show (under suitable
assumptions) that the optimal adversarial risk from the above definitions is characterized by
an unbalanced optimal transport cost between data-generating distributions. For both Polish
spaces and Rd, the main tool we use is Theorem 6.1 in which we generalize a classical
result of Strassen on excess-cost optimal transport [41, 46] from probability measures to
finite measures with possibly unequal mass. This generalizes results of [35, 2] on binary
classification, which were only for equal priors. These results are contained in Section 6.

• We consider the setup of a zero-sum game between the adversary and the algorithm. We show
that the value of this game (adversarial risk) is equal to the minimum Bayes error between a
pair of distributions belonging to the∞-Wasserstein uncertainty sets centered around true
data-generating distributions. We prove the existence of a pure Nash equilibrium in this
game for Rd and for Polish spaces with a midpoint property. This extends/strengthens the
results of [30, 33, 5] to non-parametric classifiers. These results are contained in Section 7.

The paper is organized as follows: In Section 2, we present preliminary definitions from optimal
transport and metric space topology. In Section 3, we discuss various definitions of adversarial risk
and present more related work. Sections 4, 5, 6 and 7 contain our main contributions summarized
above. We conclude the paper in Section 8 and discuss future research directions.

We emphasize that rectifying measure theoretic issues with existing formulations of adversarial risk
is one of our contributions, but not the main focus of our paper. We start our presentation with fixing
measurability and well-definedness (in Section 4) because otherwise we will not be able to rigorously
present our main results in the subsequent sections, namely: relation to robust hypothesis testing and
Choquet capacities in section 5, generalizing the results of [2, 34] in section, 6 proving minimax
theorems and existence of Nash equilibria and extending the results of [30, 5, 33] in section 7.

Notation: Throughout the paper, we use X to denote a Polish space (a complete, separable metric
space) with metric d and Borel σ-algebra B(X ). For x ∈ X and r ≥ 0, let Br(x) denote the closed
ball of radius r centered at x. We use P(X ) andM(X ) to denote the space of probability measures
and finite measures defined on the measure space (X ,B(X )), respectively. Let B(X ) denote the
universal completion of B(X ). Let P(X ) andM(X ) denote the space of probability measures and
finite measures defined on the complete measure space (X ,B(X )). For µ, ν ∈ M(X ), we say ν
dominates µ if µ(A) ≤ ν(A) for all A ∈ B(X ) and write µ � ν. When X is Rd, we use L(X ) to
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denote the Lebesgue σ-algebra and λ to denote the d-dimensional Lebesgue measure. Note that
L(X ) = B(X ) for X = Rd. For a positive integer n, we use [n] to denote the finite set {1, . . . , n}.

2 Preliminaries

2.1 Metric Space Topology

We introduce three different notions of set expansions. For ε ≥ 0 and A ∈ B(X ), the ε-Minkowski
expansion of A is given by A⊕ε := ∪a∈ABε(a). The ε-closed expansion of A is defined as Aε :=
{x ∈ X : d(x,A) ≤ ε}, where d(x,A) = infa∈A d(x, a). The ε-open expansion of A is defined
as Aε) := {x ∈ X : d(x,A) < ε}. We use the notation A−ε to denote ((Ac)ε)c. Similarly,
A	ε := ((Ac)⊕ε)c. For example, consider the set A = (0, 1] in the space (X , d) = (R, | · |) and
ε > 0. Then A⊕ε = (−ε, 1 + ε], Aε = [−ε, 1 + ε] and Aε) = (−ε, 1 + ε). For any A ∈ B(X ), Aε is
closed and Aε) is open. Hence, Aε, Aε) ∈ B(X ). Moreover, Aε) ⊆ A⊕ε ⊆ Aε. However, A⊕ε may
not be in B(X ) (see Appendix for an example). In general, the Minkowski sum of two Borel sets need
not be Borel [15], and that of two Lebesgue measurable sets need not be Lebesgue measurable [38].

2.2 Optimal Transport

Let µ, ν ∈ P(X ). A coupling between µ and ν is a joint probability measure π ∈ P(X 2) with
marginals µ and ν. The set Π(µ, ν) ⊆ P(X 2) denotes the set of all couplings between µ and ν. The
optimal transport cost between µ and ν under a cost function c : X × X → [0,∞) is defined as
Tc(µ, ν) = infπ∈Π(µ,ν)

∫
X 2 c(x, x

′)dπ(x, x′). For a positive integer p, the p-Wasserstein distance

between µ and ν is defined as, Wp(µ, ν) = (Tdp(µ, ν))
1
p . The∞-Wasserstein metric is defined as

W∞(µ, ν) = limp→∞Wp(µ, ν). It can also be expressed in the following ways:

W∞(µ, ν) = inf
π∈Π(µ,ν)

ess sup
(x,x′)∼π

d(x, x′) = inf{δ > 0 : µ(A) ≤ ν(Aδ)∀A ∈ B(X )}. (1)

Given a µ ∈ P(X ) and a measurable function f : X → X , the push-forward of µ by f is defined as
a probability measure f]µ ∈ P(X ) given by f]µ = µ(f−1(A)) for all A ∈ B(X ).

3 Adversarial Risk: Definitions and Related Work

We consider a binary classification setting on feature space X . Let p0, p1 ∈ P(X ) be the data-
generating distributions for labels 0 and 1, respectively. Let the prior probabilities for labels 0 and 1
be in the ratio T : 1 where we assume T ≥ 1 without loss of generality. For a space of classifiers
parametrized by w ∈ W and a loss function ` : (X × Y)×W → [0,∞), the adversarial risk of a
classifier w ∈ W under an adversarial budget of ε ≥ 0 is defined as [27, 37],

R⊕ε(`, w) = E(x,y)

[
sup

d(x,x′)≤ε
`((x′, y), w)

]
. (2)

If the loss function `(·, w) is measurable, upper semi-continuous and bounded above for all w ∈ W ,
[30] show that Rε(`, w) is well-defined. But in general, it may not be so. A case of special interest
is the 0-1 loss function with non-parametric classifiers of the form fA(x) := 1{x ∈ A} where
A ∈ B(X ). In this case, `0/1((x, y), A) = 1{x ∈ A, y = 0}+ 1{x ∈ Ac, y = 1}. Hence,

R⊕ε(`0/1, A) =
T

T + 1
Ep0

[
sup

d(x,x′)≤ε
1{x′ ∈ A}

]
+

1

T + 1
Ep1

[
sup

d(x,x′)≤ε
1{x′ ∈ Ac}

]

=
T

T + 1
p0(A⊕ε) +

1

T + 1
p1((Ac)⊕ε). (3)

A problem with the formulation in equation 3 is the ambiguity over the measurability of the sets A⊕ε
and (Ac)⊕ε. Even when A ∈ B(X ), it is not guaranteed that A⊕ε, (Ac)⊕ε ∈ B(X ) (see Appendix
for an example). Hence, R⊕ε(`0/1, A) is not well-defined for all A ∈ B(X ). It is shown in [35] that
R⊕ε(`0/1, A) is well-defined when A is either closed or open, but its validity beyond that is unknown.

3



A simple fix to this measurability problem is to use closed set expansion instead of the Minkowski
set expansion, as done in [28]. This leads to the following formulation.

Rε(`0/1, A) =
T

T + 1
p0(Aε) +

1

T + 1
p1((Ac)ε). (4)

The above definition is well-defined for any A ∈ B(X ) because Aε and (Ac)ε are both closed and
hence, measurable. However, under the above definition, a point x ∈ A may be perturbed to x′ ∈ Aε
such that d(x, x′) > ε. For example, when A = (0, 1), we have Aε = [−ε, ε] and an adversary may
transport x = δ > 0 to x′ = −ε, violating the budget constraint at x.
Remark 1. The formulations in equations (2), (3) and (4) can give a strictly positive adversarial
risk even for a “perfect” (i.e. Bayes optimal) classifier. This is consistent with the literature on
adversarial examples where even a perfect classifier is forced to make errors in the presence of
evasion attacks. These formulations of adversarial risk correspond to “constant-in-the-ball” risk of
[18] and “corrupted-instance” risk in [11, 28]. Here, an adversarial risk of zero is only possible if
the supports of p0 and p1 are non-overlapping and separated by at least 2ε. This is not the case with
other formulations of adversarial risk such as “exact-in-the-ball” risk [18], “prediction-change risk
and “error-region” risk [11, 28]. We focus on the “corrupted-instance” family of risks in this work.

Another approach to defining adversarial risk is by explicitly defining the class of adversaries of
budget ε as measurable transport maps f : X → X that push-forward the true data distribution
such that no point is transported by more than a distance of ε; i.e., d(x, f(x)) ≤ ε. The transport
map-based adversarial risk [33] is formally defined as follows:

RFε(`0/1, A) = sup
f0,f1:X→X

∀x∈X ,d(x,fi(x))≤ε

T

T + 1
f0]p0(A) +

1

T + 1
f1]p1((Ac)). (5)

Yet another definition uses the robust hypothesis testing framework with W∞ uncertainty sets. In
this approach, an adversary perturbs the true distribution pi to a corrupted distribution p′i such that
W∞(pi, p

′
i) ≤ ε. From (1), this is equivalent to the existence of a coupling π ∈ Π(pi, p

′
i) such that

ess sup(x,x′)∼π d(x, x′) ≤ ε. The adversarial risk with such an adversary is given by

RΓε(`0/1, A) = sup
W∞(p1,p′1),W∞(p0,p′0)≤ε

T

T + 1
p′0(A) +

1

T + 1
p′1((Ac)). (6)

Clearly, RFε(`0/1, A) ≤ RΓε(`0/1, A), but conditions for equality were not studied in prior work.
Moreover, their relation to set expansion-based definitions in (3) and (4) was also unknown.

