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A TRAINING DETAILS

We set the batch size to 32 and train the model from scratch on eight V100 GPUs for 400 epochs. We
implement the model in TensorFlow 2.4 (Abadi et al., 2015). We use the Adam optimizer (Kingma
& Ba, 2014) with (lr = 2.5e−3, β1 = 0.0, β = 0.99) for both the discriminator and the generator.

Perceptual Loss In Eq. 10, the perceptual loss contains two parts: feature reconstruction loss
Lfeature and style reconstruction loss Lstyle. Input an image x, assume i is a convolution layer then
φ(x) will be a feature map of size Ci ×Hi ×Wi

Lfeature =
∑
i

1

CiHiWi
||φi(x)− φi(y)||22 (14)

Lstyle =
∑
i

||Grami(x)−Grami(y)||2F (15)

where φ(·) is a VGG feature extractor and Grami(·) is a Gram matrix at layer i whose elements at
index (c, c′) are given by

Grami(x) =
1

CiHiWi

Hi∑
h=1

Wi∑
w=1

φ(x)h,w,cφ(x)h,w,c′ (16)

A.1 NETWORK ARCHITECTURE

In this section, we provide architectures of the applied model.

Encoder The encoder consists of stacked residual blocks and each residual block (ResBlock) con-
sists of two convolution layer, where the first layer does not change the spatial size whereas the
second one comes with a stride 2 for down-sampling. The kernel size is 3 × 3. We use the non-
parameterized AttentionPooling as the last layer to aggregate global spatial information.

Layer Output Shape
Image x 512 × 512 × 3

ResBlock 256 × 256 × 32
ResBlock 128 × 128 × 64
ResBlock 64 × 64 × 128
ResBlock 32 × 32 × 256
ResBlock 16 × 16 × 512
ResBlock 8 × 8 × 512
ResBlock 4 × 4 × 512

AttentionPooling 1 × 1 × 512

Table 4: Encoder architecture.

Decoder The decoder includes several StyleBlock, which is borrowed from the StyleGAN gen-
erator (Karras et al., 2019). Each StyleBlock takes two inputs: previous feature map and external
modulation vector.

Discriminator The architecture of discriminator is mostly the same as the encoder, except that the
AttentionPooling is replaced by a minibatch discrimination layer (Karras et al., 2019).

B IPRECISION AND IRECALL

Figure 8 evaluates the metric with Inception V3. It is shown that our approach consistently outper-
forms the baselines as in FaceNet. Besides, compared with Figure 5, FaceNet can provide more
discriminative quantitative numbers.
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Layer Output Shape
Last Feature 4 × 4 × 512

StyleBlock 8 × 8 × 512
StyleBlock 16 × 16 × 512
StyleBlock 32 × 32 × 512
StyleBlock 64 × 64 × 256
StyleBlock 128 × 128 × 128
StyleBlock 256 × 256 × 64
StyleBlock 512 × 512 × 32

ToRGB 512 × 512 × 3

Table 5: Decoder architecture.

Figure 8: iPrecision and iRecall with Inception V3

B.1 PSEUDO-CODE FOR PRECISION

C MORE ABLATIONS

C.1 THE NUMBER OF SKIP CONNECTIONS

The other critical factor that affects the restoration is the number of skip connections. Table 6
quantifies the restoration performances. In this paper, we use 4 skip connections at resolution nodes
(82, 162, 322, 642) by default. As is seen, more skip connections usually lead to better results, except
for using as many as six.

NO. PSNR↑ LPIPS↓ SSIM↑ FID↓ iPrecision ↑
0 21.16±0.45 0.3358 0.5754 24.30 0.321
1 24.75±0.12 0.3098 0.6668 20.49 0.902
2 26.15±0.04 0.2543 0.6915 19.17 0.945
4 27.43±0.03 0.2349 0.7316 19.19 0.982
6 27.07±0.04 0.3112 0.6707 27.17 0.931

Table 6: On the impact of the number of skip connections.

