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Figure 1: Detailed overview of the tailored variant, called LAR-Detection, which is adapted from
ScanRefer. The proposals are generated using a 3D detector. The modules which are marked green
or yellow indicate the pre-trained modules, while the blue ones are the integrated modules from our
LAR architecture which is trained from scratch.

A Appendix

Our Supplemental Material contains the following sections:

• Detector-Generated 3D Proposal.
• Computational Cost.
• Demonstrate our synthetic images generator algorithm (SIG).
• Implementation Details.
• Evaluation Metrics
• More ablations.
• Qualitative results.

A.1 Detector-Generated 3D Proposal

Following the standard setup of Referit3D [1], we assume access to the object proposals of each 3D
scene, similar to SAT [5], LanguageRefer [4], TransRefer3D [3], and 3DVG-Trans [6]. Therefore,
we use the ground-truth proposals in our experiments. Following this assumption, the 3D grounding
problem is reformulated as a classification problem, where the model objective is to classify the
referred object among the other distractors correctly. However, LAR is compatible with the setting
that uses detected-based proposals. To this end, we experimented our LAR module with the detector-
generated 3D proposals using VoteNet detector. As shown in Figure 1, we adapted the Scanrefer
architecture as follows: 1) 2D Encoder: Integrating a 2D encoder right after the predicted box
proposals, i.e., SIG module and Tiny-ConvNext in our case, and Faster R-CNN [1] in SAT case. 2)
Fusion Transformer: In LAR case, we added our visual transformer only as we aim to emphasize the
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Table 1: 3D visual grounding accuracy on ScanRef [2] with detector-generated proposals.
Method Acc@0.25 Acc@0.5

ScanRefer 40.92 26.08
SAT 39.2 26.25
LAR 42.14 26.96

contribution of our SIG module only. While in SAT case, we convert their multi-modal transformer to
vision transformer by excluding the language embedding from it. 3) The same 3D prediction modules
and language modules are adopted from Scanrefer, i.e., P++ and Voting module, and GloVe and
GRU, respectively. We train three models: 1) The best variant of Scanrefer. 2) SAT-Detection-based
architecture. 3) LAR-Detection-based architecture.

We first train the Scanrefer for 50 epochs then freeze their 3D prediction modules and language
modules for two epochs to train the new blocks added in SAT and LAR detection based architectures.
Then, we train the whole architecture for two more epochs. For more details, please refer to the
"Detector-Generated 3D Proposal" section in Appendix A in the revised paper version, where we
added a figure to demonstrate the adaptations done on the ScanRefer architecture.

As shown in Table 1, the tailored LAR-Detection-based architecture outperforms both the original
ScanRefer and the SAT-Detection-based architectures. Also, the results show that SAT is more
vulnerable to the distortions in the detected proposals.

A.2 Computational Cost

We compared our complexity against SAT, during both the training and testing. As shown in Table
2, our training and inference time are 3.6 x and 0.7 x compared to SAT. All the reported results are
measured on single GTX-1080 GPU.

A.3 Ablations Studies

A.3.1 Different 2D semantic fusion techniques.

Driven by the aforementioned results in the main paper, we use five virtual cameras set in a cocoon
setup around each object, and the image resolution is 128. In Table 3, we study two fusion techniques
to combine the features generated from the five views. The first method is a simple addition operation,
and the second one is a learnable fusion mechanism where a 1D-Conv. is used where its kernel size is
set to the number of the views used, i.e., in our case set to five. As expected, the learnable fusion
scheme; 1D-Conv., performs better than the none learnable scheme; addition. Our 2D variant built on
top of Referit3D [1] is used in this ablation, where the 2D stream is only used.

Table 3: Comparison between different 2D
semantic fusion techniques.

Method Referring Acc. Classification Acc.

Addition 35.3 62.7
1D-Conv. 36 64.82

Table 4: Comparison between different multi-
modal fusion techniques.

Method Referring Acc. Classification Acc.

Addition 38.8 60.3
1D-Conv. 39.2 60.8

Transformer 41.9 62.2

Table 2: Comparison between our LAR architecture against SAT in terms of number of parameters
and time of both training and testing phases.