Next we discuss some characterizations of optimal adversarial risk, defined as R∗⊕ε :=

infA∈B(X )R⊕ε(`0/1, A). In [34, 2], it is shown that R∗ε = 1
2 [1 − Dε(p0, p1)] for equal priors

(T = 1), where Dε is an optimal transport cost defined as follows.
Definition 1 (Dε cost). Let µ, ν ∈ P(X ). Let ε ≥ 0. Let cε : X 2 → {0, 1} be such that cε(x, x′) =
1{(x, x′) ∈ X × X : d(x, x′) > 2ε}. Then for µ, ν ∈ P(X ) and ε ≥ 0, Dε(µ, ν) = Tcε(µ, ν).

For ε = 0, Dε reduces to the total variation distance. While D0 is a metric on P(X ), Dε (for ε > 0)
is neither a metric nor a pseudometric [35].

Other formulations of optimal adversarial risk are inspired from game theory [33, 30, 5]. Con-
sider a game between two players: (1) The adversary whose action space is pairs of distribu-
tions p′0, p

′
1 ∈ P(X ), and (2) The algorithm whose action space is the space of decision re-

gions of the form A ∈ B(X )}. For T > 0, define r : B(X ) × P(X ) × P(X ) → [0, 1] as,
r(A,µ, ν) = T

T+1µ(A) + 1
T+1ν((Ac)). The payoff when the algorithm plays first is given by

infA∈B(X ) supW∞(p0,p′0),W∞(p1,p′1)≤ε r(A, p
′
0, p
′
1), and this quantity is interpreted as the optimal

adversarial risk in this setup.

4 Well-Definedness of Adversarial Risk

As stated in Section 3, R⊕ε(`0/1, A) may not be well-defined for some decision regions A ∈ B(X )

because of the non-measurability of the sets A⊕ε and (Ac)⊕ε. Specifically, we have the following
lemma.
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Table 1: Summary of the adversarial risk definitions presented in Section 3. R⊕ε, Rε, RFε and RΓε
denote adversarial risk defined using Minkowski set expansions, closed set expansions, transport
maps and∞-Wasserstein metric respectively.

Risk Adversary’s action Perturbation d(x, x′) ≤ ε? Well-defined?

R⊕ε x ∈ A→ x′ ∈ A⊕ε Random Yes, ∀x Rd: Yes, for Lebesgue A
Polish X : Yes, for Borel A

Rε x ∈ A→ x′ ∈ Aε Random No Yes, for measurable A
RFε x→ x′ = fi(x) Deterministic Yes, ∀x Yes, for measurable fi

RΓε
pi → p′1

W∞(pi, p
′
i) ≤ ε

Random Almost surely
yes, ∀x Yes

Lemma 4.1. For any ε > 0, there exists A ∈ B(X ) such that A⊕ε /∈ B(X ).

In this section, we lay down the conditions under which the ambiguity can be resolved. We begin by
presenting a Lemma that shows that A⊕ε is an analytic set (i.e. a continuous image of a Borel set)
whenever A is Borel. It is known that an analytic sets are universally measurable, i.e. they belong in
B(X ), the universal completion of the Borel σ-algebra B(X ), and are measurable with respect to any
finite measure defined on the complete measure space, (X ,B(X )).

Lemma 4.2. Let A ∈ B(X ). Then, A⊕ε is an analytic set. Consequently, A⊕ε ∈ B(X ).

By virtue of the previous lemma, we have the following.
Theorem 4.1. Let p0, p1 ∈ P(X ). Then for any A ∈ B(X ), R⊕ε(`0/1, A) is well-defined.

For the special case of X = Rd, we can further strengthen Theorem 4.1 to include all Lebesgue
measurable sets L(X ) instead of just Borel sets B(X ). For this, we use the concept of porous sets.
Definition 2 (Porous set). A set E ⊆ X is said to be porous if there exists α ∈ (0, 1) and r0 > 0
such that for every r ∈ (0, r0] and every x ∈ X , there is an x′ ∈ X such that Bαr(x′) ⊆ Br(x)\E.

Porous sets are a subclass of nowhere dense sets. Importantly, λ(E) = 0 for any porous set E ⊆ Rd
[51]. By the following lemma, the set difference between the closed/open set expansions is porous.
Lemma 4.3. Let (X , d) = (Rd, ‖ · ‖) and A ∈ L(X ). Then E = Aε\Aε) is porous.

Lemma 4.3 plays a crucial role in proving that A⊕ε ∈ L(X ) whenever A ∈ L(X ). We recall that
A⊕ε is the Minkowski sum of A with the closed ε-ball. In general, the Minkowski sum of two
Lebesgue measurable sets is not always Lebesgue measurable [38, 16]. So the fact that one of them
is a closed ball in case of A⊕ε is important. In the following theorem, we use Lemma 4.3 to prove the
measurability of A⊕ε and in turn prove that R⊕ε(`0/1, A) is well-defined for any A ∈ L(X ).

Theorem 4.2. Let (X , d) = (Rd, ‖ · ‖). Let p0, p1 ∈ P(X ) and let ε ≥ 0. Then for any A ∈ L(X ),
R⊕ε(`0/1, A) is well-defined. If, in addition, p0 and p1 are absolutely continuous with respect to the
Lebesgue measure, then R⊕ε(`0/1, A) = Rε(`0/1, A).

5 Equivalence with∞-Wasserstein Robustness

In this section, we show the conditions under which R⊕ε(`0/1, A) is equivalent to other notions of
adversarial risk based on transport maps and W∞ robustness.

5.1 W∞ Robustness in Polish Spaces via Measurable Selections

We begin by presenting a lemma that links the measure of ε-Minkowsi set expansion to the worst
case measure over a W∞ probability ball of radius ε.
Lemma 5.1. Let µ ∈ P(X ) and A ∈ B(X ). Then supW∞(µ,µ′)≤ε µ

′(A) = µ(A⊕ε). Moreover,
the supremum in the previous equation is achieved by a µ∗ ∈ P(X ) that is induced from µ via a
measurable transport map φ : X → X (i.e. µ∗ = φ]µ) satisfying d(x, φ(x)) ≤ ε for all x ∈ X .
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Table 2: Eqvivalences among adversarial risk formulations. R⊕ε(A), Rε(A), RFε(A) and RΓε(A)
denote adversarial risk for 0-1 loss function (`0/1) for a binary classifier with decision region A (i.e.
fA(x) = 1{x ∈ A}), defined using Minkowski set expansions, closed set expansions, transport maps
and∞-Wasserstein metric respectively. B(X ) and L(X ) denote the Borel and Lebesgue σ-algebras.
(X ,B(X )) denotes the universal completion of the Borel measure space, (X ,B(X )).

Equivalences in Adversarial Risk Conditions
R⊕ε(A) = RΓε(A) Rd: A ∈ L(X ) or (X ,B(X )): A ∈ B(X )
R⊕ε(A) = RΓε(A) = RFε(A) (X ,B(X )): A ∈ B(X )
R⊕ε(A) = RΓε(A) = RFε(A) = Rε(A) Rd: A ∈ L(X ) and p0, p1 have densities

A crucial step in the proof of Lemma 5.1 is finding a measurable transport map φ such that φ−1(A) =
A⊕ε and d(x, φ(x)) ≤ ε for all x ∈ X . In the following theorem, we use Lemma 5.1 to establish the
equivalence between three different notions of adversarial risk introduced in section 3.
Theorem 5.1. Let p0, p1 ∈ P(X ) and A ∈ B(X ). Then R⊕ε(`0/1, A) = RFε(`0/1, A) =
RΓε(`0/1, A). In addition, the supremum over f0 and f1 in RFε(`0/1, A) is attained. Similarly,
the supremum over p′0 and p′1 in RΓε(`0/1, A) is attained.

5.2 W∞ Robustness in Rd via 2-Alternating Capacities

In this subsection, we establish a connection between adversarial risk and Choquet capacities [9]
in Rd. This connection allows us to extend Theorem 5.1 from Borel sets to the broader class of
Lebesgue measurable sets. We will again use this connection for proving minimax theorems and
existence of Nash equilibria in Section 7.1. We begin with the following definitions.
Definition 3 (Capacity). A set function v : B(X )→ [0, 1] is a capacity if it satisfies the following
conditions: (1) v(∅) = 0 and v(X ) = 1; (2) For A,B ∈ B(X ), A ⊆ B =⇒ v(A) ≤ v(B); (3)
An ↑ A =⇒ v(An) ↑ v(A); and (4) Fn ↓ F , Fn closed =⇒ v(Fn) ↓ v(F ).
Definition 4 (2-Alternating Capacity). A capacity v defined on the measure space (X ,B(X )) is
called 2-alternating if v(A ∪B) + v(A ∩B) ≤ v(A) + v(B) for all A,B ∈ B(X ).

For any compact set of probability measures Ξ ⊆ P(X ), the upper probability v(A) = supµ∈Ξ µ(A)
is a capacity [21]. The upper probability of ε-neighborhoods of a µ ∈ P(X ) defined using either the
total variation metric or the Levy-Prokhorov metric can be shown to be a 2-alternating capacity [21].
The following lemma shows that A 7→ µ(A⊕ε) is a 2-alternating capacity under some conditions.

Lemma 5.2. Let (X , d) = (Rd, ‖ · ‖). Let µ ∈ P(X ) and let ε ≥ 0. Define a set function v on X
such that for any A ∈ L(X ), v(A) := µ(A⊕ε). Then v is a 2-alternating capacity.

Now we relate the capacity defined in Lemma 5.2 to the W∞ metric. Since the ε-neighborhood of a
µ ∈ P(X ) in W∞ metric is a compact set of probability measures [50], the upper probability over
this W∞ ε-ball is a capacity. The following lemma shows that it is a 2-alternating capacity, and
identifies it with the capacity defined in Lemma 5.2.
Lemma 5.3. Let (X , d) = (Rd, ‖ · ‖). Let µ ∈ P(X ). Then for any A ∈ L(X ),
supW∞(µ,µ′)≤ε µ

′(A) = µ(A⊕ε). Moreover, the supremum in the previous equation is attained.

