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A OPA ALGORITHM

Algorithm LBFGS: (Limited memory) BFGS method with OPA

Input: initial guess (z0, B
−1
0 ), where B−10 is symmetric and positive definite, tolerance ε > 0,

frequency of additional updates M ∈ N, memory limit L ∈ N ∪ {∞}, (tn) a null
sequence of positive numbers with

∑
n tn <∞

Let F := ∇zgθ
for n = 0, 1, 2, . . . do

if ‖F (zn)‖ ≤ ε then let z? := zn and let B := Bn; STOP
Let B̂−1n := B−1n
if (nmodM) = 0 then

let en := tnB
−1
n

∂gθ
∂θ

∣∣∣
zn

, ŷn := F (zn + en)− F (zn) and r̂n := (en)T ŷn

if r̂n > 0 then
let ân := en −B−1n ŷn and let

B̂−1n := B−1n +
ân(en)T + en(ân)T

r̂n
− (ân)T ŷn

(r̂n)2
en(en)T

Let B−1n := B̂−1n
if n ≥ L then remove update n− L from B−1n
Let pn := −B−1n F (zn)
Obtain αn via line-search and let sn := αnpn
Let zn+1 := zn + sn, yn := F (zn+1)− F (zn) and rn := (sn)T yn
if rn > 0 then

let an := sn −B−1n yn and let

B−1n+1 := B−1n +
an(sn)T + sn(an)T

rn
− (an)T yn

(rn)2
sn(sn)T

else let B−1n+1 := B−1n
if n ≥ L then remove update n− L from B−1n+1

Output: z?, B

Remark. A possible choice for (tn) is to use an arbitrary t0 > 0 and tn := ‖sn−1‖ for n ≥ 1.

B PROOFS OF SHINE CONVERGENCE

To facilitate reading, we restate the results before proving them.

B.1 CONVERGENCE USING ULI

Theorem 2 (Convergence of SHINE to the Hypergradient using ULI). Let us denote p(n)θ , the SHINE
direction for iterate n in Algorithm 1 with b = true. Under Assumptions 1 and 2, for a given
parameter θ, (zn) converges q-superlinearly to z? and

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z?

Proof. Under Assumptions 1 and 2, More and Trangenstein (1976, Theorem 5.7) shows that Bn
satisfies

lim
n→∞

Bn = Jgθ (z
?)

The inversion operator is continuous in the space of invertible matrices, so we have:

lim
n→∞

B−1n = Jgθ (z
?)−1
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Because ∇zL and ∂gθ
∂θ are continuous at z? by Assumption 2 (iii), we also have thanks to Assump-

tion 2 (i):

lim
n→∞

∇zL(zn) = ∇zL(z?) and lim
n→∞

∂gθ
∂θ

∣∣∣
zn

=
∂gθ
∂θ

∣∣∣
z?

By continuity we then deduce that, as claimed,

lim
n→∞

p
(n)
θ = lim

n→∞
∇zL(zn)B−1n

∂gθ
∂θ

(zn) = ∇zL(z?)Jgθ (z
?)−1

∂gθ
∂θ

∣∣∣
z?

=
∂L
∂θ

∣∣∣
z?

B.2 CONVERGENCE FOR BFGS WITH OPA

Assumption 5 (Extended Assumptions for BFGS). Let gθ(z) = ∇zrθ(z) for some C2 function
rθ : Rd → R. Consider Algorithm 1 with b = false and suppose that

1. the set Ω := {z ∈ Rd : rθ(z) ≤ rθ(z0)} is convex;
2. rθ is strongly convex in an open superset of Ω (this implies that rθ has a unique global

minimizer z?) and has a Lipschitz continuous Hessian near z?;
3. there are positive constants η1, η2 such that the line search used in the algorithm ensures

that for each n ≥ 0 either

rθ(zn+1) ≤ rθ(zn)− η1
[
∇rθ(zn)T pn
‖pn‖

]2
or rθ(zn+1) ≤ rθ(zn) + η2∇rθ(zn)T pn

is satisfied;
4. the line search has the property that αn = 1 will be used if both

‖(Bn − Jgθ (zn))sn‖
‖sn‖

and ‖zn − z?‖

are sufficiently small.

