
Supplementary material: Inverse Reinforcement Learning in a
Continuous State Space with Formal Guarantees

A Proofs of lemmas and theorems

A.1 Additional lemma

Lemma 9 Let s0 be the starting state, let (a)n represent a sequence of actions and let M =
Z(ar)Z(ar−1)...Z(a1) i.e., the product of matrices in {Z(a)} left multiplied in order of the sequence
(a)n, then,

P (sr|s0, (a)n) = φ(sr)
>Mφ(s0).

Proof Here we use proof by induction. Let X(s0, (a)n) = {sn|n ∈ N} be a random process with a
fixed starting point s0 where (a)n is a sequence of actions and sr ∼ Par

(sr|sr−1). We show that

P (s2|s0, (a)n) =

∫
s1∈S

Pa2
(s2|s1)Pa1

(s1|s0)ds1

=

∫
s1∈S

 ∞∑
k,j=1

φk(s2)Z(a2)
kj φj(s1)

 ∞∑
m,`=1

φm(s1)Z(a1)
m` φ`(s0)

 ds1

=

∞∑
k,j=1

φk(s2)Z(a2)
kj

∞∑
m,`=1

Z(a1)
m` φ`(s0)

∫
s1∈S

φj(s1)φm(s1)ds1

= φ(s2)Z(a2)Z(a1)φ(s0),

where the last step follows since the integral on line three equals one if j = m and zero oth-
erwise. We note that the interchange of the integral and infinite summation is justified by Sec-
tion 3.7 in [5], since the coefficients Z(a)

ij are absolutely summable, hence the infinite sum
is upper bounded by a constant for all s2, s1, s0. If there is an infinite matrix M such that
P (sr|s0, (a)n) =

∑∞
m,`=1 φm(sr)Mm` φ`(s0), then

P (sr+1|s0, (a)n) =

∫
sr∈S

Par+1
(sr+1|sr)P (sr|s0, (a)n)dsr

=

∫
sr∈S

 ∞∑
k,j=1

φk(sr+1)Z(ar+1)
kj φj(sr)

 ∞∑
m,`=1

φm(sr)Mm`φ`(s0)

 dsr

=

∞∑
k,j=1

φk(sr+1)Z(ar+1)
kj

∞∑
m,`=1

Mm`φ`(s0)

∫
sr∈S

φj(sr)φm(sr)dsr

= φ(sr+1)Z(ar+1)Mφ(s0).

We can then conclude the statement of the lemma by induction.

A.2 Proof of Proposition 1

Proof By Lemma 9, given a fixed sequence of actions (a)n, the r-th state sr under this sequence of
actions starting from state s0 has a distribution that can be represented over the basis {φn(s)}. In
other words, there exists an infinite matrixM such that,

P (sr|s0, (a)n) =

∞∑
i,j=1

φi(sr)Mijφj(s0).
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We now define the projection R′(s) of reward function R(s) to the span of {φn(s)}. Let R′(s) =∑∞
k=1 αkφk(s) such that,

αk =

∫
s∈S

φk(s)R(s)ds

For any r ∈ N, r > 0, starting state s0, and action sequence (a)n, we can write

E[R(sr)|s0, (an)] =

∫
sr∈S

R(sr)P (sr|s0, (a)n)dsr

=

∫
sr∈S

R(sr)

 ∞∑
i,j=1

φi(sr)Mijφj(s0)

 dsr

=

∞∑
i,j=1

Mijφj(s0)

∫
sr∈S

R(sr)φi(sr)dsr

=

∞∑
i,j=1

Mijφj(s0)αi

=

∞∑
i,j=1

Mijφj(s0)

∫
s∈S

αiφi(sr)φi(sr)dsr

=

∫
s∈S

( ∞∑
k=1

αkφk(sr)

) ∞∑
i,j=1

φi(sr)Mijφj(s0)

 dsr

=

∫
sr∈S

R′(sr)P (sr|s0, (a)n)dsr

= E[R′(sr)|s0, (an)].

Therefore, the expected reward under any sequence of actions for reward R is the same as for the
projected reward R′ for any state sr where r > 0. The reward at the starting state, R(s0) does not
depend on the policy. Therefore, the value of R(s0) does not change whether a policy is optimal or
not. We can conclude that, regarding optimality of π, reward function R and R′ are equivalent.

