
Supplementary Material:
Data-Efficient Augmentation for Training Neural Networks

A Proof of Main Results

A.1 Proof for Lemma 4.1

Proof. Let δi := σ̃i − σi, where P(δi < 0) = pi. Assuming uniform probability between −‖E‖ to
0, and between 0 to ‖E‖, we have pdf ρi(x) for δi:

ρi(x) =


pi
‖E‖ , if − ‖E‖≤ x < 0
1−pi
‖E‖ , 0 ≤ x ≤ ‖E‖
0, otherwise

(1)

Taking expectation,

E(σ̃i − σi) = E(δi) =

∞∫
−∞

xρi(x)dx (2)

=

0∫
−‖E‖

x
pi
‖E‖

dx+

∫ ‖E‖
0

x
1− pi
‖E‖

dx (3)

= −‖E‖pi
2

+
(1− pi)‖E‖

2
(4)

=
(1− 2pi)‖E‖

2
(5)

We also have

E(δ2
i) =

∞∫
−∞

x2ρi(x)dx (6)

=

0∫
−‖E‖

x2 pi
‖E‖

dx+

∫ ‖E‖
0

x2 1− pi
‖E‖

dx (7)

=
‖E‖2pi

3
+

(1− pi)‖E‖2

3
(8)

=
‖E‖2

3
(9)

Thus, we have

E(λ̃i) = E(σ̃2
i) (10)

= E((σi + δi)
2) (11)

= E(σ2
i + 2σiδi + δ2

i) (12)

= σ2
i + 2σiE[δi] + E[δ2

i] (13)

= σ2
i + 2σi

(1− 2pi)‖E‖
2

+
‖E‖2

3
(14)

= σ2
i + σi(1− 2pi)‖E‖+

‖E‖2

3
(15)

1

A.2 Proof of Corollary 4.2

Under the assumptions of Theorem 5.1 of [1], i.e. where the minimum eigenvalue of the NTK is
λmin(JJ T) ≥ λ0 for a constant λ0 > 0, and training dataX of size n sampled i.i.d. from distribu-
tion D and 1-Lipschitz loss L, we have that with probability δ/3, training the over-parameterized
neural network with gradient descent for t ≥ Ω

(
1
nλ0

log n
δ

)
iterations results in the following

population loss LD (generalization error)

LD(W t,X) ≤
√

2yT (JJ T)−1y

n
+O

(
log n

λ0δ

n

)
, (16)

with high probability of at least 1− δ over random initialization and training samples.

Hence, using λmin, σmin to denote minimum eigen and singular value respectively of the NTK
corresponding to full data, we get

LDtrain
(W t,Xtrain) ≤

√
2 1
λmin
‖y‖2

n
+O

(
log

1

δ

)
(17)

≤

√
2

σ2
min

+O
(

log
1

δ

)
. (18)

For augmented datasetXaug , we have σ̃i ≤ σi+
√
nLε0, hence the improvement in the generalization

error is at most

LDaug
(W t,Xaug) ≤

√
2

(σmin +
√
nLε0)2

+O
(

log
1

δ

)
. (19)

Combining these two results, we obtain Corollary 4.2.

A.3 Proof of Lemma 5.1

Proof.

‖J T (W t,Xaug)r−diag(ρt)J t(W t,XSaug)rS‖ (20)

= ‖(J T (W t,X) +E)r − (diag(ρt)J t(W t,XS) +ES)rS‖ (21)

≤ ‖(J T (W t,X)r − diag(ρt)J t(W t,XS)rS) +Er −ESrS‖ (22)

≤ ‖(J T (W t,X)r − diag(ρt)J t(W t,XS)rS)‖+‖Er‖+‖ESrS‖ (23)
Applying definition of coresets, we obtain

‖(J T (W t,X)r−diag(ρt)J t(W t,XS)rS)‖+‖Er‖+‖ESrS‖ (24)
≤ ξ + ‖Er‖+‖ESrS‖ (25)

≤ ξ + 2n
3
2Lε0 (26)

≤ ξ + 2
√
L (27)

A.4 Proof of Theorem 5.2

Proof. In this proof, as shorthand notation, we useXf andXtrain interchangeably. We further use
Xc to represent the coreset selected from the full data, andXcaug to represent the augmented coreset.