Lemma 5.3 plays a similar role to Lemma 5.1 in proving the following equivalence between adversar-
ial robustness and W∞ robustness.
Theorem 5.2. Let (X , d) = (Rd, ‖ · ‖). Let p0, p1 ∈ P(X ) and let ε ≥ 0. Then for any A ∈ L(X ),
R⊕ε(`0/1, A) = RΓε(`0/1, A), and the supremum over p′0 and p′1 in RΓε(`0/1, A) is attained.

The proof follows by converting the expression for RΓε into one for R⊕ε using Lemma 5.3. Unlike
Theorem 5.1, Theorem 5.2 does not show the equivalence of RFε(`0/1, A) with the other definitions
under the relaxed assumption of A ∈ L(X ). This is because Lemma 5.3 does not provide a push-
forward map φ such that µ∗ = φ]µ with µ∗ attaining the supremum over the W∞ ball.
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6 Optimal Adversarial Risk via Generalized Strassen’s Theorem

In section 5, we analyzed adversarial risk for a specific decision region A ∈ B(X ). In this section, we
analyze infimum of adversarial risk over all possible decision regions; i.e., the optimal adversarial risk.
We show that optimal adversarial risk in binary classification with unequal priors is characterized
by an unbalanced optimal transport cost between data-generating distributions. Our main technical
lemma generalizes Strassen’s theorem to unbalanced optimal transport. We present this result in
subsection 6.1 and present our characterization of optimal adversarial risk in subsection 6.2.

6.1 Unbalanced Optimal Transport & Generalized Strassen’s Theorem

Recall from Section 3 that the optimal transport cost Dε characterizes the optimal adversarial risk in
binary classification for equal priors. The following result gives an alternative characterization of Dε.
Proposition 6.1 (Strassen’s theorem). [Corollary 1.28 in [46]] Let µ, ν ∈ P(X ). Let ε ≥ 0. Then

sup
A∈B(X )

µ(A)− ν(A2ε) = Dε(µ, ν). (7)

Proposition 6.1 is a special case of Kantorovich-Rubinstein duality [46] applied to {0, 1}-valued cost
functions. We now generalize this result to measures with unequal masses. We begin with some
definitions that generalize the concepts we introduced in subsection 2.2.

Let µ, ν ∈M(X ) be such that µ(X ) ≤ ν(X ). A coupling between µ and ν is a measure π ∈M(X 2)
such that for any A ∈ B(X ), π(A×X ) = µ(A) and π(X ×A) ≤ ν(A). The set Π(µ, ν) is defined
to be the set of all couplings between µ and ν. For a cost function c : X 2 → [0,∞), the optimal
transport cost between µ and ν under c is defined as Tc(µ, ν) = infπ∈Π(µ,ν)

∫
X 2 c(x, x

′)dπ(x, x′).
Theorem 6.1 (Generalized Strassen’s theorem). Let µ, ν ∈M(X ) be such that 0 < M = µ(X ) ≤
ν(X ). Let ε > 0. Define cε : X 2 → {0, 1} as cε(x, x′) = 1{(x, x′) ∈ X 2 : d(x, x′) > 2ε}. Then

sup
A∈B(X )

µ(A)− ν(A2ε) = Tcε(µ, ν) = M inf
ν′∈P(X ):ν′�ν/M

Dε (µ/M, ν′) . (8)

Moreover, the infimum on the right hand side is attained. (Equivalently, there is a coupling π ∈
Π(µ, ν) that attains the unbalanced optimal transport cost Tcε(µ, ν).)

Our proof of Theorem 6.1 leverages strong duality in linear programming. We first establish (8) for
discrete measures on a finite support. We then apply the discrete result on a sequence of measures
supported on a countable dense subset of the Polish space X . Using the tightness of finite measures
on X , we construct an optimal coupling that achieves the cost Tcε(µ, ν) in (8). We then show that the
constructed coupling satisfies (8). This proof strategy is adapted from the works of [14] and [36].

6.2 Optimal Adversarial Risk for Unequal Priors

Generalized Strassen’s theorem involves closed set expansions. The following lemma allows us to
switch to Minkowski set expansions.
Lemma 6.1. Let µ, ν ∈ M(X ) and let ε ≥ 0. Then supA∈B(X ) µ(A) − ν(A2ε) =

supA∈B(X ) µ(A	ε)− ν(A⊕ε). Moreover, the supremum in the right hand side of the above equality
can be replaced by a supremum over closed sets.

Using the above lemma and the generalized Strassen’s theorem, we show the following result on
optimal adversarial risk for unequal priors, generalizing the result of [34, 2].
Theorem 6.2. Let p0, p1 ∈ P(X ) and let ε ≥ 0. Then,

inf
A∈B(X )

R⊕ε(`0/1, A) =
1

T + 1

[
1− inf

q∈P(X ):q�Tp0
Dε(q, p1)

]
. (9)

Moreover, the infimum on the left hand side can be replaced by an infimum over closed sets.

The proof follows by using Lemma 6.1 to convert the expression with Minkowski expansion to one
with closed expansions, followed by an application of Theorem 6.1 to arrive at the final optimal
transport-based expression. Theorem 6.2 extends the result of [35] in two ways: (1) the infimum is
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taken over all sets for which R⊕ε(`0/1, A) is well-defined, instead of restricting to closed sets, and
(2) the priors on both labels can be unequal. We also note that for (X , d) = (Rd, ‖ · ‖), (9) holds with
the infimum on the left hand side taken over all A ∈ L(X ).

7 Minimax Theorems and Nash Equilibria

In this section, we revisit the zero-sum game between the adversary and the algorithm introduced in
section 3. Recall that for A ∈ B(X ) and p′0, p

′
1 ∈ P(X ), the payoff function is given by

r(A, p′0, p
′
1) =

T

T + 1
p′0(A) +

1

T + 1
p′1((Ac)). (10)

The max-min inequality gives us

sup
W∞(p0,p′0),W∞(p1,p′1)≤ε

inf
A∈A

r(A, p′0, p
′
1) ≤ inf

A∈B(X )
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
r(A, p′0, p

′
1). (11)

If the inequality in (11) is an equality, we say that the game has zero duality gap, and admits a value
equal to either expression in (11). Then there is no advantage to a player making the first move. Our
minimax theorems establish such an equality. If in addition to having an equality in (11), there exist
p∗0, p

∗
1 ∈ P(X ) that achieve the supremum on the left-hand side and A∗ ∈ B(X ) that achieves the

infimum on the right-hand side, we say that ((p∗0, p
∗
1), A∗) is a pure Nash equilibrium of the game.

In Section 7.1, we prove the minimax theorem and the existence of a pure Nash equilibrium in Rd
using the theory of 2-alternating capacities [21] and the relation to adversarial risk from Section 5.2.
Section 7.2 extends these results to more general Polish spaces with a “midpoint property."

7.1 Minimax Theorem in Rd via 2-Alternating Capacities

The following theorem proves the minimax equality and the existence of a Nash equilibrium for the
adversarial robustness game in Rd.
Theorem 7.1 (Minimax theorem in Rd). Let (X , d) = (Rd, ‖ · ‖). Let p0, p1 ∈ P(X ) and let ε ≥ 0.
Define r as in (10). Then,

sup
W∞(p0,p′0),W∞(p1,p′1)≤ε

inf
A∈L(X )

r(A, p′0, p
′
1) = inf

A∈L(X )
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
r(A, p′0, p

′
1). (12)

Moreover, there exist p∗0, p
∗
1 ∈ P(X ) and A∗ ∈ L(X ) that achieve the supremum and infimum on

the left and right hand sides of the above equation.

Crucial to the proof of Theorem 7.1 is Lemma 5.2, which shows that the set-valued maps A 7→
p0(A⊕ε) and Ac 7→ p1((Ac)⊕ε) are 2-alternating capacities. The same proof technique is not
applicable in general Polish spaces because the map A 7→ µ(A⊕ε) is not a capacity for a general
µ ∈ P(X ). This is because A⊕ε is not measurable for all A ∈ B(X ).

7.2 Minimax Theorem in Polish Spaces via Optimal Transport

We now extend the minimax theorem from Rd to general Polish spaces with the following property.
Definition 5 (Midpoint property). A metric space (X , d) is said to have the midpoint property if for
every x1, x2 ∈ X , there exists x ∈ X such that, d(x1, x) = d(x, x2) = d(x1, x2)/2.

Any normed vector space with distance defined as d(x, x′) = ‖x − x′‖ satisfies the midpoint
property. An example of a metric space without this property is the discrete metric space where
d(x, x′) = 1{x 6= x′}. The midpoint property plays a crucial role in proving the following theorem,
which shows that the Dε transport cost between two distributions is the shortest total variation
distance between their ε-neighborhoods in W∞ metric. A similar result was also presented in [13].
Theorem 7.2 (Dε as shortest DTV between W∞ balls). Let (X , d) have the midpoint property. Let
µ, ν ∈ P(X ) and let ε ≥ 0. Then Dε(µ, ν) = infW∞(µ,µ′),W∞(ν,ν′)≤εDTV (µ′, ν′). Moreover, the
infimum over DTV in the above equation is attained.

The following theorem uses Theorem 7.2 to prove the minimax equality and the existence of a Nash
equilibrium for any Polish space with the midpoint property for the case of equal priors.
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Theorem 7.3 (Minimax theorem for equal priors). Let (X , d) have the midpoint property. Let
p0, p1 ∈ P(X ) and let ε ≥ 0. Define r as in (10) with T = 1. Then

sup
W∞(p0,p′0),W∞(p1,p′1)≤ε

inf
A∈B(X )

r(A, p′0, p
′
1) = inf

A∈B(X )
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
r(A, p′0, p

′
1). (13)

Moreover, there exist p∗0, p
∗
1 ∈ P(X ) that achieve the supremum on the left hand side.