A.3 Proof of Lemma 2

Proof For notational simplicity, let T ≡ Z(a1). Recall that the value function is defined as,

V π(s0) = R(s0) +

∞∑
r=1

γrE[R(sr)|s0, π]

As motivated by Proposition 1, we only consider reward function R which is a (potentially infinite)
sum of basis functions φn(s). Since in our case π ≡ a1, we can apply Lemma 9 with action sequence
(a)n such that an = a1 for all n ∈ N , then

V π(s0) = R(s0) +

∞∑
r=1

γrE[R(sr)|s0, π]

= R(s0) +

∞∑
r=1

γr
∫
sr∈S

R(sr)P (sr|s0)dsr

= α>φ(s0) +

∞∑
r=1

γrα>T rφ(s0)

=

∞∑
r=0

γrα>T rφ(s0)
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We use the convention that [T 0]ij = 1 when i = j and [T 0]ij = 0 otherwise. Now, define action
sequence (a)n such that a1 = a and an = a1 for all n > 1. Let X(s0, (a)n) = {sn|n ∈ N}
be a random process with a fixed starting point s0 where (a)n is a sequence of actions and sr ∼
Par

(sr|sr−1). This expected discounted reward of this random process with parameters s0 and a
equals the function Qπ(s0, a), which is equivalent to the following,

Qπ(s0, a) = R(s0) + γE[V π(s1)|s0, a]

= α>φ(s0) + γ

∫
s1∈S

V π(s1)Pa(s1|s0)ds1

= α>φ(s0) + γ

( ∞∑
r=0

γrα>T r
)
Z(a)φ(s0)

= α>φ(s0) +

∞∑
r=0

γr+1α>T rZ(a)φ(s0).

Therefore, the strict Bellman optimality condition can be written as, for all a ∈ A \ {a1},
Qπ(s0, a1)−Qπ(s0, a) > 0

⇐⇒ α>φ(s0) +

∞∑
r=0

γr+1α>T rZ(a1)φ(s0)− α>φ(s0) +

∞∑
r=0

γr+1α>T rZ(a)φ(s0) > 0

⇐⇒
∞∑
r=0

γrα>T rT φ(s0)−
∞∑
r=0

γrα>T rZ(a)φ(s0) > 0

⇐⇒
∞∑
r=0

γrα>T r(T − Z(a))φ(s0) > 0

⇐⇒ α>

( ∞∑
r=0

γrT r(T − Z(a))

)
φ(s0) > 0

Note that the last step interchanges the explicit and implicit summations by again using absolute
summability of α and F (a). Substituting the definition of F (a) into the last line allows us to conclude
the following.

α>F (a)φ(s) > 0 ∀ s ∈ S, a ∈ A \ {a1}.

A.4 Proof of Theorem 3

Proof For a fixed action a, let D be a joint distribution of (s′, s̄) such that s̄ is distributed uniformly
over S and, given s̄, s′ ∼ Pa(·|s̄). In words, we sample the starting state s̄ from a uniform distribution
and then sample the one-step transition s′. Note that,

E
D

[φi(s
′)φj(s̄)] =

∫ 1

−1

∫ 1

−1

Pa(s′|s̄)Pa(s̄) φi(s
′)φj(s̄)ds

′ds̄

=
1

2

∫ 1

−1

∫ 1

−1

Pa(s′|s̄) φi(s′)φj(s̄)ds′ds̄

=
1

2

∫ 1

−1

∫ 1

−1

( ∞∑
p,q=1

φp(s
′)Z(a)

pq φq(s̄)

)
φi(s)φj(s̄)ds

′ds̄

=
1

2

∫ 1

−1

∫ 1

−1

Z(a)
ij φi(s

′)2φj(s̄)
2ds′ds̄

=
1

2
Z(a)
ij .
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Therefore, Ẑ(a) = 2
n

∑n
r=1 φ(s′r)φ(s̄r)

> computed by Algorithm 1 is an unbiased estimator of Z(a)

thus [kẐ(a)] is an unbiased estimator of [kZ(a)]. We drop the superscript (a) in the rest of the proof,
since the same argument applies for all a ∈ A.

We can then use Hoeffding’s inequality to get concentration of measure for each entry in the truncated
matrix. Since φi(s′)φj(s̄) ∈ [−1, 1], we have

P

(∣∣∣∣∣ 2n
n∑
r=1

φi(s
′
r)φj(s̄r)− [kZ]ij

∣∣∣∣∣ ≥ ε
)
≤ 2e

−nε2

8 .

Then we can use subadditivity of measure to bound the maximum difference across all entries of
[kZ].

P
(

max
i,j∈N

∣∣ 2
n

n∑
r=1

[φ(s′r)φ(s̄r)]ij − [kZ]ij
∣∣ ≥ ε) ≤ 2k2e

−nε2

8 .