By Theorem 1 of [2], under the α-PL assumption for L and interpolation assumption (i.e. for every
sequenceW 1,W 2, . . . such that limt→∞ L(W t,X) = 0, we have that the loss for each data point
limt→∞ L(W t,xi) = 0), the convergence of SGD with constant step size is given by

E[‖∇L(W t,Xf+caug)‖2] ≤
(

1− αη

2

)t
L(W 0,Xf+caug) (28)

≤ 1

α

(
1− αη

2

)t
‖∇L(W 0,Xf+caug)‖2 (29)

2

Using Jensen’s inequality, we have

E[‖∇L(W 0,Xf+caug
)‖] (30)

≤
√

E[‖∇L(W t,Xf+caug
)‖2] (31)

≤ 1√
α

(
1− αη

2

) t
2 ‖∇L(W 0,Xf+caug)‖ (32)

≤ 1√
α

(
1− αη

2

) t
2 (‖∇L(W 0,Xf)‖+‖∇L(W 0,Xcaug)‖

)
(33)

≤ 1√
α

(
1− αη

2

) t
2 (
G0 + ‖(J (W 0,Xc) +E)(y − f(W 0,Xc + ε))‖

)
(34)

≤ 1√
α

(
1− αη

2

) t
2

(35)(
G0 + ‖(J (W 0,Xc) +E)T (y − f(W 0,Xc)−∇xf(W 0,Xc)

T ε−O(εT ε)‖
)

(36)

=
1√
α

(
1− αη

2

) t
2

(G0 + ‖∇L(W 0,Xc)− (J (W 0,Xc)
T (∇xf(W 0,Xc)

T ε+O(εT ε))+

(37)

E(y − f(W 0,Xc + ε))‖) (38)

≤ 1√
α

(
1− αη

2

) t
2

(G0 + ‖∇L(W 0,Xc)− (J (W 0,Xc)
T (∇xf(W 0,Xc)

T ε+O(εT ε))‖+

(39)
√

2‖E‖) (40)

≤ 1√
α

(
1− αη

2

) t
2

(G0 + ‖∇L(W 0,Xc)‖+σmaxL̄
√
nε0 + σmaxO(nε20)) +

√
2nL̄ε0) (41)

=
1√
α

(
1− αη

2

) t
2

(G0 + ‖∇L(W 0,Xf)‖+ξ + σmaxL̄
√
nε0 + σmaxO(nε20)) +

√
2nL̄ε0)

(42)

≤ 1√
α

(
1− αη

2

) t
2

(2G0 + ξ + σmaxL̄
√
nε0 + σmaxO(nε20)) +

√
2nL̄ε0) (43)

A.5 Finding Subsets

Let S be a subset of training data points. Furthermore, assume that there is a mapping πw,S : V → S
that for every W assigns every data point i ∈ V to its closest element j ∈ S, i.e. j = πw,S(i) =
arg maxj′∈S sij′(W), where sij(W) = C − ‖J T (W t,xi)ri − J T (W t,xj)rj‖ is the similarity
between gradients of i and j, and C ≥ maxij sij(W) is a constant. Consider a matrix Gπw,S

∈
Rn×m, in which every row i contains gradient of πw(i), i.e., [Gπw,S

]i. = J T (W t,xπw,S(i))rπw,S(i).
The Frobenius norm of the matrixGπw

provides an upper-bound on the error of the weighted subset S
in capturing the alignment of the residuals of the full training data with the Jacobian matrix. Formally,

‖J T (W t,Xtrain)rttrain − γStJ T (W t, [Xtrain].St)rSt‖≤ ‖Gπw,S
‖F , (44)

where the weight vector γSt ∈ R|S| contains the number of elements that are mapped to every
element j ∈ S by mapping πw,S , i.e. γj =

∑
i∈V 1[πw,S(i) = j]. Hence, the set of training points

that closely estimate the projection of the residuals of the full training data on the Jacobian spectrum
can be obtained by finding a subset S that minimizes the Frobenius norm of matrixGπw,S

.

3

B Additional Theoretical Results

B.1 Convergence analysis for training on augmented full data

Theorem B.1. Gradient descent with learning rate η applied to a neural network with constant NTK
and Lipschitz constant L, and data points Daug augmented with r additive perturbations bounded by
ε0 results in the following training dynamics:

E[‖y − f(Xaug,W
t)‖2] ≤√√√√ n∑

i=1

(
1− η

(
σ2
i + σi(1− 2pi)‖E‖+

‖E‖2
3

))2t

((uiy)2 + 2n
√

2‖E‖/γ0)
(45)

where E with ‖E‖≤
√
nLε0 is the perturbation to the Jacobian, and pi := P(σ̃i − σi < 0) is the

probability that σi decreases as a result of data augmentation.