Method Ref. Acc. Trainable Parameters Inference Parameters Training Time Inference Time

SAT 47.3 237 M 81 M 0.317 FPS 5.97 FPS
LAR 48.9 118 M 118 M 1.152 FPS 4.12 FPS
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A.3.2 Different multi-modal fusion techniques.

In addition, we study three fusion techniques for the 3D, and 2D multi-modal features, Mpc and
M img, respectively. In this ablation, we only utilize the ROI as the 2D semantic information, set
the image resolution to 32, and set the number of multi-views to five. As shown in Table 4, using a
transformer while fusing both multi-modal features achieves the best accuracy.

Optionally include extra information (complete proofs, additional experiments and plots) in the
appendix. This section will often be part of the supplemental material.

A.4 Synthetic Images Generator Algorithm

Algorithm 1, demonstrates a pseudo-code for our SIG module that
projects arbitrary 3D Point clouds representing an object to a 2D image.

Algorithm 1 2D Synthetic Images Generator algorithm
Input: xpc

i : Point-cloud for an object i in the scene,
I: The pinhole camera intrinsic parameters,
Os: Scene center.

Output: ximg
i : 2D synthetic image that represents the object i.

1: // Get the prominent face:
2: minDist← Dist(Ol0 , Os)
3: for each face do
4: if Dist(Olk , Os) <= minDist then
5: l′ ← lk
6: minDist← Dist(Olk , Os)
7: end if
8: end for
9: Camp = [dfx, d

f
y , d

up]

10: // Build transformation matrix M ∈ R4×4

11: V f ← ∥Camp −Ol′∥
12: V r ← ∥V f ⊗ [0, 0, 1]∥
13: V up ← ∥V r ⊗ V f∥

14: M ←
[
V r V up V f Camp

0 0 0 1

]
.

15: xcam
i ← Dot(M,xpc

i )

16: ximg
i ← Dot(I, xcam

i )

17: ximg
i ← xcam

i /xcam
i [:, 2]

18: return (ximg
i )

A.5 Quantitative Results

This section analyzes the qualitative results from the successful and the failure cases on the Nr3d
dataset. In addition to Figure 2 that shows successful scenarios and Figure 3 that shows failure
scenarios, we attach a short video to demonstrate more scenarios.

A.5.1 Successful Scenarios

LAR achieves top-ranking results on both the Nr3D and Sr3D datasets. The results in Figure 2
demonstrate the correct instance localization on the Nr3D datasets only. The ground truth boxes
are marked green and our model prediction marked in blue. Our analysis shows that LAR correctly
understands the global context based on natural language description. For example, in Figure 2 (a-f),
LAR understands relationships, e.g. (behind it, middle of, furthest from .. ), which proves that our
proposed model understands instance-to-instance and instance-to-background relations. As well as
understanding colors and shapes related to language, LAR also can determine the meaning of terms
such as “green,” Figure 2 (e).
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Figure 2: Qualitative results of successful cases from our LAR on Nr3d. The ground truth boxes are
marked green, and the distractors boxes are displayed in yellow. Our model prediction marked as
blue.
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A.5.2 Failure Scenarios

Figure 3 shows representative failure cases of LAR. Despise the incorrect instance localization LAR
managed to allocate the instance with the same class as the target. As shown in Figure 3 (d, e), we
observed that failure cases require an understanding of "against the wall", ’Facing the windows,
"which is determined by camera view dependency. Despite LAR’s progress in view-dependent and
independent samples, view understanding remains a challenge. Besides, other state-of-the-art models
suffer from the same issue. In addition, some LAR failure cases are caused by ambiguous queries.
Figure 3 (a,b,c,e, f) shows a complex and compound language description to describe the target
instance, which in some cases, both models and human annotators mix up similar objects.
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Figure 3: Qualitative results of failure cases from our LAR on Nr3d. The Ground truth boxes are
shown in green, and the distractors boxes are displayed in yellow. The incorrect predictions by our
model marked as red.
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