Lastly, since we want a bound on the error of the induced infinity norm and not element wise error,
we use the following

‖[kZ]‖∞ ≤ k max
i,j∈N

∣∣[kZ]ij
∣∣ .

Therefore, the induced infinity norm error of Ẑ is less than ε if the element wise error is less than
ε/k. That is,

P

(∥∥∥ 2

n

n∑
r=1

φ(s′r)φ(s̄r)− [kZ]
∥∥∥
∞
≥ ε

)
≤ P

(
max
i,j∈N

∣∣∣∣∣ 2n
n∑
r=1

[φ(s′r)φ(s̄r)]ij − [kZ]ij

∣∣∣∣∣ ≥ ε

k

)
≤ 2k2e

−nε2

8k2 .

Now we find the sample complexity for fixed δ and ε. This is equivalent to δ ≥ 2k2e
−nε2

8k2 , which is
also equivalent to n ≥ 8k2

ε2 log( 2k2

δ ).

Then, we can bound ‖Ẑ − Z‖∞ by the triangle inequality with high probability,

‖Ẑ − Z‖∞ = ‖Ẑ − ([∞k Z] + [kZ])‖∞
≤ ‖[∞k Z]‖∞ + ‖Ẑ − [kZ]‖∞
≤ 2ε,

which concludes our proof.

A.5 Proof of Lemma 4

Proof For notational simplicity, we drop the superscript (a) and denote T ≡ Z(a1). Recall that,

F =

∞∑
r=0

γrT r(T − Z).

First we bound the error of T̂ r+1 as follows.

‖T̂ r+1 − T r+1‖∞
= ‖T̂ rT̂ − T rT ‖∞
= ‖T̂ rT̂ − T̂ rT + T̂ rT − T rT ‖∞
≤ ‖T̂ rT̂ − T̂ rT ‖∞ + ‖T̂ rT − T rT ‖∞
≤ ‖T̂ r‖∞‖T̂ − T ‖∞ + ‖T ‖∞‖T̂ r − T r‖∞
≤ ‖T̂ ‖r∞‖T̂ − T ‖∞ + ‖T ‖∞‖T̂ r − T r‖∞
≤ ∆rε+ ∆‖T̂ r − T r‖∞.
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Define the recurrence relation T (r + 1) = ∆rε + ∆T (r) and T (1) = ε. Solving this recursive
formula gives the following bound,

‖T̂ r+1 − T r+1‖∞ ≤ T (r + 1) ≤ (r + 1)ε∆r.

We can use the inequality above to prove the bound on the induced infinity norm error of F̂ as follows.

‖F̂ − F‖∞ =
∥∥ ∞∑
r=0

γr[T̂ r(T̂ − Ẑ)− T r(T − Z)]
∥∥
∞

=

∞∑
r=0

γr‖T̂ r+1 − T̂ rẐ − T r+1 + T rZ‖∞

≤
∞∑
r=0

γr(‖T̂ r+1 − T r+1‖∞ + ‖T̂ rẐ − T rZ‖∞)

≤
∞∑
r=0

γr(ε(r + 1)∆r + ‖T̂ r‖∞‖Ẑ − Z‖∞

+ ‖T̂ r − T r‖∞‖Z‖∞)

≤
∞∑
r=0

γr(ε(r + 1)∆r + ∆rε+ r∆rε)

≤ ε

( ∞∑
r=0

2γr(r + 1)∆r

)

≤ 2ε

(
1

1− γ∆
+

γ∆

(1− γ∆)2

)
≤ 2ε

1

(1− γ∆)2
.

Where the second to last step follows from applying the standard formula for solving arithmetico-
geometric series.

A.6 Proof of Lemma 5

Proof The basis functions {φn(s)} are assumed to be continuously differentiable; the trigonometric
basis is an example of such basis. Therefore, α̂>Fφ(s) is ρ-Lipschitz if the absolute value of its
derivative is bounded by ρ, i.e.

|α̂>Fφ′(s)| ≤ ρ, ∀ s ∈ S.

Since there exists s̄ ∈ S̄ for all s ∈ S such that |s − s̄| < c, if α̂>Fφ(s) is ρ-Lipschitz and
α̂>Fφ(s̄) ≥ cρ then,

α̂>Fφ(s̄) ≥ cρ, ∀ s̄ ∈ S̄,

implies that for every s ∈ S there exists an s̄ ∈ S̄ such that,

α̂>Fφ(s) ≥ α̂>Fφ(s̄)− cρ,
⇒ α̂>Fφ(s) ≥ 0, ∀s ∈ S.