B.2 Proof of Theorem B.1

Using Jensen’s inequality, we have

E
[
‖y − f(Xaug,W

t)‖2
]

(46)

= E

√√√√ n∑
i=1

(1− ηλ̃i)2t(ũTi y)2 ± ε

 (47)

≤

√√√√E

[
n∑
i=1

(1− ηλ̃i)2t(ũTi y)2

]
(48)

≤

√√√√ n∑
i=1

E
[
(1− ηλ̃i)2t((uiy)2 + 2n

√
2‖E‖/γ0)

]
(49)

≤

√√√√ n∑
i=1

(1− ηE
[
λ̃i

]
)2t((uiy)2 + 2n

√
2‖E‖/γ0) (50)

=

√√√√ n∑
i=1

(
1− η

(
σ2
i + σi(1− 2pi)‖E‖+

‖E‖2
3

))2t

((uiy)2 + 2n
√

2‖E‖/γ0) (51)

B.3 Convergence analysis for training on the coreset and its augmentation

Theorem B.2. Let Li be β-smooth, L be λ-smooth and satisfy the α-PL condition, that is for α > 0,
‖∇L(W ,X)‖2 ≥ αL(W ,X) for all weights W . Let ξ upper-bound the normed difference in
gradients between the weighted coreset and full dataset. Assume that the network f(W ,X) is
Lipschitz in W , X with Lipschitz constant L and L’ respectively, and L̄ = max{L,L′}. Let G0

the gradient over the full dataset at initialization, σmax the maximum Jacobian singular value at
initialization. Choosing perturbation bound ε0 ≤ 1

σmax

√
L̄n

where σmax is the maximum singular
value of the coreset Jacobian and n is the size of the original dataset, running SGD on the coreset
and its augmentation using constant step size η = α

λβ , we get the following convergence bound:

E[‖∇L(W t,Xc+caug
)‖] ≤ 1√

α

(
1− αη

2

) t
2

(
2G0 + 2ξ +O

(
L̄

σmax

))
, (52)

whereXc+caug
represents the dataset containing the (weighted) coreset and its augmentation.

4

Proof. As in the proof for Theorem 5.2, we begin with the following inequality

E[‖∇L(W t,Xc+caug
)‖2] ≤

(
1− αη

2

)t
L(W 0,Xc+caug) (53)

≤ 1

α

(
1− αη

2

)t
‖∇L(W 0,Xc+caug)‖2 (54)

Thus, we can write

E[‖∇L(W 0,Xc+caug
)‖] (55)

≤
√

E[‖∇L(W t,Xc+caug)‖2] (56)

≤ 1√
α

(
1− αη

2

) t
2 ‖∇L(W 0,Xc+caug)‖ (57)

≤ 1√
α

(
1− αη

2

) t
2 (‖∇L(W 0,Xc)‖+‖∇L(W 0,Xcaug)‖

)
(58)

≤ 1√
α

(
1− αη

2

) t
2 (
G0 + ξ + ‖(J (W 0,Xc) +E)(−f(W 0,Xc + ε))‖

)
(59)

The rest of the proof is similar to that of Theorem 5.2.

B.4 Lemma for eigenvalues of coreset

The following Lemma characterizes the sum of eigenvalues of the NTK associated with the coreset.
Lemma B.3. Let ξ be an upper bound of the normed difference in gradient of the weighted coreset
and the original dataset, i.e. for full data X and its corresponding coreset XS with weights γS ,
and respective residuals r, rS , we have the bound ‖J T (W t,X)rt − γSJ T (W t,XS)rtS‖≤ ξ. Let
{λi}ki=1 be the eigenvalues of the NTK associated with the coreset. Then we have that√√√√ k∑

i=1

λi ≥
|‖J T (W t,X)rt‖−ξ|

‖rtS‖
.

Proof. Let singular values of coreset Jacobian be σi. LetJ T (W t,X)rt = γSJ T (W t,XS)rtS+ξS
where ‖ξS‖≤ ξ.

Taking Frobenius norm, we get

‖γSJ T (W t,XS)rtS‖= ‖J T (W t,X)rt − ξS‖ (60)

⇒‖γSJ T (W t,XS)‖‖rtS‖≥ ‖J T (W t,X)rt − ξS‖ (61)

⇒‖γSJ T (W t,XS)‖≥ ‖J
T (W t,X)rt − ξS‖

‖rtS‖
(62)

⇒

√√√√ s∑
i=1

σ2
i ≥
‖J T (W t,X)rt − ξS‖

‖rtS‖
(63)

⇒

√√√√ s∑
i=1

λi ≥
‖J T (W t,X)rt − ξS‖

‖rtS‖
(64)

⇒

√√√√ s∑
i=1

λi ≥
|‖J T (W t,X)rt‖−ξ|

‖rtS‖
by reverse triangle inequality (65)

We can make the following observations: For overparameterized networks, with bounded activation
functions and labels, e.g. softmax and one-hot encoding, the norm of the residual vector is bounded,

5

and the gradient norm is likely to be much larger than residual, especially when dimension of gradient
is large. In this case, the Jacobian matrix associated with small weighted coresets found by solving
Eq. (9), have large singular values.

B.5 Augmentation as Linear Transformation: Linear Model Analysis

We introduce a simplified linear model to extend our theoretical analysis to augmentations modelled
as linear transformation matrices F applied to the original training data. These augmentations are
also originally studied by [7]. In this section, we specifically study the effect of these augmentations
using a linear model when applied to coresets.