Remark. The requirements 3. and 4. on the line search are, for instance, satisfied under the
well-known Wolfe conditions, see Byrd et al. (1988, section 3) for further comments.

Theorem 3 (Convergence of SHINE to the Hypergradient for BFGS with OPA). Let us consider p(n)θ ,
the SHINE direction for iterate n in Algorithm 1 that is enriched by extra updates in the direction en
defined in (5). Under Assumptions 2 (ii-iii) and 3, for a given parameter θ, we have the following:
Algorithm 1, for any symmetric and positive definite matrix B0, generates a sequence (zn) that
converges q-superlinearly to z?, and there holds

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z?

(6)

Proof. The proof is divided into four steps. The first step is to establish the q-superlinear convergence
of (zn) to z?. Denoting by Ne ⊂ {0,M, 2M, . . .} the set of indices of extra updates that are actually
applied, the second step consists of showing

lim
Ne3n→∞

(Bn − Jgθ (z?))
en
‖en‖

= 0, (9)

where, in this proof, Bn always represents the matrix from Algorithm LBFGS before the update in
the direction en is applied, i.e., the matrix whose inverse appears in the definition of en, while B̂n
always represents the matrix from Algorithm LBFGS after the update in the direction en has been
applied; if the update in the direction en is not applied, then Bn = B̂n. The third step is to prove that
(9) implies the desired convergence (6) of the SHINE direction if the limit n → ∞ is replaced by
Ne 3 n → ∞, i.e., the limit is taken on the subsequence corresponding to Ne. The fourth step is
then to transfer the convergence to the entire sequence.
It is easy to check that instead of updating B−1n , respectively, B̂−1n , we can also obtain the sequences
(Bn) and (B̂n) by updating according to

Bn+1 = Bn +
yny

T
n

yTn sn
− Bnsn(Bnsn)T

sTnBnsn
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for the usual update (skipping the update if yTn sn ≤ 0), respectively,

B̂n = Bn +
ŷnŷ

T
n

ŷTn en
− Bnen(Bnen)T

eTnBnen

for the extra update (skipping the update if ŷTn en ≤ 0). Here, the quantities yn, ŷn and en are
defined as in Algorithm LBFGS. We can now argue essentially as in the proof of Byrd et al. (1988,
Theorem 3.1) to show that (zn) converges q-superlinearly to z?. As part of that proof we obtain that
B̂n 6= Bn for at least d0.5Qe of the indices n = 0,M, 2M, . . . , QM for any Q ∈ N (namely for all
n ∈ Ne satisfying n ≤ QM ) and that we can apply Byrd and Nocedal (1989, Theorem 3.2), which
yields

lim
n→∞

(
B̂n − Jgθ (z?)

) sn
‖sn‖

= 0 and lim
Ne3n→∞

(Bn − Jgθ (z?))
en
‖en‖

= 0. (10)

For the third step, we abbreviate vn := ∂gθ
∂θ |zn . From the definition of en and (10) we infer that

0 = lim
Ne3n→∞

(Bn − Jgθ (z?))
en
‖en‖

= lim
Ne3n→∞

(
I − Jgθ (z?)B−1n

) vn

‖B−1n vn‖
.

After multiplication with Jgθ (z
?)−1 this entails

lim
Ne3n→∞

(
Jgθ (z

?)−1 −B−1n
) vn

‖B−1n vn‖
= 0,

which shows that

lim
Ne3n→∞

B−1n vn = lim
Ne3n→∞

Jgθ (z
?)−1vn = Jgθ (z

?)−1
∂gθ
∂θ
|z?

by Assumption 2 (iii). Using Assumption 2 (iii) again it follows that

lim
Ne3n→∞

p
(n)
θ = lim

Ne3n→∞
∇zL(zn)B−1n

∂gθ
∂θ

∣∣∣
zn

= ∇zL(z?)Jgθ (z
?)−1

∂gθ
∂θ

∣∣∣
z?