We now bound ‖α̂‖1 in order to assess the maximum effect the error in estimating F can have on the
Bellman Optimality Criteria α̂>Fφ(s). Since the IRL problem is β-separable, there exists ᾱ such
that ‖ᾱ‖1 = 1 and ᾱ>Fφ(s) ≥ β for all s ∈ S.
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Let G > 0 and α̃ = Gᾱ. Then ‖α̃‖1 = G and

α̃>F̂φ(s̄) = α̃>(F̂ − F + F)φ(s̄)

= α̃>Fφ(s̄) + α̃>(F̂ − F)φ(s̄)

≥ α̃>Fφ(s̄)− ‖α̃>‖1‖(F̂ − F)φ(s̄)‖∞
≥ G(β − ε).

Therefore, if G = 1/(β − ε) then α̃>F̂φ(s̄) ≥ 1 and thus ‖α̂‖1 ≤ 1/(β − ε). Therefore,

α̂>Fφ(s̄) = α̂>(F − F̂)φ(s̄) + α̂>F̂φ(s̄)

≥ α̂>F̂φ(s̄)− ‖α̂‖1‖(F − F̂)φ(s̄)‖∞
≥ 1− ε

β − ε
.

We can upper bound |α̂>Fφ′(s)| as follows,

|α̂>Fφ′(s)| ≤ ‖α̂‖1‖Fφ′(s)‖∞ ≤
ρ

β − ε
.

Then, we can guarantee that α̂>Fφ(s) > 0 for all s ∈ S if,

1− ε

β − ε
>

cρ

β − ε
⇐⇒ ε <

β − cρ
2

.

A.7 Proof of Theorem 6

Proof By Theorem 3, condition (iii) of Theorem 6 and the condition on n, calling Algorithm 1 with
parameters (a, n, k) returns an estimate Ẑ(a) such that with probability at least 1− δ

|A| ,

‖Z(a) − Ẑ(a)‖∞ ≤
β − cρ

4

(
1

2
− γ∆

)2

.

Applying the union bound guarantees that the above inequality holds for all a ∈ A with probability at
least 1− δ.

Note that ‖Ẑ(a)‖ ≤ ∆ + 1
2γ is satisfied for all a ∈ A since n ≥ 32k2 log 2k2|A|

δ . Then by Lemma 4,

‖F̂ (a) −F (a)‖∞ <
2(β − cρ)

4

( 1
2 − γ∆)2

(1− γ(∆ + 1
2γ ))2

<
β − cρ

2
, ∀ a ∈ A \ {a1}.

The minimization problem at Step 4 of Algorithm 2 fulfills the assumptions of Lemma 5, and thus it
returns α̂ such that,

α̂>F (a)φ(s) > 0, ∀ s ∈ S, a ∈ A \ {a1}.
Therefore, Algorithm 2 will return a reward function such that a1 is an optimal policy for the MDP
with probability at least 1− δ.

The time complexity of Algorithm 2 is dominated by solving the linear program. Since F̂ has all
zeros beyond the k-th column and row, each infinite-matrix F̂ can be treated as a k × k matrix.
Therefore, the constraints given by

α>F̂ (a)φ(s̄) ≥ 1, ∀s̄ ∈ S̄, a ∈ A \ {a1}.

correspond to |S̄|(|A| − 1) constraints in k variables. Since |S̄| = d2/ce, there are O(k|A|c )
constraints in total.
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A.8 Proof of Theorem 8

Proof

By the conditions of the Theorem, we have

Pa(s1|s0) =

T∏
j=1

Pa(s
(j)
1 |s

(j)
0 ).

We use proof by induction to show that Pa(sr|s0) =
∏T
j=1 Pa(s

(j)
r |s(j)

0 ) for all r ∈ N. First, we
prove the inductive step.

P (sr+1|s0) =

∫
sr∈S

P (sr+1|sr)P (sr|s0)dsr

=

∫
s
(1)
r ...s

(T )
r

 T∏
j=1

P (s
(j)
r+1|s(j)

r )

 T∏
j=1

P (s(j)
r |s

(j)
0 )

 ds(1)
r ...ds(T )

r

=

T∏
j=1

∫
s
(j)
r

P (s
(j)
r+1|s(j)

r )P (s(j)
r |s

(j)
0 )ds

(j)
1

=

T∏
j=1

P (s
(j)
r+1|s

(j)
0 ).