Lemma B.4 (Augmented coreset gradient bounds: Linear). Let f be a simple linear model with
weights W ∈ Rd×C where f(W ,xi) = W Txi, trained on mean squared loss function L. Let
F ∈ Rd×d be a common linear augmentation matrix with norm ‖F‖ with augmentation xaug

i given
by Fxi. Let coreset be of size k and full dataset be of size n. Further assume that the predicted
label of xi and its augmentation Fxi are sufficiently close, i.e. there exists ω such thatW T (Fxi)
= W Txi + zi, ‖zi‖≤ ω ∀i. Let ξ upper-bound the normed difference in gradients between the
weighted coreset and full dataset. Then, the normed difference between the gradient of the augmented
full data and augmented coreset is given by

‖
∑
i∈V
∇L(W ,xaug

i)−
k∑
j=1

γsj∇L(W ,xaug
sj)‖≤ ‖F‖(ξ +

√
dnω)

for some (small) constant ξ.

Proof. By our assumption, we can begin with,

‖
∑
i∈V
∇L(W ,xi)−

k∑
j=1

γsj∇L(W ,xsj)‖≤ ξ (66)

Furthermore, by [6], we know that sum of the coreset weights γsj is given by
∑k=1
j=1 γsj ≤ n.

Hence,

‖
∑
i∈V
∇L(W ,xaug

i)−
k∑
j=1

γsj∇L(W ,xaug
sj)‖ (67)

= ‖
∑
i∈V

(J (W ,xaug
i))

T
[W T (Fxi)− yi]−

k∑
j=1

γsj (J (W ,xaug
sj))

T
[W T (Fxsj)− ysj]‖ (68)

= ‖
∑
i∈V

Fxi[W
T (Fxi)− yi]−

k∑
j=1

γsjFxsj [W T (Fxsj)− ysj]‖ (69)

= ‖F
∑
i∈V

xi(W
Txi − yi)− F

k∑
j=1

γsjxsj (W Txsj + zi − ysj)‖ (70)

= ‖F
∑
i∈V
∇L(W ,xi)− F

k∑
j=1

γsj∇L(W ,xsj)− F
k∑
j=1

γsjxsjzsj‖ (71)

≤ ‖F‖‖
∑
i∈V
∇L(W ,xi)−

k∑
j=1

γsj∇L(W ,xsj)‖+‖F‖‖
k∑
j=1

γsjxsjzsj‖ (72)

≤ ‖F‖ξ +
√
d‖F‖nω (73)

= ‖F‖(ξ +
√
dnω) (74)

6

Corollary B.5. In the simplified linear case above, the difference in gradients of the full training
data with its augmentations (∇L(W ,Xf+aug)) and gradients of the coreset with its augmentations
(∇L(W ,Xc+caug)) can be bounded by

‖∇L(W ,Xf+aug)−∇L(W ,Xc+caug)‖≤ (‖F‖+1)ξ +
√
d‖F‖nω

Proof. Applying Eq. (66) and Lemma B.4, we obtain

‖∇L(W ,Xf+aug)−∇L(W ,Xc+caug)‖ (75)

= ‖(∇L(W ,Xf) +∇L(W ,Xaug))− (∇L(W ,Xc) +∇L(W ,Xcaug
))‖ (76)

= ‖(∇L(W ,Xf)−∇L(W ,Xc)) + (∇L(W ,Xaug)−∇L(W ,Xcaug
))‖ (77)

≤ ‖(∇L(W ,Xf)−∇L(W ,Xc))‖+‖(∇L(W ,Xaug)−∇L(W ,Xcaug))‖ (78)

≤ ξ + ‖F‖(ξ +
√
dnω) (79)

= (‖F‖+1)ξ +
√
d‖F‖nω (80)

Theorem B.6 (Convergence of linear model). Let f be a linear model with weightsW and augmen-
tation be represented by the common linear transformation F . Let Li be β-smooth, L be λ-smooth
and satisfy the α-PL condition, that is for α > 0, ‖∇L(W ,X)‖2 ≥ αL(W ,X) for all weights
W . Let ξ upper-bound the normed difference in gradients between the weighted coreset and full
dataset and ω bound W T (Fxi) = W Txi + zi, ‖zi‖≤ ω ∀i. Let G′0 be the gradient over the full
dataset and its augmentations at initialization. Then, running SGD on the size k coreset with its
augmentation using constant step size η = α

λβ , we get the following convergence bound:

E[‖∇L(W t,Xc+caug
)‖] ≤ 1√

α

(
1− αη

2

) t
2
(
G′0 + (‖F‖+1)ξ +

√
d‖F‖nω

)
Proof. From [2], we have

E[‖∇L(W t,Xc+caug)‖2] ≤
(

1− αη

2

)t
L(W 0,Xc+caug) (81)

≤ 1

α

(
1− αη

2

)t
‖∇L(W 0,Xc+caug)‖2 (82)

(83)

Using Jensen’s inequality, we have

E[‖∇L(W t,Xc+caug)‖] (84)

≤
√

E[‖∇L(W t,Xc+caug)‖2] (85)

≤ 1√
α

(
1− αη

2

) t
2 ‖∇L(W 0,Xc+caug)‖ (86)

≤ 1√
α

(
1− αη

2

) t
2
(
G′0 + (‖F‖+1)ξ +

√
d‖F‖nω

)
(87)

where the last inequality follows from applying Corollary B.5.