=
∂L
∂θ

∣∣∣
z?
,

concluding the third step. To infer that (6) holds, it suffices to show that limNe3n→∞ ‖Bn−Bjn‖ = 0
for any sequence (jn)n∈Ne ⊂ N such that {jn, jn+1, . . . , n−1}∩Ne = ∅ for all n ∈ Ne sufficiently
large. Indeed, since for C := max{supn ‖Bn‖, supn ‖B−1n ‖}, which is finite by Byrd and Nocedal
(1989, Theorem 3.2), there holds

(Bn) ⊂
{
A ∈ Rd×d : A−1 exists , ‖A‖ ≤ C, ‖A−1‖ ≤ C

}
and the set on the right-hand side of the inclusion is compact by the Banach lemma, inversion is a
uniformly continuous operation on this set, hence limNe3n→∞ ‖B−1n −B−1jn ‖ = 0, so

lim
Ne3n→∞

‖p(n)θ − p(jn)θ ‖ = 0

by continuity, and therefore

lim
Ne3n→∞

p
(jn)
θ = lim

Ne3n→∞
p
(n)
θ =

∂L
∂θ

∣∣∣
z?

by the third step, establishing the claim.
It remains to show the validity of limNe3n→∞ ‖Bn − Bjn‖ = 0 for any sequence (jn)n∈Ne such
that {jn, jn + 1, . . . , n− 1} ∩Ne = ∅ for all n ∈ Ne sufficiently large. Since at least every second
extra update is actually carried out, the condition on the intersection implies n− jn ≤ 2M − 1 for
all these n. Now let (jn)n∈Ne be any such sequence. Then Bn −Bjn =

∑n−1
m=jn

Bm+1 −Bm is a
sum of at most 2M − 1 BFGS updates in search directions, but contains no extra updates. Hence,
the secant conditions Bn−lsn−1−l = yn−1−l, l ∈ {0, 1, . . . , n − jn}, are satisfied, allowing us to
deduce

‖Bn−l −Bn−l−1‖ =
‖(Bn−l −Bn−l−1)sn−l−1‖

‖sn−l−1‖

≤ ‖yn−l−1 − Jgθ (z
?)sn−l−1‖

‖sn−l−1‖
+
‖(Bn−l−1 − Jgθ (z?))sn−l−1‖

‖sn−l−1‖
for all l ∈ {0, 1, . . . , n− jn − 1}. For each of these l, both terms on the right-hand side tend to zero
for Ne 3 n→∞ (for the second term this follows from the first identity in (10) due to Bn−l−1 =

B̂n−l−1). Recalling that Bn −Bjn =
∑n−1
m=jn

Bm+1 −Bm we find limNe3n→∞ ‖Bn −Bjn‖ = 0,
which finishes the fourth step and thus concludes the proof.
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B.3 CONVERGENCE FOR ADJOINT BROYDEN WITH OPA

Theorem 4 (Convergence of SHINE to the Hypergradient for Adjoint Broyden with OPA). Let us
consider p(n)θ , the SHINE direction for iterate n in Algorithm 1 with the Adjoint Broyden secant
condition (7) and extra update in the direction vn defined in (8). Under Assumptions 2 and 4, for a
given parameter θ, we have q-superlinear convergence of (zn) to z? and

lim
n→∞

p
(n)
θ =

∂L
∂θ

∣∣∣
z?