Proof. For µ ∈ P(X ), let WB(µ) denote the set of all µ′ ∈ P(X ) such that W∞(µ, µ′) ≤ ε.

inf
A∈B(X )

sup
p′0∈WB(p0)

p′1∈WB(p1)

r(A, p′0, p
′
1) = inf

A∈B(X )
RΓε(`0/1, A)

(i)
= inf

A∈B(X )
R⊕ε(`0/1, A)

(ii)
=

1

2
[1−Dε(p0, p1)]

sup
p′0∈WB(p0)

p′1∈WB(p1)

inf
A∈B(X )

r(A, p′0, p
′
1)

(iii)
= sup

p′0∈WB(p0)

p′1∈WB(p1)

1

2
[1−DTV (p′0, p

′
1)] =

1

2

1− inf
p′0∈WB(p0)

p′1∈WB(p1)

DTV (p′0, p
′
1)

 ,
where (i) follows from Theorem 5.1, (ii) from Theorem 6.2, and (iii) again from Theorem 6.2 with
ε = 0. The expressions on the right extremes of the above equations are equal by Theorem 7.2. The
existence of p∗0, p

∗
1 ∈ P(X ) follows Theorem 7.2.

To prove the minimax theorem for unequal priors, we need the following generalization of Theo-
rem 7.2 to finite measures of unequal mass.
Lemma 7.1. Let p0, p1 ∈ P(X ) and let ε ≥ 0. Then for T ≥ 1,

inf
q∈P(X ):q�Tp0

Dε(q, p1) = inf
q∈P(X ):q�Tp0

inf
W∞(q,q′),W∞(p1,p′1)≤ε

DTV (q′, p′1)

= inf
W∞(p0,p′0),W∞(p1,p′1)≤ε

inf
q′∈P(X ):q′�Tp′0

DTV (q′, p′1) (14)

Now, we prove the minimax equality for unequal priors.
Theorem 7.4 (Minimax theorem for unequal priors). Let (X , d) have the midpoint property. Let
p0, p1 ∈ P(X ) and let ε ≥ 0. For T > 0, define r as in (10). Then

sup
W∞(p0,p′0),W∞(p1,p′1)≤ε

inf
A∈B(X )

r(A, p′0, p
′
1) = inf

A∈B(X )
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
r(A, p′0, p

′
1). (15)

The proof uses: (1) the characterization of inf-sup payoff in terms of unbalanced optimal transport
using Theorem 5.1; (2) Lemma 7.1; and (3) the minimax equality of Theorem 7.3 for equal priors.
Remark 2. Unlike Theorem 7.1, Theorems 7.3 and 7.4 do not guarantee the existence of an optimal
decision region A∗. While Theorem 7.3 guarantees the existence of worst-case pair of perturbed
distributions p∗0, p

∗
1, Theorem 7.4 does not do so. Nevertheless, an approximate pure Nash equilibrium

exists in all the cases. This is in sharp contrast with the non-existence of Nash equilibrium proven in
[33] (which considers a different notion of adversarial perturbations).
Remark 3. A recent work [30] shows the existence of mixed Nash equilibrium for randomized
classifiers parametrized by points in a Polish space (see also [33, 5]). Fan’s minimax theorem used in
this result is inapplicable in our setting of non-parametric, decision region-based classifiers. Instead,
we applied the theory of Choquet capacities (in Rd) and generalized Strassen’s duality theorem (in
Polish spaces), which is novel to the best of our knowledge.

8 Discussion

We examined different notions of adversarial risk in a binary classification setting with 0-1 loss
function and laid down the conditions under which these definitions are equivalent. By verifying the
conditions in Sections 4 and 5, researchers may use different definitions interchangeably. Several
definitions have also been proposed for adversarial risk under general loss functions [35, 30] using
analogous constructions like transport maps, couplings and suprema over ε-neighborhoods. Extending
our equivalence results to more general loss functions is left for future work.
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Figure 1: Illustration of various equivalent formulations of the optimal adversarial risk. The equalities
summarize the results of Section 6 and Section 7. For equal priors (T = 1), A and B denote
two ways of obtaining the optimal adversarial risk, R∗⊕ε: 1) A , which denotes the Dε cost between
the true label distributions p0 and p1, and 2) B , which denotes the shortest total variation distance
between∞-Wasserstein balls of radius ε around p0 and p1. For unequal priors (T > 1), C , D and
E denote three equivalent ways of obtaining R∗⊕ε. The black dotted balls denote∞-Wasserstein

balls and the blue dashed balls denote sets defined using stochastic domination. The order in which
the two types of balls appear around p0 is reversed between D and E .

We analyzed optimal adversarial risk for (non-parametric) decision region-based classifiers. Using a
formulation of optimal transport between finite measures of unequal mass, we extended the optimal
transport based characterization of adversarial risk of [34, 2] to unequal priors by generalizing
Strassen’s theorem. This may find applications in the study of excess cost optimal transport [49, 48].
A recent work [43] obtains a different characterization of optimal adversarial risk using optimal
transport on the product space X × Y where Y is the label space. Further, they show the evolution of
the optimal classifier A∗ as ε grows, in terms of a mean curvature flow. This raises an interesting
question on the evolution of the optimal adversarial distributions p∗0, p

∗
1 ∈ P(X ) with ε.

We proved a minimax theorem for adversarial robustness game and the existence of a Nash equilibrium.
We constructed the worst-case pair of distributions p∗0, p

∗
1 ∈ P(X ) in terms of true data distributions

and showed that their total variation distance gives the optimal adversarial risk. Identifying worst
case distributions could lead to a new approach to developing robust algorithms.

We used Choquet capacities for results in Rd and measurable selections in Polish spaces. Specifically,
we showed that the measure of ε-Minkowski expansion is a 2-alternating capacity. This connection
could help generalize our results to total variation and Prokhorov distance based contaminations.

Limitations: We largely focused on the binary classification setup with 0-1 loss function. While
it may be possible extend our results on measurability and relation to∞-Wasserstein distributional
robustness to more general loss functions and a multi-class setup, it is unclear how our results
on generalized Strassen’s theorem and Nash equilibria can be extended further. Our results on
various equivalent formulations of optimal adversarial risk are specific to adversarial perturbations
(or equivalently,∞-Wasserstein distributional perturbations), and we did not investigate more general
perturbation models.
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A Preliminary Lemmas

Lemma A.1. Let An ∈ B(X ) for n ∈ {1, 2, . . .}. Then,

(∪nAn)⊕ε = ∪nA⊕εn ,

(∩nAn)⊕ε ⊆ ∩nA⊕εn .

Proof. Suppose a ∈ (∪nAn)⊕ε. Then there exists ai ∈ Ai for some i ∈ {1, 2, . . .} such that
d(a, ai) ≤ ε. Hence, a ∈ A⊕εi ⊆ ∪nA⊕εn . Therefore, (∪nAn)⊕ε ⊆ ∪nA⊕εn .

Suppose b ∈ ∪nA⊕εn . Then b ∈ A⊕εj for some j ∈ N. So there must exist b′ ∈ Aj such that
d(b, b′) ≤ ε. Since b′ ∈ ∪nAn, we get that b ∈ (∪nAn)⊕ε. Therefore, ∪nA⊕εn ⊆ (∪nAn)⊕ε.

Suppose c ∈ (∩nAn)⊕ε. Then there exists c′ ∈ ∩nAn such that d(c, c′) ≤ ε. Since c′ ∈ An for
all n ∈ {1, 2, . . .}, c ∈ A⊕εn for all n ∈ {1, 2, . . .}. Hence, c ∈ ∩nA⊕εn . Therefore, (∩nAn)⊕ε ⊆
∩nA⊕εn .

Lemma A.2. Let An ∈ B(X ) for n ∈ {1, 2, . . .}. Then,

(∪nAn)⊕ε = ∪nA⊕εn .

Proof. Suppose a ∈ (∪nAn)⊕ε. Then there exists ai ∈ Ai for some i ∈ N such that d(a, ai) ≤ ε.
Hence, a ∈ A⊕εi ⊆ ∪nA⊕εn . Therefore, (∪nAn)⊕ε = ∪nA⊕εn .

Suppose b ∈ ∪nA⊕εn . Then b ∈ A⊕εj for some j ∈ N. So there must exist b′ ∈ Aj such that
d(b, b′) ≤ ε. Since b′ ∈ ∪nAn, we get that b ∈ (∪nAn)⊕ε. Therefore, ∪nA⊕εn ⊆ (∪nAn)⊕ε.

Lemma A.3. Let (Fn) be a sequence of closed sets in X such that Fk ⊇ Fk+1 for k ∈ N . Then,

(∩nFn)⊕ε = ∩nF⊕εn .
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Proof. Suppose x ∈ (∩nFn)⊕ε. Then there exists x′ ∈ ∩nFn such that d(x, x′) ≤ ε. Since x′ ∈ Fn
for all n ∈ N, x ∈ F⊕εn for all n ∈ N. Hence, x ∈ ∩nF⊕εn and therefore (∩nFn)⊕ε ⊆ ∩nF⊕εn . We
will now show the set inclusion in the opposite direction.

Let x ∈ ∩nF⊕εn . Then x ∈ F⊕εn for all n ∈ N. Hence, there exists xn ∈ Fn such that d(x, xn) ≤ ε
for all n ∈ N. Since (xn) is a bounded sequence, it has a subsequence (xnk) that converges to some
x∗. We claim that x∗ ∈ F := ∩nFn. Indeed, for any m ∈ N, the tail of the subsequence (xnk)
with indices greater than m is contained in Fm. Since Fm is closed, x∗ must be in Fm. Since the
choice of m was arbitrary, x∗ ∈ ∩mFm = F . Hence, x ∈ F⊕ε because d(x, x∗) ≤ ε. Therefore,
∩nF⊕εn ⊆ F⊕ε.

Lemma A.4. Let A ∈ B(X ). Let (γn)∞n=1 be a non-negative, monotonically decreasing sequence
converging to 0. Let A denote the closure of A in X . Then, Aγn ↓ A.