C Singular spectrum analysis

C.1 Experiment details

We generate singular spectrum plots for both MNIST and CIFAR10 datasets in Figure 1. Due to the
computational infeasbility of computing the network Jacobian for the full datasets in deep network
settings, we instead construct and use a reduced version of these datasets by uniformly select 900
images from the first 3 classes. For our experiments on MNIST, we pretrain a MLP model with 1

7

hidden layer for 15 epochs. For our experiments on CIFAR10, we pretrain a ResNet20 model for 15
epochs. We then compute the singular spectrums for augmented and non-augmented data based on
these pretrained networks.

Since it is difficult to perform a one-to-one matching of singular values produced from augmented and
non-augmented datasets, we instead bin our singular values into 30 separate and uniformly distributed
bins each containing the same number of singular values. To measure perturbation to singular values
resulted from augmentation, we compute the mean difference between each bin. On the other hand,
to measure perturbation to singular vectors, we compute mean subspace angle between the singular
subspace spanned by singular vectors in each bin.

C.2 Real-world strong augmentations

We study the effects of real-world, unbounded augmentations on the singular spectrum of the network
Jacobian. In particular, in additional to the plots in the main paper, we show the effect of strong
augmentations through (1) random rotation (up to 30◦ and AutoAugment [3] for MNIST and (2)
random horizontal flips/random crops and AutoAugment for CIFAR10. The policies implemented by
AutoAugment include translations, shearing, as well as contrast and brightness transforms. We study
the effects of these augmentations on the singular spectrum in Figure 1. Despite these augmentations
being unbounded transformations, we note that the results of our theory still holds. In particular,
it can be observed that data augmentation increases smaller singular values relatively more with a
higher probability. On the other hand, data augmentation affects the prominent singular vectors of
the Jacobian to a smaller extent, and preserves the prominent directions. As such, our argument
empirically extends to real-world, unbounded label-invariant transformations characteristic of strong
augmentations.

D Experiment Setup and Additional Experiments

D.1 Experiment setup

For all experiments, we train using SGD with 0.9 momentum and learning rate decay. For experiments
on CIFAR10 and variants/ResNet20, we train for 200 epochs, for Caltech256 (ImageNet pretrained)/
ResNet18, we trained for 40 epochs starting at learning rate 0.001 and batch size 64. We also report
results for Caltech256 without ImageNet pretraining in Sec. D.8, where we train for 400 epochs
to ensure convergence with a starting learning rate of 0.05 and batch size 64. For experiments on
ImageNet/ResNet50 and TinyImageNet/ResNet50, we use the standard 90 epoch learning schedule
starting at learning rate of 0.1 and batch size 64.

Data and augmentation. We apply our method to training ResNet20 and Wide-ResNet-28-10 on
CIFAR10, and ResNet32 on CIFAR10-IMB (Long-Tailed CIFAR10 with Imbalance factor of 100
following [5]) and SVHN datasets. We train Caltech256 [4] on ImageNet-pretrained ResNet18, and
include experiments with random initialization in Appendix D. TinyImageNet and ImageNet are
trained on with ResNet50. We use [7] for CIFAR10/SVHN, and AutoAugment [3] for Caltech256,
TinyImageNet, and ImageNet as the strong augmentation method. Note that we append strong
augmentations rather than apply them in-place, which we show to be more effective in Appendix D.
All results are averaged over 5 runs using an Nvidia A40 GPU.

D.2 Experiment setup

For all experiments, we train using SGD with 0.9 momentum and learning rate decay. We also set
weight decay as For experiments on CIFAR10 and variants/ResNet20, we train for 200 epochs, for
Caltech256 (ImageNet pretrained)/ ResNet18, we trained for 40 epochs starting at learning rate 0.001
and batch size 64. We also report results for Caltech256 without ImageNet pretraining in Sec. D.8,
where we train for 400 epochs to ensure convergence with a starting learning rate of 0.05 and batch
size 64. For experiments on ImageNet/ResNet50 and TinyImageNet/ResNet50, we use the standard
90 epoch learning schedule starting at learning rate of 0.1 and batch size 64.