Proof. Due to Assumption 2, the superlinear convergence of (zn) follows from Schlenkrich et al.
(2010, Theorem 2). The proof of the remaining claim is divided into two cases.
Case 1: Suppose that ∇zL(z?) = 0. By continuity this implies limn→∞∇zL(zn) = 0. Since the
sequence (B−1n

∂gθ
∂θ |zn) is bounded by Assumption 4, it follows that

lim
n→∞

p
(n)
θ = lim

n→∞
∇zL(zn)B−1n

∂gθ
∂θ

∣∣∣
zn

= 0 =
∂L
∂θ

∣∣∣
z?
,

as claimed.
Case 2: Suppose that ∇zL(z?) 6= 0. By continuity this implies ∇zL(zn) 6= 0 for all sufficiently
large n ∈ N. Let us denote by Ne ⊂ N the set of indices of extra updates. We stress that this set
is infinite since, by construction, every M -th update is an extra update. We have vn 6= 0 for all
sufficiently large n ∈ Ne, hence Schlenkrich et al. (2010, Lemma 3) yields

lim
Ne3n→∞

‖∇zL(zn)(I −B−1n Jgθ (z
?))‖

‖(∇zL(zn)B−1n )T ‖
= lim
Ne3n→∞

‖(vn)T (Bn − Jgθ (z?))‖
‖vn‖

= 0.

This implies

lim
Ne3n→∞

‖∇zL(zn)(Jgθ (z
?)−1 −B−1n )‖

‖∇zL(zn)B−1n ‖
= 0,

thus necessarily
lim

Ne3n→∞
‖∇zL(zn)(Jgθ (z

?)−1 −B−1n )‖ = 0.

Since limNe3n→∞∇zL(zn)Jgθ (z
?)−1 = ∇zL(z?)Jgθ (z

?)−1 by continuity, we find

lim
Ne3n→∞

∇zL(zn)B−1n = ∇zL(z?)Jgθ (z
?)−1,

whence

lim
Ne3n→∞

p
(n)
θ = lim

Ne3n→∞
∇zL(zn)B−1n

∂gθ
∂θ

∣∣∣
zn

= ∇zL(z?)Jgθ (z
?)−1

∂gθ
∂θ

∣∣∣
z?

=
∂L
∂θ

∣∣∣
z?
, (11)

where we have used continuity again. To prove that these limits hold not only for Ne 3 n → ∞
but in fact for all N 3 n → ∞, we establish, as intermediate claim, that for any fixed m ∈ N we
have limn→∞ ‖Bn+m −Bn‖ = 0. Note that this claim is equivalent to limn→∞ ‖Bn+1 −Bn‖ = 0.
Denoting by L ≥ 0 the Lipschitz constant of Jgθ near z?, we find

‖Bn+1 −Bn‖ =
‖vnvTn [Jgθ (zn+1)−Bn] ‖

‖vn‖2
≤ ‖Jgθ (zn+1)− Jgθ (z?)‖+

‖ [Jgθ (z
?)−Bn]

T
vn‖

‖vn‖

≤ L‖zn+1 − z?‖+
‖ETn vn‖
‖vn‖

.

Both terms on the right-hand side go to zero as n goes to infinity: the first one due to limn→∞ zn = z?

and the second one since limn→∞
‖ETn vn‖
‖vn‖ = 0 by Schlenkrich et al. (2010, Lemma 3). This shows

that limn→∞ ‖Bn+1 −Bn‖ = 0, which concludes the proof of the intermediate claim.
From limn→∞ ‖Bn+m − Bn‖ = 0 for any fixed m ∈ N it follows that for any sequence
(jn) ⊂ N with supn |jn − n| < ∞ there holds limn→∞ ‖Bjn − Bn‖ = 0. This implies for
any such sequence (jn) the limit limn→∞ ‖B−1jn − B−1n ‖ = 0. To establish this, note that for
C := max{supn ‖Bn‖, supn ‖B−1n ‖}, which is finite by Assumption 4 and the combination of the
bounded deterioration principle (Schlenkrich et al., 2010, Lemma 2) with Assumption 2 (i), the set{

A ∈ Rd×d : A−1 exists , ‖A‖ ≤ C, ‖A−1‖ ≤ C
}
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includes the sequence (Bn) and is compact by the Banach lemma, so inversion is a uniformly
continuous operation on this set.
Now let us construct a sequence (jn) ⊂ Ne by defining, for every n ∈ N, jn := arg minm∈Ne |n−m|.
That is, for every n, jn denotes the member of Ne with the smallest distance to n. It is clear that
|n− jn| ≤M − 1 for all n, hence limn→∞ ‖B−1jn −B