Proof. We know A ⊆ Aγn = Aγn for all n. Hence A ⊆ limn→∞
⋂n
k=1A

γk .

Suppose x ∈ limn→∞
⋂n
k=1A

γk . Then it must be that d(x,A) = 0 because otherwise x would not
lie in Aγn for all large enough n. Since d(x,A) = 0, we can find a sequence of points in A that tend
to x. But since A is closed, we must have x ∈ A. Hence, limn→∞

⋂n
k=1A

γk ⊆ A.

Lemma A.5. Let ε1 > ε2 > 0 and A ∈ B(X ). Then for any δ ∈ (0, ε1 − ε2), Aε1−ε2−δ ⊆ (Aε1)−ε2 .

Proof. Recall that for ε > 0, A−ε = ((Ac)ε)c. From the definition, x ∈ A−ε if and only if
d(x,Ac) > ε.

Let δ ∈ (0, ε1 − ε2) and x ∈ Aε1−ε2−δ. Then, d(x,A) ≤ ε1 − ε2 − δ. Consider any y ∈ (Aε1)c.
Then, d(y,A) > ε1. By the reverse triangle inequality,

d(x, y) ≥ d(y,A)− d(x,A) > ε1 − (ε1 − ε2 − δ) = ε2 + δ.

Hence,
d(x, (Aε1)c) = inf

y∈(Aε1 )c
d(x, y) ≥ ε2 + δ > ε2.

Therefore, x ∈ (Aε1)−ε2 .

Lemma A.6. Let A ∈ B(X ). Then, 1{x ∈ A⊕ε} = supx′∈Bε(x) 1{x′ ∈ A}.

Proof. Suppose x ∈ A⊕ε. Then there exists x′ ∈ A such that x′ ∈ Bε(x). Hence,
supx′∈Bε(x) 1{x′ ∈ A} = 1.

Suppose x ∈ X is such that supx′∈Bε(x) 1{x′ ∈ A} = 1. Then there is a sequence (xn)∞n=1

such that d(x, xn) ≤ ε and xn ∈ A for all n. Since (xn) is a bounded sequence in a closed set,
Bε(x), it has a subsequence that converges to some x∗ such that d(x, x∗) ≤ ε and x∗ ∈ A. Hence,
x ∈ Bε(x∗) ⊆ A⊕ε.

B Proofs from Section 4

Proof of Lemma 4.1. We prove the above statement by using a counterexample motivated from
Example 2.4 in [25]. For any ε > 0, there exists a Borel measurable set S ⊆ [−ε, ε]2 such that its
projection onto the first coordinate is not Borel measurable ([25], Theorem 6.7.2 and Theorem 6.7.11
in [4]). That is, S ∈ B(R2) but S1 := {x1 ∈ R : (x1, x2) ∈ S} /∈ B(R).

Define a homeomorphism φ : R3 → R3 as φ(x1, x2, x3) := (x1, x2,
√
ε2 − x2

2). φ maps the plane
[−ε, ε]2 × {0} onto the half-cylinder, {(x1, x2, x3) ∈ R3 : x1 ∈ [−ε, ε], x2

2 + x2
3 = ε2, x3 ≥ 0}, of

radius ε. Let A := φ(S ×{0}). Then A ∈ B(R3) because S ×{0} ∈ B(R3). We have the following
equality.

A⊕ε ∩ (R× {0}2) = S1 × {0}2

Suppose A⊕ε ∈ B(R3). Then the above equality implies that S1 ∈ B(R) contradicting our choice of
S. Hence, A⊕ε /∈ B(R3).
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Proof of Lemma 4.2. Recall that an analytic set is a continuous image of a Borel set in a Polish space.
Although an analytic set need not be Borel measurable, it is always universally measurable, i.e.,
measurable with respect to any measure defined on a complete measure space [1].

We will now show that if A ∈ B(X ), then A⊕ε is an analytic set, thus showing that it is measurable
in the complete measure space (X ,B(X )).

Define D = {(x, x′) ∈ X 2 : d(x, x′) ≤ ε}. D is Borel measurable because it is the preimage of the
Borel set (−∞, ε] under the Borel measurable function d. Define f : D → R as f(x, x′) = −1{x′ ∈
A}. For c ∈ R, we have the following.

{(x, x′) ∈ X 2 : f(x, x′) < c} =


φ c ≤ −1,

(X ×A) ∩D c ∈ (−1, 0],

X 2 c > 0.

Since A ∈ B(X ) and D ∈ B(X 2), (X × A) ∩ D ∈ B(X 2). Hence, by Definition 7.21 in [1], f
is a lower semianalytic function. By Proposition 7.47 in [1], the function f∗ : X → R defined as
f∗(x) := infx′∈Bε(x) f(x, x′) is lower semianalytic. By Lemma A.6, we have

f∗(x) = inf
x′∈Bε(x)

−1{x′ ∈ A} = − sup
x′∈Bε(x)

1{x′ ∈ A} = −1{x ∈ A⊕ε}.

By Definition 7.21 in [1], it follows that A⊕ε is an analytic set. By Corollary 7.42.1 in [1], A⊕ε ∈
B(X ).

Proof of Lemma 4.3. Let β = 1/4. Take any e ∈ E. Since E = Aε\Aε), we have the following two
implications: 1) E ⊆ Aε which implies that d(e,A) ≤ ε, and 2) E ∩ Aε) = ∅ which implies that
d(e,A) > ε. Combining the two implications, we get that d(e,A) = ε. Hence, for every r ∈ (0, ε],
there must exist an ar ∈ A such that ε ≤ ‖e−ar‖ < ε+r/4. We pick an x′ ∈ X on the line segment
joining ar and x as follows.

t :=
r

2‖e− ar‖
,

x′ := tax + (1− t)x.

Since ‖x− ar‖ ∈ [ε, ε+ r/4) and r ∈ (0, ε], it is clear that t ∈ (0, 1/2). From the definition of x′,
it follows that ‖x′ − e‖ = t‖e− ar‖ = r/2. We will now show that Bβr(x′) ⊆ Br(e)\E. For any
y ∈ Bβr(x′), we have the following.

‖y − e‖ ≤ ‖y − x′‖+ ‖x′ − e‖ ≤ βr + r/2 < r.

Hence, y ∈ Br(e). Moreover,

‖y − ar‖ ≤ ‖y − x′‖+ ‖x′ − ar‖ ≤ βr + (‖e− ar‖ − r/2) < ε.

Hence, y ∈ Aε) and so y /∈ E. Therefore, Bαr(x′) ⊆ Br(e)\E. Hence, we have the following
property (call it (∗)): For any e ∈ E and any r ∈ (0, ε], there is an x′ ∈ X such that Bβr(x′) ⊆
Br(e)\E.

Let α = β(1− β). Take any x ∈ X and r ∈ (0, ε]. We will now show that there exists x′ ∈ X such
that Bαr(x′) ⊆ Br(x)\E.

Suppose x ∈ E. Then by the property (∗), there exists x′ ∈ X such that Bαr(x′) ⊆ Bβr(x
′) ⊆

Br(x)\E. Suppose on the other hand x /∈ E. If Bβr(x) ∩ E = ∅, then choosing x′ = x we
have Bαr(x′) ⊆ Bβr(x

′) ⊆ Br(x)\E. If not, then there exists e ∈ Bβr(x) ∩ E. We claim that
B(1−β)r(e) ⊆ Bβr(x). Indeed, for any y ∈ B(1−β)r(e) we have

‖y − x‖ ≤ ‖y − e‖+ ‖e− x‖ ≤ (1− β)r + βr = r.

Since (1−β)r ∈ (0, ε], by the property (∗), there exists x′ ∈ X such thatBαr(x′) = Bβ(1−β)r(x
′) ⊆

B(1−β)r(x)\E ⊆ Br(x)\E.
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Figure 2: Choice of x′ ∈ X and α ∈ (0, 1) such that Bαr(x′) ⊆ Br(x)\E when x ∈ E.

Proof of Theorem 4.2. By Lemma 4.3 Aε\Aε) is porous, and so λ(Aε\Aε)) = 0. Hence, λ(Aε) =
λ(Aε)). Using the fact that Aε) ⊆ A⊕ε ⊆ Aε, we have A⊕ε\Aε) ⊆ Aε\Aε). Hence, λ(A⊕ε\Aε)) =
0. Therefore, A⊕ε ∈ L(X ) and λ(A⊕ε) = λ(Aε) = λ(Aε)).

Since A⊕ε, (Ac)⊕ε ∈ L(X ), R⊕ε(`0/1, A) is well-defined. If p0 and p1 are absolutely continuous
with respect to the Lebesgue measure, the equation R⊕ε(`0/1, A) = Rε(`0/1, A) follows from the
previous conclusion that λ(A⊕ε) = λ(Aε).

C Proofs from Section 5

C.1 Proofs from Section 5.1

Proof of Lemma 5.1. Let µ′ ∈ P(X ) be such that W∞(µ, µ′) ≤ ε. Then there exists a coupling
λ ∈ Π(µ′, µ) such that for (x, x′) ∼ λ, d(x, x′) ≤ ε λ-a.e. Hence,

µ′(A) = λ(A×X ) = λ(A×A⊕ε) ≤ λ(X ×A⊕ε) = µ(A⊕ε).

Since the choice of µ′ was arbitrary in the set {ν ∈ P(X ) : W∞(µ, ν) ≤ ε}, we have,

sup
W∞(µ,µ′)≤ε

µ′(A) ≤ µ(A⊕ε).