Data and augmentation. We apply our method to training ResNet20 and Wide-ResNet-28-10 on
CIFAR10, and ResNet32 on CIFAR10-IMB (Long-Tailed CIFAR10 with Imbalance factor of 100
following [5]) and SVHN datasets. We train Caltech256 [4] on ImageNet-pretrained ResNet18, and

8

(a) MNIST ε0 = 8 - Val-
ues

(b) MNIST ε0 = 8 - Vec-
tors

(c) CIFAR10 ε0 = 8 -
Values

(d) CIFAR10 ε0 = 8 -
Vectors

(e) MNIST - ε0 = 16 -
Values

(f) MNIST ε0 = 16 - Vec-
tors

(g) CIFAR10 ε0 = 16 -
Values

(h) CIFAR10 ε0 = 16 -
Vectors

(i) MNIST Rotate - Val-
ues

(j) MNIST Rotate - Vec-
tors

(k) CIFAR10 Flip-Crop -
Values

(l) CIFAR10 Flip-Crop -
Vectors

(m) MNIST AutoAug-
ment - Values

(n) MNIST AutoAug-
ment - Vectors

(o) CIFAR10 AutoAug-
ment - Values

(p) CIFAR10 AutoAug-
ment - Vectors

(q) MNIST Rotate + Au-
toAugment - Values

(r) MNIST Rotate + Au-
toAugment - Vectors

(s) CIFAR10 Flip + Crop
+ AutoAugment - Values

(t) CIFAR10 Flip + Crop
+ AutoAugment - Vectors

Figure 1: Difference in mean singular values (Cols 1 & 3) between augmented and non-augmented
data and mean angular difference (Cols 2 & 4) between subspaces spanned by singular vectors for
augmented and non-augmented data.

include experiments with random initialization in Appendix D. TinyImageNet and ImageNet are
trained on with ResNet50. We use [7] for CIFAR10/SVHN, and AutoAugment [3] for Caltech256,
TinyImageNet, and ImageNet as the strong augmentation method. Note that we append strong
augmentations rather than apply them in-place, which we show to be more effective in Appendix D.
All results are averaged over 5 runs using an Nvidia A40 GPU.

D.3 Full Results for Table 4

This section contains full experiment results including standard deviations and the full augmentation
benchmark for Table 4. Augmenting coresets of size 10% achieves 51% of the improvement obtained
from augmentation of the full data and further enjoys a 6x speedup in training time on CIFAR10.

9

This speedup becomes more significant when using strong augmentation techniques which are mostly
computationally demanding, especially when applied to the entire dataset.

Table 1: Supplementary table for Table 4 - Test accuracy on CIFAR10 + ResNet20, SVHN +
ResNet32, CIFAR10-Imbalanced + ResNet32 including standard deviation errors and full dataset
augmentation accuracy.

Method Size CIFAR10 CIFAR10-IMB SVHN

None 0% 89.46± 0.17% 87.08± 0.50% 95.676± 0.108%

5% 90.34± 0.18% 88.48± 0.25% 95.760± 0.084%
Random 10% 91.07± 0.13% 89.52± 0.15% 96.187± 0.112%

30% 92.11± 0.12% 91.11± 0.18% 96.569± 0.073%

5% 90.79± 0.19% 88.77± 0.35% 96.165± 0.108%
Max-Loss 10% 91.39± 0.08% 89.22± 0.48% 96.370± 0.076%

30% 92.43± 0.07% 91.11± 0.25% 96.735± 0.068%

5% 90.87± 0.05% 89.10± 0.41% 96.121± 0.055%
Coreset 10% 91.54± 0.19% 89.75± 0.52% 96.354± 0.091%

30% 92.49± 0.15% 91.12± 0.26% 96.791± 0.051%

All 100% 93.50± 0.25% 92.48± 0.34% 97.068± 0.030%

D.4 Supplementary results for Table 1

Table 2: Supplementary results for Tab. 1. Training ResNet20 (R20) and WideResnet-28-10 (W2810)
on CIFAR10 (C10) using small subsets, and ResNet18 (R18) on Caltech256 (Cal).

Model/Dataset Subset Random Ours

Weak Aug. Strong Aug. Weak Aug. Strong Aug.

C10/R20

0.1% (5) 31.7± 3.2 33.5± 2.7 29.6± 3.8 37.8± 4.5
0.2% (10) 35.9± 2.1 42.7± 3.9 33.6± 3.2 45.1± 2.3
0.5% (25) 51.1± 2.3 58.7± 1.3 55.8± 3.1 63.9± 2.1
1% (50) 66.2± 1.0 74.4± 0.8 65.9± 4.0 74.7± 1.1

C10/W2810 1% (50) 61.3± 2.4 57.7± 0.8 59.9± 2.4 62.1± 3.1

Cal/R18 5% (3) 24.8± 1.5 41.5± 0.5 33.8± 1.7 52.7± 1.2
10% (6) 49.5± 0.6 61.8± 0.8 55.7± 0.3 65.4± 0.3
20% (12) 66.6± 0.2 72.5± 0.1 67.5± 0.3 73.1± 0.1
30% (18) 72.0± 0.1 75.7± 0.2 71.9± 0.2 76.3± 0.2
40% (24) 74.6± 0.3 77.6± 0.4 74.2± 0.4 77.7± 0.5
50% (30) 76.1± 0.5 78.5± 0.3 76.1± 0.1 78.9± 0.2

D.5 Training dynamics vs generalization

Figure 2 demonstrates the relationship between training loss and validation accuracy resulted from
data augmentation. While training loss of augmented datasets do not decrease as quickly as non-
augmented datasets, generalization performance (shown by val. acc.) improves.