−1
n ‖ = 0. Using this and, again, continuity it

is easy to see that
lim
n→∞

‖p(n)θ − p(jn)θ ‖ = 0,

which implies by (11) that

lim
n→∞

p
(n)
θ = lim

n→∞
p
(jn)
θ = lim

Ne3n→∞
p
(n)
θ =

∂L
∂θ

∣∣∣
z?
,

thereby establishing the claim.

Remark. An inspection of the proof reveals that if Bn is never updated in the direction zn, but only
updated in the direction vn defined in (8), then Assumption 4 can be replaced by the significantly
weaker assumption that the sequence (B−1n

∂gθ
∂θ |zn) is bounded. The price to pay is that the conver-

gence rate of (zn) to z? will be slower (q-linear instead of q-superlinear) since the updates in the
direction zn are critical for ensuring fast convergence of (zn) to z?.

C LOGISTIC REGRESSION HYPERPARAMETERS

For both datasets we split the data randomly (with a different seed for each run) between training-
validation-test, with the following proportions: 90%-5%-5%. The hyperparameters are the same as in
the original HOAG work (Pedregosa, 2016), except:

• We use a memory limitation of 30 updates (not grid-searched) for accelerated methods
(Jacobian-Free and SHINE), compared to 10 for the original method. This is because the
approximation should be better using more updates. We verified that using 30 updates for
the original method does not improve the convergence speed. That number is 60 for OPA.

• We use a smaller exponential decrease of 0.78 (not grid-searched) for the accelerated
methods, compared to 0.99 for the original method. This is because in the very long run, the
approximation can cause oscillations.

We also use the same setting as Pedregosa (2016) for the Grid and Random Search. Finally, we
highlight that warm restart is used for both the inner problem and the Hessian inversion in the
direction of the gradient.

OPA inversion experiments For the OPA experiments, we used a memory limitation of 60, and a
tolerance of 10−6. The OPA update is done every 5 regular updates.

D DEQ TRAINING DETAILS

The training details are the same as the original Multiscale DEQ paper (Bai et al., 2020): all the
hyperparameters are kept the same and not fine-tuned, and the data split is the same. We recall here
some important aspects. For both datasets, the network is first trained in an unrolled weight-tied
fashion for a few epochs in order to stabilize the training.
We also underline that the DEQ models, in addition to having a fixed-point-defining sub-network,
also have a classification and a projection head.
Finally, for Figure 3, the median backward pass is computed with 100 samples on a single V100
GPU for a batch size of 32.

D.1 CIFAR

Adam optimizer (Kingma and Ba, 2015) is used with a 10−3 start learning rate, and a cosine annealing
schedule.

D.2 IMAGENET

The Stochastic Gradient Descent optimizer is used with a 5× 10−2 start learning rate, and a cosine
annealing schedule.
The images are downsampled 2 times before being fed to the fixed-point defining sub-network.
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Figure E.1: Bi-level optimization: Convergence of different hyperparameter optimization methods
on the `2-regularized logistic regression problem for two datasets (20news (Lang, 1995) and real-
sim (lib)) on held-out test data.

E ADDITIONAL RESULTS

E.1 BI-LEVEL OPTIMIZATION EXTENDED

In order to make sure that SHINE was indeed improving over HOAG (Pedregosa, 2016), we also
looked at the results obtained when performing an inversion with a precision lower than that pre-
scribed by Pedregosa (2016) originally (i.e. truncating the iterative inversion). These results, also
complemented with Random Search (Bergstra and Bengio, 2012), can be seen in Figure E.1. They
confirm that the advantage provided by SHINE cannot be retrieved with a looser tolerance on the
inversion.