Now we show the inequality in the opposite direction. Like in the proof of Lemma 4.2, consider the
function f : D → R defined as f(x, x′) = −1{x′ ∈ A}, where D = {(x, x′) ∈ X 2 : d(x, x′) ≤ ε}.
Define f∗ : X → R as f∗(x) := infx′∈Bε(x) f(x, x′). As shown in the proof of Lemma 4.2,
f∗(x) = −1{x ∈ A⊕ε}. By Proposition 7.50(a) in [1], there exists a universally measurable function
φ : X → X such that |f∗(x)− f(x, φ(x))| < δ for any δ > 0. Since f and f∗ are both 0-1 valued
functions, we get f∗(x) = f(x, φ(x)) for all x ∈ X by choosing δ = 1/2. Moreover, by Proposition
7.50(a) in [1], Gr(φ) ⊆ D i.e., d(x, φ(x)) ≤ ε for all x ∈ X . Therefore,

sup
W∞(µ,µ′)≤ε

µ′(A) ≥ φ]µ(A) = µ(φ−1(A)) = µ(A⊕ε).

Hence, supW∞(µ,µ′)≤ε µ
′(A) = φ]µ(A) = µ(A⊕ε) for any set A ∈ B(X ).

Proof of Theorem 5.1. Since A ∈ B(X ), Ac ∈ B(X ) and by Lemma 4.2, A⊕ε, (Ac)⊕ε ∈ B(X ).
Therefore R⊕ε(`0/1, A) is well-defined.
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By Lemma 5.1, we have

RΓε(`0/1, A) = sup
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

T

T + 1
p′0(A) +

1

T + 1
p′1((Ac))

=
T

T + 1

(
sup

W∞(p0,p′0)≤ε
p′0(A)

)
+

1

T + 1

(
sup

W∞(p1,p′1)≤ε
p′1((Ac))

)

=
T

T + 1
p0(A⊕ε) +

1

T + 1
p1((Ac)⊕ε)

= R⊕ε(`0/1, A)

By Lemma 5.1 again, the supremum over p′0 and p′1 in RΓε(`0/1, A) is attained by measures pushed
forward from p0 and p1 via some measurable maps f0 and f1. From this, the remaining assertions of
the theorem follow.

C.2 Proofs from Section 5.2

Proof of Lemma 5.2. The following properties of v are trivially true: v(φ) = 0, v(X ) = 1 and
v(A) ≤ v(B) for A ⊆ B.

Consider a sequence of sets (An) in X such that Ak ⊆ Ak+1 for k ∈ N . Let A = ∪nAn. That is,
An ↑ A. Then by Lemma A.1 we have, A⊕ε = ∪nA⊕εn . Hence, A⊕εn ↑ A⊕ε and by the continuity of
measure, v(An) = µ(A⊕εn ) ↑ µ(A⊕ε) = v(A).

Consider a sequence of closed sets (Fn) in X such that Fk ⊇ Fk+1 for k ∈ N. Let F = ∩nFn.
That is, Fn ↓ F . By Lemma A.3, F⊕εn ↓ F⊕ε. Hence, by the continuity of measure, we have
v(Fn) = µ(F⊕εn ) ↓ µ(F⊕ε) = v(F ).

For any two sets A,B ∈ L(X ),

v(A ∪B) = µ((A ∪B)⊕ε)

(i)
= µ(A⊕ε ∪B⊕ε)
= µ(A⊕ε) + µ(B⊕ε)− µ(A⊕ε ∩B⊕ε)
(ii)

≤ µ(A⊕ε) + µ(B⊕ε)− µ((A ∩B)⊕ε)

= v(A) + v(B)− v(A ∩B),

where (i) follows from Lemma A.1 and (ii) follows from Lemma A.2. Hence, v is a 2-alternating
capacity.

Proof of Lemma 5.3. Let µ′ ∈ P(X ) be such that W∞(µ, µ′) ≤ ε. Then there exists a coupling
γ ∈ Π(µ′, µ) such that for (x, x′) ∼ γ, d(x, x′) ≤ ε γ-a.e. Hence,

µ′(A) = γ(A×X ) = γ(A×A⊕ε) ≤ γ(X ×A⊕ε) = µ(A⊕ε).

Since the choice of µ′ was arbitrary in the set {ν ∈ P(X ) : W∞(µ, ν) ≤ ε}, we have,

sup
W∞(µ,µ′)≤ε

µ′(A) ≤ µ(A⊕ε).

We will now show the inequality in the reverse direction. By Lemma 5.2, A 7→ µ(A⊕ε) is a 2-
alternating capacity. Hence by Lemma 2.5 in [21], for any Lebesgue measurable A ⊆ X , there exists
a ν ∈ P(X ) such that ν(A) = µ(A⊕ε) and ν(B) ≤ µ(B⊕ε) for all Lebesgue measurable B ⊆ X .
For such a ν, it is clear that W∞(µ, ν) ≤ ε. Hence,

sup
W∞(µ,µ′)≤ε

µ′(A) ≥ ν(A) = µ(A⊕ε).

Hence, supW∞(µ,µ′)≤ε µ
′(A) = ν(A) = µ(A⊕ε).
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Proof of Theorem 5.2.

RΓε(`0/1, A) =
T

T + 1

(
sup

W∞(p0,p′0)≤ε
p′0(A)

)
+

1

T + 1

(
sup

W∞(p1,p′1)≤ε
p′1((Ac))

)
(∗)
=

T

T + 1
p0(A⊕ε) +

1

T + 1
p1((Ac)⊕ε)

= R⊕ε(`0/1, A),

where (∗) follows from Lemma 5.3. By Lemma 5.3 again, the supremum over p′0 and p′1 in
RΓε(`0/1, A) is attained.

D Proofs from Section 6

We first prove a discrete version of Theorem 6.1 on a finite space.
Lemma D.1. Let Xn = {x1, . . . , xn} ⊆ X . Let p = (pi)

n
i=1, q = (qi)

n
i=1 be such that pi, qi ≥ 0

for i ∈ [n] and
∑
i pi ≤

∑
i qi. Let ε > 0. For A ⊆ Xn, let Aε := {x ∈ Xn : d(x, x′) ≤

ε, for some x′ ∈ A}. For A ⊆ Xn, let p(A) =
∑
i:xi∈A pi and q(A) =

∑
i:xi∈A qi. For i, j ∈ [n],

let cij = 1{d(xi, xj) > 2ε}. Then,

max
A⊆Xn

p(A)− q(A2ε) = min
xij≥0∑
j xij=pi∑
i xij≤qj

∑
i,j

cijxij . (16)

Proof. For i, j ∈ [n], define dij := 1− cij . Then,

min
xij≥0∑
j xij=pi∑
i xij≤qj

∑
i,j

cijxij =
∑
i

pi − max
xij≥0∑
j xij=pi∑
i xij≤qj

∑
i,j

dijxij (17)

Consider the following modification to the linear program on the right hand side of (17), where the
constraint

∑
j xij = pi is replaced by

∑
j xij ≤ pi.

max
xij≥0∑
j xij≤pi∑
i xij≤qj

∑
i,j

dijxij . (18)

We will show that the above linear program is equivalent to the linear program on the right hand
side of (17). Since the above linear program is bounded and feasible, it admits a solution. Let
{x∗ij}i,j∈[n] be the solution to (18). Suppose there exists m ∈ [n] such that

∑
j x
∗
mj < pm. Let

s = pm −
(∑

j x
∗
mj

)
> 0. For j ∈ [n], define sj := qj −

∑
i x
∗
ij . Then,∑

j

sj =
∑
j

qj −
∑
i,j

xij

≥
∑
i

pi −

∑
i 6=m

pi

+ pm − s


= s.

Therefore,
∑
j sj ≥ s. Let k be the largest integer for which

∑k
j=1 sj < s. Define,

yij =


x∗ij i 6= m,

x∗mj + sj i = m, j ≤ k,
x∗mk + s−

∑k
j=1 sj i = m, j = k + 1,

x∗mj i = m, j ≥ k + 1.

(19)
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By the above definition we have,∑
j

yij =

{∑
j x
∗
ij i 6= m,∑

j x
∗
ij + s i = m.

∑
i

yij =


∑
i x
∗
mj + sj j ≤ k,∑

i x
∗
mk + s−

∑k
j=1 sj j = k + 1,∑

i x
∗
mj j ≥ k + 1.

Combining the above with the definitions of k, s and {sj}j∈[n], we see that
∑
j yij ≤ pi and∑

i yij ≤ qj . Moreover, yij ≥ xij for all i, j ∈ [n]. Hence,
∑
ij dijyij ≥

∑
ij dijxij . Therefore,

any solution {x∗ij}i,j∈[n] for which there exists m ∈ [n] such that
∑
j x
∗
mj < pm, can be improved

to a solution {yij}i,j∈[n] for which
∑
j ymj = pm. Hence,

max
xij≥0∑
j xij=pi∑
i xij≤qj

∑
i,j

dijxij = max
xij≥0∑
j xij≤pi∑
i xij≤qj

∑
i,j

dijxij . (20)

Since the maximization in (20) is a linear program in canonical form, we employ the strong duality
theorem (for a reference, see Chapter 6 in [29]) to get the following.

max
xij≥0∑
j xij≤pi∑
i xij≤qj

∑
i,j

dijxij = min
ui,vi≥0

ui+vj≥dij

∑
i

(piui + qivi). (21)

Since dij ∈ {0, 1}, we may assume ui, vi ≤ 1 for the minimization in (21) without violating other
constraints because any decrease of ui, vi down to 1 will only decrease the value of

∑
i(piui + qivi),

which we seek to minimize. Defining wi := 1− ui, we have the following from (17) and (21).

min
xij≥0∑
j xij=pi∑
i xij≤qj

∑
i,j

cijxij = max
wi,vi∈[0,1]
wi−vj≤cij

∑
i

(piwi − qivi). (22)

The optimal w∗i , v
∗
i that achieve the maximum in (22) must lie at one of the vertices of the polyhedron

supported by the hyperplanes, wi = 0, wi = 1, vi = 0, vi = 1 and wi − vj = cij . Hence,
w∗i , v

∗
i ∈ {0, 1}. Moreover if cij = 0 and w∗i = 1 for some i, j ∈ [n], then v∗j = 1. On the other

hand if cij = 1, then v∗j can be set to 0 without violating other constraints and without decreasing the
maximization objective. Therefore, setting A := {xi ∈ Xn : w∗i = 1}, we see that the maximum in
(22) equals the maximum in (16).