The base case of r = 1 is guaranteed by the conditions of the Theorem. Therefore, we conclude that
Pa(sr|s0) =

∏T
j=1 Pa(s

(j)
r |s(j)

0 ) for all r ∈ N.

Next, we use the previous decomposition of Pa(sr|s0) to rewrite the Bellman Optimality condition.
Recall that R is strictly Bellman-optimal if for all a ∈ A \ {a1} and s0 ∈ S,

E[V π(s1)|s0, a1] > E[V π(s1)|s0, a].

We can rearrange each side of the above inequality by the following.

E[V π(s1)|s0, a] =

∞∑
r=1

γr
∫
sr∈S

R(sr)Pa1(sr|s1)Pa(s1|s0)Tsr

=

∞∑
r=1

γr
∫
s
(1)
r ...s

(T )
r

(
T∑
i=1

R(i)(s(i))

) T∏
j=1

Pa1(s(j)
r |s

(j)
1 )Pa(s

(j)
1 |s

(j)
0 )

 ds(1)
r ...ds(T )

r

=

∞∑
r=1

γr
∫
s
(1)
r ...s

(T )
r

T∑
i=1

R(i)(s(i))

T∏
j=1

Pa1(s(j)
r |s

(j)
1 )Pa(s

(j)
1 |s

(j)
0 )

 ds(1)
r ...ds(T )

r

=

∞∑
r=1

γr
T∑
i=1

∫
s
(1)
r ...s

(T )
r

R(i)(s(i))

T∏
j=1

Pa1(s(j)
r |s

(j)
1 )Pa(s

(j)
1 |s

(j)
0 )ds(1)

r ...ds(T )
r

=

∞∑
r=1

γr
T∑
i=1

∫
s
(i)
r

R(i)(s(i))Pa1(s(i)
r |s

(i)
1 )Pa(s

(i)
1 |s

(i)
0 )ds(i)

r

=

T∑
i=1

∞∑
r=1

γr
∫
s
(i)
r

R(i)(s(i))Pa1(s(i)
r |s

(i)
1 )Pa(s

(i)
1 |s

(i)
0 )ds(i)

r .

The second-to-last step above follows since the integral of any probability distribution equals 1.

18



Since each 1-dimensional IRL problem is solved by R(j)(s(j)),
∞∑
r=1

γr
∫
s
(j)
r

R(j)(s(j)
r )Pa1(s(j)

r |s
(j)
1 )Pa1(s

(j)
1 |s

(j)
0 )ds(j)

r

>

∞∑
r=1

γr
∫
s
(j)
r

R(s(j)
r )Pa1(s(j)

r |s
(j)
1 )Pa(s

(j)
1 |s

(j)
0 )ds(j)

r .

This implies that,

T∑
i=1

∞∑
r=1

γr
∫
s
(j)
r

R(j)(s(j)
r )Pa1(s(j)

r |s
(j)
1 )Pa1(s

(j)
1 |s

(j)
0 )ds(j)

r

>

T∑
i=1

∞∑
r=1

γr
∫
s
(j)
r

R(s(j)
r )Pa1(s(j)

r |s
(j)
1 )Pa(s

(j)
1 |s

(j)
0 )ds(j)

r

⇒
E[V π(s1)|s0, a1] > E[V π(s1)|s0, a].

Therefore, reward function R(s) is strictly Bellman optimal for the total IRL problem.

B Fourier instantiation

We prove Lemma 7 by splitting the derivations into two lemmas. First we state stronger conditions
on the infinite-matrix Z which are sufficient to satisfy the representation assumptions of Theorem 6.
These stronger conditions will be easier to verify using known proof techniques for Fourier series.

Lemma 10 Let 0 < ∆ < 1
2γ . If,

|Zij | <
∆

ζ(3)i3j3
, and |φ′n(s)| ≤ Cn, C > 0,

then

‖Fφ′(s)‖∞ <
4C∆ζ(2)

ζ(3)
, ‖[∞k Z]‖∞ < ε, ‖Z‖∞ < ∆,

with truncation parameter k on the order of k ∈ O
(√

∆
ε

)
, where ζ(r) =

∑∞
n=1

1
nr is the Riemann

zeta function and ε > 0.

Proof By the condition of the lemma, |Zij | < ∆
ζ(3)i3j3 . First we bound, ‖Z‖∞,

‖Z‖∞ = max
i∈N

∞∑
j=1

|Zij |

< max
i∈N

∞∑
j=1

∆

ζ(3)i3j3

=
∆

ζ(3)

∞∑
j=1

1

j3

=
ζ(3)∆

ζ(3)

= ∆.
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Therefore, we can guarantee that ‖Z‖∞ < ∆. Next we bound ‖[∞k Z]‖∞. First, we define the
Hurwitz zeta function, Hs(x).