E.2 CONTRACTIVITY ASSUMPTION

One of the main limiting assumptions in the original Jacobian-Free method work (Fung et al., 2021),
is the contractivity assumption. We showed here that it was not important to enforce this in order
to achieve excellent results, but one can wonder whether this assumption is not met in practice
thanks to the unrolled pretraining of DEQs. We looked at the contractivity of the fixed-point defining
sub-network empirically by using the power-method applied to a non-linear function, in the CIFAR
setting. The results, summarized in Table E.1, show that the fixed-point defining sub-network is not
contractive at all.
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Table E.1: Non-linear spectral radius obtained by the power method for the fixed-point defining
sub-network for the 3 different methods.

Method Non-linear spectral radius
Original 230.5
Jacobian-Free 193.7
SHINE 234.2

Table E.2: The time required for each method on the different datasets during the equilibrium training.
For the forward and backward passes, the time is measured offline, for a single batch of 32 samples,
with a single GPU, using the median to avoid outliers. This time is given in milliseconds. For the
epochs, the time is measured by taking an average of the 6 first epochs, and given in hours-minutes
for Imagenet and minutes-seconds for CIFAR. The epoch time for SHINE without improvement on
Imagenet is not given because it never reaches the 26 forward steps: the implicit depth is too short.
Fallback is not used for CIFAR. Numbers in parenthesis indicate the number of inversion steps for
the refined versions.

Dataset Name CIFAR (Krizhevsky, 2009) ImageNet (Deng et al., 2009)
Method Name Forward Backward Epoch Forward Backward Epoch
Original (Bai et al., 2020) 256 210 4min40 644 798 3h38
Jacobian-Free (Fung et al., 2021) 249 12.9 3min10 621 13.5 2h02
SHINE Fallback (ours) 218 16.0 3min20 622 35.3 2h13
SHINE Fallback refine (5, ours) 272 96.6 3min50 622 212 2h44
Jacobian-Free refine (5) 260 86.5 3min40 620 186 2h43
Original limited backprop 281 86.4 3min50 653 187 2h40

E.3 TIME GAINS

Because the total training time is not only driven by backward pass but also by the forward pass and
the evaluation, we show for completeness in Table E.2 the time gains for the different acceleration
methods for the overall epoch. We do not report in this table the time taken for pre-training which is
equivalent across all methods, and is not something on which SHINE has an impact. It is clear in
Table E.2 that accelerated methods can have a significant impact on the training of DEQs because we
see that half the time of the total pass is spent on the backward pass (more on ImageNet (Deng et al.,
2009)). We also notice that while SHINE has a slightly slower backward pass than the Jacobian-Free
method (Fung et al., 2021), the difference is negligible when compared to the total pass computational
cost.

E.4 DEQ OPA RESULTS

We can clearly see in Figure E.2 that in the case of DEQs, OPA also significantly improves the
inversion over the other accelerated methods. We also see that the improvements of SHINE over the
Jacobian-Free method without OPA are marginal.
Because the inversion is so good, we would expect that the performance of SHINE with OPA would
be on par with the original method’s. However, this is not what we see in the results presented
in Table E.3. Indeed, OPA does improve on SHINE with only Adjoint Broyden, but it does not
outperform SHINE done with Broyden.
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Figure E.2: Quality of the inversion using OPA in DEQs : Ratio of the inverse approximation
over the exact inverse function of the cosine similarity between the inverse approximation b =
∇zL(z?)B−1n and the exact inverse a = ∇zL(z?)Jgθ (z

?)−1 for different methods. For OPA, the
extra update frequency is 5. 100 runs were performed with different batches.

Table E.3: CIFAR DEQ OPA results : Top-1 accuracy of different methods on the CIFAR dataset,
and epoch mean time.

Methode name Top-1 Accuracy (%) Epoch mean time
Original 93.51 4min40
Jacobian-Free 93.09 3min10
SHINE (Broyden) 93.14 3min20
SHINE (Adj. Broyden) 92.89 4min
SHINE (Adj. Broyden/OPA) 93.04 4min40
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