C.2 THE IMPACT OF NOISES

We also evaluate how different noises affect the restoration results given the same input. It is ob-
served that: (i) The influence of noises diminishes with more skip connections as seen in Table 6.
(ii) Less number of skip connections can generate more diverse images at the cost of sacrificing face
identities, as seen in Table 6 and Figure 10.
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Algorithm 1 Precision and iPrecision

1 # G: generated images set. R: ground truth set.
2 # k: neighborhood size.
3 # net: pretrained feature extractor.
4 import numpy as np
5 # compute features for fake and real images.
6 N = len(G) # or N = len(R)
7 E_g = np.stack([net(g) for g in G]) # fake: Nxd
8 E_r = np.stack([net(r) for r in R]) # real: Nxd
9

10 # compute neighbors’ distance and identity.
11 # we also store the info of data itself.
12 gn_dist, gn_id = neighbor(E_g) # Nx(k+1), Nx(k+1)
13 rn_dist, rn_id = neighbor(E_r) # Nx(k+1), Nx(k+1)
14 precision, iprecision = [], []
15 for e_g in E_g:
16 dist = euclidean_distance(e_g, E_r) # N
17 # check whether e_g in any neighborhood
18 eg_in = dist[:, :, None] <= rn_dist # Nxk
19 # check id(e_g) is equal to any id(e_r).
20 eg_id_eq = (id(e_g) == rn_id[:, 0]) # N
21 # check both condition are met.
22 eg_both = np.logical_and(eg_in, eg_id_eq)
23 pred = np.any(eg_dist_in, axis=0) # k
24 ipred = np.any(eg_both, axis=0) # 1
25 precision.append(pred)
26 iprecision.append(ipred)
27
28 # Average over all fake data.
29 precision = np.stack(pred).mean(axis=0)
30 iprecision = np.stack(ipred).mean(axis=0)

Input
Number of Skip Connections (n)

GT1 2 4 6

Figure 9: Qualitative comparison by varying the number of skip connections. We count from the
layer with feature resolution 8 × 8, i.e., there exist possible skip connections at resolution nodes
{2n+2 × 2n+2}6n=1 when we set the maximum input resolution at 512× 512.
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Input Seed 0 Seed 1 Seed 2

Figure 10: Restored samples with different random seeds when no skip connections are used.

C.3 ADVERSARIAL DATA AUGMENTATION

Table 7 compares the effect of adversarial data augmentation.

Adv. Aug. PSNR↑ SSIM↑ LPIPS↓ FID↓
N 26.48 0.7021 0.2574 20.22
Y 26.89 0.7134 0.2452 19.77

Table 7: On the impact of adversarial data augmentation.

C.4 ON THE IMPACT OF α

Except for the aforementioned model design that is critical to balance reconstruction and generation,
the relative weight α is obviously crucial. Overall, we find that increasing α causes very opposite
results in terms of PSNR and FID. This happens because LADV and LREC optimize the generator
towards different directions. Larger α helps FID but harms PSNR. In contrast, smaller α can improve
PSNR but generates blurry samples. In this work, we simply use α = 1.0 by default.

Methods PSNR↑ LPIPS↓ iPrecision↑ Preference (%)↑
DFDNet 23.68 0.434 0.462 3.2
GFPGAN 24.19 0.296 0.711 5.3
GPEN 23.91 0.331 0.773 15.1
Ours 28.01 0.205 0.943 76.41

Table 8: Metric comparison on BFR.
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D HUMAN EVALUATION

Talbe 8 shows the human evaluation results on BFR task. Similar to Table 2, we can also observe
that our proposed metric is a better indicator for face restoration.

In terms of detailed human study, we randomly select 100 samples from the testing images and
distribute them to 5 experts that have been devoted to the camera software development for years. In
each example, we place input degraded image, ground truth and four restored images from different
approaches, as shown in Figure 11. The four restored images are places in random order for each
example. People were asked to select the best restored face image following standards:

Figure 11: An example of human evaluation

• It shows less color shift, e.g., the eyeball, hair color and skin tone should be consistent with
ground truth.

• It has sharp and defined features

• It looks realistic and shows no or less artifacts.
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• No excessive features are observed, e.g., the facial features shouldn’t be too bright or crispy
to look realistic, the appearance of eyelid and eyelash should be consistent, etc.

Input DFDNet GFPGAN* GPEN Ours

Figure 12: Restoration comparison on real images. The real low-quality images are available in
DFDNet (Li et al., 2020) public repository.
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Figure 13: More qualitative comparison across various BFR methods.
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Figure 14: More qualitative comparison across various 16× : 32× 32→ 512× 512 SR methods.
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Figure 15: More qualitative comparison across various 8× : 64× 64→ 512× 512 SR methods.
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