Hs(x) =

∞∑
n=0

1

(n+ x)s
(7)

Recall that [∞k Z]ij = 0 for all i, j ≤ k. Therefore,

||[∞k Z]||∞ = max

 max
i∈{1,...,k}

∞∑
j=k+1

|Zi,j |, max
i∈{k+1,k+2,...}

∞∑
j=1

|Zi,j |


< max


∞∑

j=k+1

∆

j3ζ(3)
,

∞∑
j=1

∆

(k + 1)3j3ζ(3)


= max

 ∆

ζ(3)

∞∑
j=k+1

1

j3
,

∆

(k + 1)3ζ(3)

∞∑
j=1

1

j3


= max

{
∆

ζ(3)
H3(k + 1),

∆

(k + 1)3

}

We can bound the Hurwitz zeta function by combining the following two inequalities where ψ(x)
represents the digamma function. The first inequality comes from Theorem 3.1 in [4] and the second
comes from Equation 2.2 in [2].

Hs+1(x) <
1

s
exp(−sψ(x))

log x− 1

x
≤ ψ(x) ≤ log x− 1

2x

This gives

H3(k + 1) ≤ 1

2
exp

(
−2

(
log(k + 1)− 1

k + 1

))
=

1

2
e−2 log(k+1)e

2
k+1

=
1

2(k + 1)2
e

2
(k+1) .

We can then bound the truncation error as,

||[∞k Z]||∞ < max

{
∆

ζ(3)
H3(k + 1),

∆

(k + 1)3

}
≤ max

{
∆e

2ζ(3)(k + 1)2
,

∆

(k + 1)3

}
.

Therefore, k ∈ O(
√

∆/ε) is sufficient to guarantee that ||[∞k Z]||∞ < ε. Finally, we bound
‖Fφ′(s)‖∞. Recall that,

F =

∞∑
r=0

γrT r(T − Z)
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Then,

‖Fφ′(s)‖∞ =
∥∥∥[ ∞∑

r=0

γrT r(T − Z)

]
φ′(s)

∥∥∥
∞

=
∥∥∥ ∞∑
r=0

γrT r(T − Z)φ′(s)
∥∥∥
∞

≤
∞∑
r=0

γr‖T r(T − Z)φ′(s)‖∞

≤
∞∑
r=0

γr‖T r‖∞‖(T − Z)φ′(s)‖∞

≤ ‖(T − Z)φ′(s)‖∞
∞∑
r=0

γr‖T r‖∞

We bound ‖(T − Z)φ′(s)‖∞ and
∑∞
r=0 γ

r‖T r‖∞ separately. By the conditions of the lemma,
‖φ′n(s)‖ ≤ Cn. Then using the fact that ‖Z‖∞, ‖T ‖∞ < ∆.

‖(T − Z)φ′(s)‖∞ = max
i∈N

∣∣∣∣∣∣
∞∑
j=1

[T − Z]ijφ
′
j(s)

∣∣∣∣∣∣
< max

i∈N

∣∣∣∣∣∣
∞∑
j=1

2∆

ζ(3)i3j3
Cj

∣∣∣∣∣∣
=

2C∆

ζ(3)

∣∣∣∣∣∣
∞∑
j=1

1

j2

∣∣∣∣∣∣
=

2C∆ζ(2)

ζ(3)

Then by the conditions of the lemma, ‖T ‖∞ < ∆ < 1
2γ , which implies,

∞∑
r=0

γr‖T r‖∞ ≤
∞∑
r=0

γr‖T ‖r∞

<

∞∑
r=0

γr
1

(2γ)r

=
1

1− 1
2

= 2

Combining these previous results gives,

‖Fφ′(s)‖∞ ≤ ‖(T − Z)φ′(s)‖∞
∞∑
r=0

γr‖T r‖∞ <
4C∆ζ(2)

γζ(3)

The next lemma states conditions on the partial derivatives of the transition functions so that the
infinite-matrix representations over a trigonometric basis fulfill the conditions of Lemma 10.

Lemma 11 If P (s̃|s) =
∑∞
i,j=1 φi(s̃)Zijφj(s) where {φn(s)} are the trigonometric basis functions,

and ∣∣∣∣ ∂6

∂s̃3∂s3
P (s̃|s)

∣∣∣∣ < π6∆

ζ(3)
,
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then,

|Zij | <
∆

ζ(3)i3j3
.