Proof of Theorem 6.1. Let (γn)∞n=1 be a non-negative, monotonically decreasing sequence converg-
ing to 0. Let (xn)∞n=1 be a dense sequence in X . Define a function f : X → {xn}∞n=1 such that
f(x) = xk for the least integer k with d(x, xk) < γn. Let Hn = {x1, . . . , xn}. Let sn be the least
positive integer such that,

µ(f−1(Hsn−1)) > µ(X )− γn, (23)

ν(f−1(Hsn−1)) > ν(X )− γn. (24)

Given n, construct a discrete measure µn supported on the finite set Hsn such that µn(xk) :=
µ(f−1(xk)) for k ∈ [sn − 1] and µn(X ) = µ(X ). Similarly, construct νn supported on Hsn such
that νn(xk) := ν(f−1

n (xk)) for k ∈ [sn − 1] and νn(X ) = ν(X ).

Let A ∈ B(X ). We have,

µn(A)
(i)
= µn(A ∩Hsn)

(ii)
< µn(A ∩Hsn−1) + γn
(iii)
= µ(f−1(A ∩Hsn−1)) + γn

(iv)

≤ µ(Aγn) + γn, (25)
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where (i) follows from the fact that µn is supported on Hsn , (ii) follows from (23), (iii) follows
from the definition of µn and (iv) follows because of the following: For any y ∈ A ∩ Hsn−1,
f−1(y) ⊆ {x ∈ X : d(x, y) < γn} ⊆ Aγn . Hence, f−1(A ∩Hsn−1) ⊆ Aγn . Applying (25), with
Ac instead of A, we have the following.

µ(A−γn)− γn ≤ µn(A) ≤ µ(Aγn) + γn. (26)

Letting n → ∞ in (26) and using Lemma A.4, we get that lim supn µn(A) ≤ µ(A) for all closed
subsets A of X . Hence, by applying the Portmanteau theorem (Theorem 2.1 in [3]), we conclude that
the sequence of measures (µn)∞n=1 converges weakly to µ. Similarly, νn → ν weakly.

For any fixed n, we apply Lemma D.1 to the measures µn, νn on the finite space Hsn to get the
following.

max
A⊆Hsn

µn(A)− νn(A2ε+4γn) = min
xij≥0∑

j xij=µn(xi)∑
i xij≤νn(xj)

∑
i,j

xij1{d(xi, xj) > 2ε+ 4γn}, (27)

where the indices i, j run over [sn]. We have that µn(X ) = µ(X ) ≤ ν(X ) = ν(X ). Define a
coupling πn ∈ Π(µn, νn) supported on Hsn ×Hsn using the optimal solution {xij}i,j∈[sn] to the
minimization in (27) by setting πn(i, j) = x∗ij . Let Tn ⊆ Hsn be the set that achieves the maximum
in (27).

We will now construct a candidate coupling for the infimum in (8). Since µ, ν are finite measures on a
Polish space, they are tight (see for example, Theorem 1.3 in [3]). Hence, given a δ > 0, there exists
a compact set K ⊆ X such that min{µ(Kc), ν(Kc)} < δ/3. Since µn and νn converge weakly to
µ and ν respectively, choose N large enough so that min{µn(Kc), νn(Kc)} < δ/2 for all n ≥ N .
Let ν′n be the second marginal of the coupling πn. Then, ν′n � νn. By union bound, we have the
following.

πn((K ×K)c) ≤ µn(Kc) + ν′n(Kc) ≤ µn(Kc) + νn(Kc) < δ. (28)

Hence, the sequence (πn)n≥N is uniformly tight. Hence, by Prokhorov’s theorem (for reference,
see Theorem 5.1 in [3]), there is a subsequence (πnk) of (πn)n≥N that converges weakly to some
measure π∗ ∈ M(X × X ). Moreover, π∗ ∈ Π(µ, ν) by virtue of the constraints imposed on the
converging subsequence of (πn)n≥N .

Let Φ = supA∈B(X ) µ(A)− ν(A2ε) and Ψ = Tcε(µ, ν). For any n we have,

πn(d(xi, xj) > 2ε+ 4γn)
(i)
= µn(Tn)− νn(T 2ε+4γn

n )

(ii)

≤ (µ(T γnn ) + γn)− (ν((T 2ε+4γn
n )−γn)− γn)

(iii)

≤ µ(T γnn )− ν((T 2ε+4γn−γn−γn/2
n ) + 2γn

≤ µ(T 2γn
n )− ν((T 2ε+2γn

n ) + 2γn
(iv)

≤ Φ + 2γn, (29)

where (i) follows from the definition of πn and Tn, (ii) follows from (26), (iii) follows from
Lemma A.5 and (iv) follows from the definition of Φ. Further,

Ψ = inf
π∈Π(µ,ν)

π[d(x, x′) > 2ε]

(i)

≤ π∗[d(x, x′) > 2ε]

(ii)

≤ lim inf
nk

πnk [d(x, x′) > 2ε]

≤ lim sup
n

πn[d(x, x′) ≥ 2ε]

(iii)

≤ Φ, (30)
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where (i) follows because π∗ ∈ Π(µ, ν), (ii) follows from Portmanteau’s theorem because (πnk)
that converges to π∗ and the set {(x, x′) ∈ X 2 : d(x, x′) > 2ε} is an open set, and (iii) follows by
taking n→∞ in (29).

To show the inequality Φ ≤ Ψ, consider a sequence of measures (λn)∞n=1 such that λn ∈ Π(µ, ν)
and limn λn[d(x, x′) > ε] = Ψ. For any A ∈ B(X ),

µ(A) = λn[x ∈ A, x′ ∈ Aε] + λn[x ∈ A, x′ /∈ Aε]
≤ ν(Aε) + λn[d(x, x′) > ε].

Letting n → ∞, we have µ(A) − ν(Aε) ≤ Ψ for all A ∈ B(X ). Hence, Φ ≤ Ψ. Combining this
with (30), we conclude Φ = Ψ.

Proof of Lemma 6.1. We have,

sup
A∈B(X )

µ(A)− ν(A2ε)
(i)
= sup

A closed
µ(A)− ν(A2ε)

(ii)

≤ sup
A closed

µ((A⊕ε)	ε)− µ((A⊕ε)⊕ε)

(iii)

≤ sup
A∈B(X )

µ(A	ε)− ν(A⊕ε),

where (i) follows because we may assume that the supremum of µ(A) − ν(A2ε) is achieved by a
closed set. Indeed, µ(A)− ν(A

2ε
) ≥ µ(A)− ν(A2ε) because A ⊇ A and A

2ε
= A2ε. (ii) follows

from the following two facts: 1) A ⊆ A⊕ε)	ε (see Lemma 3.3 in [35]), and 2) Aε = A⊕ε for
closed sets A (see Lemma 3.2 in [35]). (iii) follows from Lemma 4.2 because µ, ν ∈ P(X ) and
A	ε, A⊕ε ∈ B(X ) whenever A ∈ B(X ).

Now, we show that the above inequality also holds in the opposite direction. Let µ′ = µ/t ∈ P(X )
for some fixed t > 0. For x, y ∈ X , define the cost function c(x, y) = 1{d(x, y) > 2ε}. For any
ν′ ∈ P(X ), we have the following from Kantorovich duality theorem.

Dε(µ
′, ν′) = sup

φ(x)+ψ(y)≤c(x,y)

∫
φdµ′ +

∫
ψdν′,

For any A ∈ B(X ), define φ′(x) = 1{x ∈ A	ε} and ψ′(y) = −1{y ∈ A⊕ε}. We will now show
that φ′(x) +ψ′(y) ≤ c(x, y). If x, y are such that c(x, y) = 1, the inequality holds trivially. Suppose
on the other hand, x, y are such that c(x, y) = 0. Then d(x, y) ≤ 2ε. Hence, for any x ∈ A	ε, we
have y ∈ (A	ε)⊕2ε = ((A	ε)⊕ε)⊕ε ⊆ A⊕ε (the set inclusion here follows from Lemma 3.3 in [35]).
Therefore,

φ′(x) + ψ′(y) = 1{x ∈ A	ε} − 1{y ∈ A⊕ε} = 0 = c(x, y).

Hence,

Dε(µ
′, ν′) ≥

∫
φ′dµ′ +

∫
ψ′dν′ = µ′(A	ε)− ν′(A⊕ε).

Now,

sup
A∈B(X )

µ(A)− ν(A2ε)
(∗)
= t inf

ν′∈P(X )
ν′�ν/t

Dε(µ
′, ν′)

≥ t inf
ν′∈P(X )
ν′�ν/t

µ′(A	ε)− ν′(A⊕ε)

= tµ′(A	ε)− t sup
ν′∈P(X )
ν′�ν/t

ν′(A⊕ε)

≥ µ(A	ε)− tν
t

(A⊕ε)

= µ(A	ε)− ν(A⊕ε),
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where (∗) follows from Theorem 6.1. Since the above inequality is valid for any A ∈ B(X ), we get
the following.

sup
A∈B(X )

µ(A)− ν(A2ε) ≥ sup
A∈B(X )

µ(A	ε)− ν(A⊕ε).

Proof of Theorem 6.2.

inf
A∈B(X )

R⊕ε(`0/1, A) = inf
A∈B(X )

1

T + 1

[
Tp0(A⊕ε) + p1((Ac)⊕ε)

]
=

1

T + 1

[
1− sup

A∈B(X )

(
p1(A	ε)− Tp0(A⊕ε)

)]
(i)
=

1

T + 1

[
1− sup

A∈B(X )

(
p1(A)− Tp0(A2ε)

)]

(ii)
=

1

T + 1

1− inf
q∈P(X ):
q�Tp0

Dε(q, p1)

 ,
where (i) follows from Lemma 6.1 and (ii) follows from Theorem 6.1.