10

Figure 2: Training loss vs validation accuracy of CIFAR10/ResNet20 using AutoAugment.

D.6 Augmentations applied through appending vs in-place

Our experiments on Caltech256/ResNet18/AutoAugment (R=5) show that even for cheaper strong
augmentation methods (AutoAugment), while in-place augmentation may decrease the performance,
appending Random (R) and Coresets (C) augmentations (Append) outperforms in-place augmentation
of 2x data points (In-place 2x) for various subset sizes.

Table 3: Caltech256/AutoAugment in-place vs. appending for Caltech256.

No Aug. In-place In-place (2x) Append

C5% 33.8% 26.4% 48.2% 52.7%
R5% 24.8% 17.4% 40.2% 41.5%

C10% 55.7% 48.2% 62.8% 65.4%
R10% 50.6% 40.2% 62.0% 61.8%
C30% 71.9% 68.8% 74.9% 76.3%
R30% 72.0% 68.7% 75.1% 75.7%

D.7 Speed-up measurements

We measure the improvement in training time in the case of training on full data and augmenting
subsets of various sizes. While our method yields similar or slightly lower speed-up to the max-loss
policy and random approach respectively, our resulting accuracy outperforms these two approaches.
We show this in Fig. D.7. For example, for SVHN/Resnet32 using 30% coresets, we sacrifice 11% of
the speed-up to obtain an additional 24.8% of the gain in accuracy from full data augmentation when
compared to a random subset of the same size. We show the speed-up obtained for our method and
various subset sizes in Tab. 4, and provide wall-clock times for our method in Tab. D.7.

Table 4: Speedup on CIFAR10 + ResNet20 (C10/R20), SVHN + ResNet32 (SVHN/R32).

Dataset Full Aug. Ours Max loss. Random.

100% 5% 10% 15% 20% 25% 30% 30% 30%

C10 / R20 1x 7.93x 6.31x 4.46x 4.27x 3.41x 3.43x 3.48x 4.03x
SVHN / R32 1x 5.35x 3.93x 3.40x 2.80x 2.49x 2.18x 2.21x 2.43x

(a) CIFAR10/ResNet20 (b) SVHN/Resnet32

Figure 3: Speedup/Accuracy of augmenting 30% coresets compared to original max-loss policy for
(a) ResNet20 trained on CIFAR10 and (b) ResNet32 trained on SVHN.

11

Table 5: Wall-clock times to find various sized coresets from all classes of Caltech256 and TinyIma-
gene at1epoch. Note, training ResNet20/CIFAR10 with [7] takes 14.4 hrs. In practice, coresets can
be found in parallel (p threads) from different classes, and selection happens everyR=5−15 epochs.
Hence, the numbers divide by p×R.

Caltech256 TinyImageNet

10% 30% 50% 10% 30% 50%

10.50s 10.52s 10.53s 7.85s 8.09s 8.17s

D.8 End to end training on Caltech256

As Caltech256 contains many classes and higher resolution images, training on smaller subset without
pretraining has a low accuracy. Thus, many works (e.g. Achille et al., 2020) finetune from ImageNet
pretrained initialization. However, we show that our results still hold even when training form scratch.
We demonstrate our results in Tab. 6, where we train Caltech256 on ResNet50 without pretraining
for 400 epochs, and with R = 40, where our method consistently outperfoms random subsets for
multiple subset sizes (5%, 10%, 30%, 50%).

Table 6: Caltech256 (w/o pretraining) /ResNet50, 400 epochs, R = 40

Random Ours

5% 10% 30% 50% 5% 10% 30% 50%

17.26 35.38 58.2 64.67 20.58 38.20 60.30 65.17

D.9 Training on full data and augmenting small subsets re-selected every epoch

We apply our proposed method to select a new subset for augmentation every epoch (i.e. using
R = 1) and compare our results with other approaches using accuracy and percentage of data not
selected (NS). We see that while the max-loss policy selects a small fraction of data points over
and over and random uniformly selects all the data points, our approach successfully finds the
smallest subset of data points that are the most crucial for data augmentation. Hence, it can achieve
a superior accuracy than max-loss policy, while augmenting only slightly more examples. This
confirms the data-efficiency of our approach. This is especially evident when using coresets of size
0.2%. Furthermore, despite the random baseline using a significantly larger percentage of data, it is
outperformed by our approach in both data-efficiency and accuracy. We emphasize that results in this
table is different from that of Table 1, as default augmentations on the full training data are performed
once every R = 1 epochs instead of every R = 20 epochs. Since selecting subsets at every epoch
can be computationally expensive, we only perform these experiments on small coresets and hence
still enjoy good speedups compared to full data augmentation. This shows that our approach is still
effective at very small subset sizes, hence can be computationally efficient even when subsets are
re-selected every epoch.