Proof

We defined the basis of trigonometric functions {φn(s)} as

φn(s) = cos (bn/2cπs) for all odd n,
φn(s) = sin ((n/2)πs) for all even n,

where b.c is the floor function.

First we directly represent the partial derivative in terms of the trigonometric basis. We define Z ′ij as

Z ′ij ≡
∫
s1,s0∈S

∂6

∂s3
1∂s

3
0

P (s1|s0)φi(s1)φj(s0)ds1ds0

⇒ ∂6

∂s3
1∂s

3
0

P (s1|s0) =

∞∑
i,j=1

φi(s1)Z ′ijφj(s0).

We use the bound on the sixth order partial derivative to bound the values of Z ′ as follows.

|Z ′ij | =
∣∣∣∣∫
s1,s0∈S

∂6

∂s3
1∂s

3
0

P (s1|s0)φi(s1)φj(s0)ds1ds0

∣∣∣∣
<
π6∆

ζ(3)

∣∣∣∣∫
s1,s0∈S

φi(s1)φj(s0)ds1ds0

∣∣∣∣
≤ π6∆

ζ(3)
.

Next we represent the sixth order partial derivative using the entries of Z by differentiating the series
representation of P (s′|s).

P (s1|s0) =

∞∑
i,j=1

φi(s1)Zijφj(s0)⇒

∂6

∂s3
1∂s

3
0

P (s1|s0) =

∞∑
i,j=1

∂3

∂s3
1

φi(s1)Zij
∂3

∂s3
0

φj(s0).

If n is odd then,

∂3

∂s3
φn(s) =

∂3

∂s3
cos(bn/2cπs) = (πn)3 sin(bn/2cπs) = (πn)3φn−1(s).

If n is even then,

∂3

∂s3
φn(s) =

∂3

∂s3
sin((n/2)πs) = −(πn)3 cos((n/2)πs) = −(πn)3φn+1(s).

Therefore we can map the entries of Z to Z ′. The exact mapping is not important since all entries of
Z ′ are bounded by π6∆

ζ(3) . Finally, we have,

π6i3j3|Zij | = |Z ′i±1,j±1| <
π6∆

ζ(3)

⇒ |Zij | <
∆

ζ(3)i3j3
.
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Combining the statements of Lemma 10 and Lemma 11 along with the fact that
| dds cos(bn/2cπs)|, | dds sin((n/2)πs)| ≤ πn constitutes the proof of Lemma 7.

We can strengthen the assumption on ∆ in Lemma 7 from ∆ < 1
2γ to ∆ < 1

4γ to achieve a simple
sample complexity for Algorithm 2 which only depends on the probability of failure δ and the
separability measure β.

Corollary 12 If the IRL problem is β-separable and∣∣∣∣ ∂6

∂s̃3∂s3
Pa(s̃|s)

∣∣∣∣ < π6

4γζ(3)
, ∀a ∈ A,

then with O
(

1
β3 log 1

βδ

)
samples, Algorithm 2 with a trigonometric basis outputs a correct reward

function R with probability at least 1− δ.

Proof

By Lemma 7, we have the following bounds when substituting in ∆ < 1
4γ .

(i) ‖Fφ′(s)‖∞ <
πζ(2)

γζ(3)
, (ii) ‖Z‖∞ <

1

4γ
, (iii) ‖[∞k Z]‖∞ < ε, with k ∈ O

(√
1

ε

)

Theorem 6 then guarantees that Algorithm 2 will return a correct reward function with probability at

least 1− δ for some γ ∈ (0, 1), c > 0, k ∈ O
(√

1
ε

)
, and n ∈ O

(
1

(β−cρ)2 k
2 log k

δ

)
.

To see this, let

ε =
β − cρ

8

(
1

2
− γ∆

)2

=
β − cρ

128
, and ρ =

πζ(2)

γζ(3)
.

We can simplify the sample complexity result by setting c such that cρ = β
2 and using k ∈ O

(√
1
ε

)
to obtain,

O
(

1

(β − cρ)2
k2 log

k

δ

)
= O

(
1

(β − cρ)2

1

β − cρ
log

1

(β − cρ)δ

)
= O

(
1

(β)2

1

β
log

1

βδ

)
= O

(
1

β3
log

1

βδ

)
.

which concludes the proof.