E Proofs from Section 7

Proof of Theorem 7.1. By Lemma 5.2, the set-valued maps A 7→ p0(A⊕ε) and Ac 7→ p1((Ac)⊕ε)
are 2-alternating capacities. Hence, the existence of A∗ ∈ L(X ) that attains the infimum on the
right in (12) follows from Lemma 3.1 in [21] and the equality R⊕ε(`0/1, A) = RΓε(`0/1, A) proved
in Theorem 5.2. By Theorem 4.1 in [21], there exist q0, q1 ∈ P(X ) such that W∞(pi, qi) ≤ ε for
i = 0, 1 and,

inf
A∈L(X )

sup
W∞(p0,p′0),W∞(p1,p′1)≤ε

r(A, p0, p1) = inf
A∈L(X )

r(A, q0, q1).

Hence,
inf

A∈L(X )
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
r(A, p0, p1) = inf

A∈A
r(A, q0, q1)

≤ sup
W∞(p0,p′0),W∞(p1,p′1)≤ε

inf
A∈L(X )

r(A, p0, p1).

The desired result follows from combining the above inequality with the max-min inequality (11).
Clearly, q0 = p∗0 and q1 = p∗1.

Lemma E.1 (Max-min Inequality). Let p0, p1 ∈ P(X ) and let ε ≥ 0. For T > 0, define r :
B(X )× P(X )× P(X )→ [0, 1] as in (10). Then,

sup
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

inf
A∈B(X )

r(A, p′0, p
′
1) ≤ inf

A∈B(X )
sup

W∞(p0,p
′
0)≤ε

W∞(p1,p
′
1)≤ε

r(A, p′0, p
′
1). (31)

Proof. For any A ∈ B(X ) and p′0, p
′
1 such that W∞(pi, p

′
i) ≤ ε (i = 0, 1), we have

inf
A∈B(X )

r(A, p′0, p
′
1) ≤ r(A, p′0, p′1).

Taking supremum over p′0 and p′1 such that W∞(pi, p
′
i) ≤ ε for i ∈ {0, 1} on both sides of the above

inequality, we get the following for any A ∈ B(X ).
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
inf

A∈B(X )
r(A, p′0, p

′
1) ≤ sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
r(A, p′0, p

′
1).

Since the above inequality holds for any A ∈ B(X ), we have,
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
inf

A∈B(X )
r(A, p′0, p

′
1) ≤ inf

A∈B(X )
sup

W∞(p0,p′0),W∞(p1,p′1)≤ε
r(A, p′0, p

′
1).
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Proof of Theorem 7.2. Consider any µ′ and ν′ such that W∞(µ, µ′) ≤ ε and W∞(ν, ν′) ≤ ε. Then
there exist γµ ∈ Π(µ, µ′) and γν ∈ Π(ν, ν′) such that

P(x,x′)∼γµ(d(x, x′) > ε) = 0,

P(x,x′)∼γν (d(x, x′) > ε) = 0.

Let γ′ ∈ Π(µ′, ν′) be the coupling that achieves the optimal transport cost DTV (µ′, ν′). Construct a
coupling γ0 ∈ Π(µ, ν) as γ0 = γµ ◦ γ′ ◦ γν . Then,

Dε(µ, ν) ≤
∫
X 2

1{d(x, x′) > 2ε}dγ0

≤
∫
X 2

1{d(x, x′) > 0}dγ′

= DTV (µ′, ν′).

Since the above inequalty is true for any µ′ and ν′ such that W∞(µ, µ′) ≤ ε and W∞(ν, ν′) ≤ ε, we
have the following inequality.

Dε(µ, ν) ≤ inf
W∞(p0,p′0),W∞(p1,p′1)≤ε

DTV (µ′, ν′).

Now we will show the above inequality in the reverse direction. Let γ ∈ Π(µ, ν) be the coupling that
achieves the optimal transport cost for Dε(µ, ν). Let M : X 2 → X be a measurable midpoint map.
(See [13] for why such a map exists.) That is, for all (x, x′) ∈ X 2 we have

d(x,M(x, x′)) = d(x′,M(x, x′)) =
1

2
d(x, x′).

Consider a transport map T : X 2 → X 2 defined as

T (x, x′) =

{
(M(x, x′),M(x, x′)) d(x, x′) ≤ 2ε,

(x, x′) otherwise.

T is measurable because it is piece-wise measurable on measurable sets. Further, it follows from the
definition of M that each coordinate of a point (x, x′) is transported by T by a distance no further
than ε. Let µ0 ad ν0 be the probability measures corresponding to the first and second marginals of
T]γ respectively. Then, W∞(µ, µ0) ≤ ε and W∞(ν, ν0) ≤ ε. Hence,

Dε(µ, ν) =

∫
X 2

1{d(x, x′) > 2ε}dγ

=

∫
X 2

1{d(x, x′) > 0}dγ]T

≥ DTV (µ0, ν0)

≥ inf
W∞(p0,p′0),W∞(p1,p′1)≤ε

DTV (µ′, ν′).

Combining with the reverse inequality that we proved above, it is clear that the infimum over DTV is
attained by µ0 and ν0.
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Proof of Lemma 7.1. The first equality in (14) follows from Theorem 7.2. For the second equality,
we have the following.

inf
q∈P(X ):
q�Tp0

Dε(q, p1)
(i)
= 1− (T + 1) inf

A∈B(X )
R⊕ε(`0/1, A)

(ii)
= 1− (T + 1) inf

A∈B(X )
RΓε(`0/1, A)

= 1− (T + 1) inf
A∈B(X )

sup
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

r(A, p′0, p
′
1)

(iii)

≤ 1− (T + 1) sup
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

inf
A∈B(X )

r(A, p′0, p
′
1)

= inf
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

[1− (T + 1) inf
A∈B(X )

r(A, p′0, p
′
1)]

(iv)

≤ inf
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

inf
q′∈P(X ):
q′�Tp′0

DTV (q′, p′1),

where (i) follows from Theorem 6.2, (ii) from Theorem 5.1, (iii) from Lemma E.1, and (iv) again
from Theorem 6.2 with ε = 0.

We will now show the inequality in the opposite direction. That is, we will show the following.

inf
q∈P(X ):
q�Tp0

inf
W∞(q,q′)≤ε
W∞(p1,p

′
1)≤ε

DTV (q′, p′1) ≥ inf
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

inf
q′∈P(X ):
q′�Tp′0

DTV (q′, p′1) (32)

Consider arbitrary probability measures q′, p′1 ∈ P(X ) generated in accordance with the constraints
over the infimum terms on the left hand side of the above inequality. That is, let q′ and p′1 be such
that W∞(q, q′) ≤ ε and W∞(p1, p

′
1) ≤ ε where q � Tp0. We will now construct p′0 ∈ P(X ) such

that q′ � Tp′0 and W∞(p0, p
′
0) ≤ ε. This will show that the set of q′, p′1 ∈ P(X ) satisfying the

constraints over the infimum terms on the right hand side is a superset of the corresponding set on the
right hand side, and hence prove the above inequality.

Define a probability measure p′0 ∈ P(X ) as p′0(A) = p0(A) + 1
T q
′(A)− 1

T q(A) for A ∈ B(X ). To
show that p′0 is a valid probability measure, we have the following.

p′0(X ) = p0(X ) +
1

T
q′(X )− 1

T
q(X ) = 1

p′0(A) =
1

T
(Tp0(A)− q(A)) +

1

T
q′(A) ≥ 1

T
q′(A) ≥ 0.

The above equality also shows that q′ � Tp′0. We will now show that W∞(p0, p
′
0) ≤ ε. Since

W∞(q, q′) ≤ ε, there exists γ ∈ Π(q, q′) such that γ({(x, x′) ∈ X 2 : d(x, x′) ≤ 2ε}) = 1. Define
γ′ ∈ Π(p0, p

′
0) as follows for A ∈ B(X 2).

γ′(A) = p0({x ∈ X : (x, x) ∈ A}) +
1

T
γ(A)− 1

T
q({x ∈ X : (x, x) ∈ A}).

To see that γ′ ∈ Π(p0, p
′
0), we have the following for A1, A2 ∈ B(X ).

γ′(A1 ×X ) = p0(A1) +
1

T
q(A1)− 1

T
q(A1) = p0(A1),

γ′(X ×A2) = p0(A2) +
1

T
q′(A2)− 1

T
q(A2) = p′0(A2).

Moreover,

γ′({(x, x′) ∈ X 2 : d(x, x′) ≤ 2ε}) = p0(X ) +
1

T
γ({(x, x′) ∈ X 2 : d(x, x′) ≤ 2ε})− 1

T
q(X ) = 1.

Therefore, W∞(p0, p
′
0) ≤ ε.
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Proof of Theorem 7.4. Without loss of generality, we assume T ≥ 1. (If T < 1, we simply repeat
the proof with labels 0 and 1 swapped.)

inf
A∈B(X )

sup
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

r(A, p′0, p
′
1) = inf

A∈B(X )
RΓε(`0/1, A)

(i)
= inf

A∈B(X )
R⊕ε(`0/1, A)

(ii)
=

1

T + 1

1− inf
q∈P(X ):
q�Tp0

Dε(p0, p1)


(iii)
=

1

T + 1

1− inf
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

inf
q′∈P(X ):
q′�Tp′0

DTV (q′, p′1)


= sup
W∞(p0,p

′
0)≤ε

W∞(p1,p
′
1)≤ε

1

T + 1

1− inf
q′∈P(X ):
q′�Tp′0

DTV (q′, p′1)


(iv)
= sup

W∞(p0,p
′
0)≤ε

W∞(p1,p
′
1)≤ε

inf
A∈B(X )

r(A, p′0, p
′
1),

where (i) follows from Theorem 5.1, (ii) from Theorem 6.2, (iii) from Lemma 7.1 and (iv) follows
again from Theorem 6.2 with ε = 0.
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