Table 7: Training on full data and selecting a new subset for augmentation every epoch (R = 1).

Subset Random Max-loss Policy Ours

Acc NS (%) Acc NS (%) Acc NS (%)

0% 91.96± 0.12 − 91.96± 0.12 − 91.96± 0.12 −
0.2% 92.22± 0.22 67.03± 0.04 91.94± 0.12 86.70± 0.15 92.26± 0.13 79.19± 1.10
0.5% 92.06± 0.17 36.70± 0.18 92.20± 0.13 76.80± 0.31 92.27± 0.08 63.23± 0.35

D.10 Additional visualizations for training on coresets and its augmentations - Measuring
training dynamics over time

We include additional visualizations in Figure 4 for training on coresets and its augmentations as
supplementary plots to Figure 7(c) and Table 1. We plot metrics obtained during each point (epoch)

12

(a) CIFAR10 - 0.1% (b) CIFAR10 - 0.2% (c) CIFAR10 - 0.5%

(d) CIFAR10 - 1% (e) CIFAR10 - 5%

Figure 4: Supplementary plots for Figure 7(c): Training on coreset and its augmentation compared to
random baseline, measured using test accuracy against percentage of data used on CIFAR10 dataset
across various subset sizes. Accuracy and percentage of data used are measured at every epoch and
averaged over 5 runs.

of the training process based on percentage of data selected/used and test accuracy achieved. All
metrics are averaged over 5 runs and obtained using R = 1. These plots demonstrate that coreset
augmentation approaches outperform random augmentation baselines throughout the training process.
Furthermore, they show that augmentation of coresets result in a larger increase in test accuracy
compared to augmentation of randomly selected training examples, especially for small subset sizes.

Figure 5: Intersection between max-loss and coresets in the top N points selected aggregated across
the entire training process. Here, we show the increasing overlap between max-loss and coreset
points as N grows.

Figure 6: Qualitative evaluation of coreset and max-loss points.

D.11 Intersection of max-loss policy and coresets

Figure 7(a) depicts the increase in intersection between max-loss subsets and coresets over time. In
addition, we also aggregate 30% subsets selected every R = 20 epochs using both approaches over
the entire training process to compute intersection between the top N selected data points. Our plots

13

(a) Loss intersection (b) Improvement (c) Coresets vs random

Figure 7: Training ResNet20 on full data and augmented coresets extracted from CIFAR10. (a)
Intersection between elements of coresets of size 30% and maximum loss subsets of the same size.
The intersection increases after the initial phase of training, (b) Accuracy improvement for training on
full data and augmented coresets over training on full data and max-loss augmentation. (c) Accuracy
vs. fraction of data selected for augmentation during training Resnet20 on CIFAR10.

in Figure 5 suggest that a similar pattern holds in this setting. We also qualitatively visualize this in
Figure 6.

References
[1] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-

timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[2] Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.

[3] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 113–123, 2019.

[4] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

[5] Byungju Kim and Junmo Kim. Adjusting decision boundary for class imbalanced learning. IEEE
Access, 8:81674–81685, 2020.

[6] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

[7] Sen Wu, Hongyang Zhang, Gregory Valiant, and Christopher Ré. On the generalization effects of
linear transformations in data augmentation. In International Conference on Machine Learning,
pages 10410–10420. PMLR, 2020.

14

	Proof of Main Results
	Proof for Lemma 4.1
	Proof of Corollary 4.2
	Proof of Lemma 5.1
	Proof of Theorem 5.2
	Finding Subsets

	Additional Theoretical Results
	Convergence analysis for training on augmented full data
	Proof of Theorem B.1
	Convergence analysis for training on the coreset and its augmentation
	Lemma for eigenvalues of coreset
	Augmentation as Linear Transformation: Linear Model Analysis

	Singular spectrum analysis
	Experiment details
	Real-world strong augmentations

	Experiment Setup and Additional Experiments
	Experiment setup
	Experiment setup
	Full Results for Table 4
	Supplementary results for Table 1
	Training dynamics vs generalization
	Augmentations applied through appending vs in-place
	Speed-up measurements
	End to end training on Caltech256
	Training on full data and augmenting small subsets re-selected every epoch
	Additional visualizations for training on coresets and its augmentations - Measuring training dynamics over time
	Intersection of max-loss policy and coresets