C Experiments

In order to verify our theoretical results, we test our algorithm on simple randomly generated IRL
problems. To accomplish this, we randomly generate IRL problems with polynomial transition
functions. Using polynomial transition functions has two main advantages. First, we can obtain
simple closed form solutions when generating the coefficient matrix Z(a). Second, the transition
function is infinitely differentiable, meaning the truncation error rapidly decreases with k. We
conducted our experiments on a 64-core AMD Epyc 7662 ‘Rome’ processor with 256 GB memory
and coded our experiments using Python 3.

C.1 Generating transition functions

First, we describe a way to generate a random polynomial which is a valid probability distribution
function over S = [−1, 1]. Let Pr = a(x − b)2r where a, b ∼Uniform(0, 1) denote a polynomial
with variable x. Notice that for all r ∈ N, Pr is non-negative over S. Therefore, we can construct a
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non-negative (even degree) polynomial P =
∑d/2
r=1 Pr. Re-normalizing P so that it integrates to 1

over S then makes P a valid probability density function since it integrates to one and is non-negative.

To generate a transition function, P (s′|s), create two random polynomial distributions Pa and Pb
as described above. Then let P (s′|s) = (1 − s2)Pa(s′) + s2Pb(s′). For each fixed s, P (s′|s) is a
weighted average of two probability density functions, and is therefore a probability density function.

C.2 Sampling the coefficient matrix (Algorithm 1) (Figure 2)

In order to test Algorithm 1 and the guarantees of Theorem 3, we must computeZ and Ẑ . Specifically,
to create Figure 2, we first generate a fixed random transition function. Next, we implement
Algorithm 1 to compute Ẑ for a specified truncation size k, where we compute the one-step transition
s′r ∼ Pa(·|s̄r) using inverse transform sampling with eight bits of precision. We cannot compute the
infinite matrix Z(a) completely, so instead we restrict ourselves to measuring the error ‖[kZ]− Ẑ‖∞.
The i, j-th entry of Z(a) is given by the following formula.

Zij =

∫ 1

−1

∫ 1

−1

((1− s2)Pa(s′) + s2Pb(s′))φi(s′)φj(s)ds′ds

=

∫ 1

−1

(
(1− s2)

∫ 1

−1

Pa(s′)φi(s
′)ds′

)
φj(s)ds+

∫ 1

−1

(
s2

∫ 1

−1

Pb(s′)ds′φi(s′)
)
φj(s)ds.

We then use the fact that a polynomial is a sum of monomials. This allows us to give a simple
recursive specification of the integral of a polynomial with each trigonometic basis function using
integration by parts.

C.3 Solving the IRL problem (Algorithm 2) (Figure 3)

Next, we conduct experiments testing our ability to solve a randomly generated IRL problem. In
these experiments, we use γ = 0.7 and |A| = 3, where each transition function is as described above.
We compute each Ẑ(a) using Algorithm 1 and the compute the reward vector α̂ using Algorithm 2.
We classify the returned α̂ as "correct" or "incorrect" by checking if α̂T F̂ (a)φ(s̄) > 0 for all s̄ ∈ S̄
where S̄ is a covering set over [−1, 1] of size 100. If this inequality does not hold for any s̄ ∈ S̄, then
the reward vector is classified as "incorrect". To generate Figure 3, we repeat the above process 320
times for each value of n and each value of k.

Additionally, we verified that we implement Algorithm 2 correctly by checking the empirical expected
reward on a set of 100 points in [−1, 1] for several IRL problems. To compute the empirical expected
reward at state s0, we sample a sequence of point s1...s6 such that sr ∼ Pa(·|sr−1) using inverse
transform sampling, as described above. We average the discounted reward of these 6 points over
6000 samples and find that we succeed in generating a reward vector α̂ such that the expected reward
of the first action is higher than the expected reward of any other action at each starting point s0.

C.4 Effect of β-separability

As expected from the sample complexity result of Theorem 6, we found the β-separability had a
significant impact on the sample complexity of Algorithm 2 (see Figure 4 below).

We find the separability measure β of a randomly generated IRL problem by running Algorithm 2
using the exact [kZ] matrices with k = 11. Using the exact matrices removes any error introduced
by sampling, and since the transition functions are infinitely differentiable, the truncation error is
minimal. Since α̂F (a)φ(s) ≥ 1 holds approximately, we can approximate β as β = 1

‖α̂‖∞ .
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Figure 4: This graph shows the proportion of out of of 160 trials at each value of n where the returned
reward vector is approximately Bellman optimal versus the number of samples. We plot the results
from multiple generated IRL problems across a range of values for β−1. We observe that β has a
significant impact on the samples needed in Algorithm 2. Error bars represent 95% confidence and
are computed by bootstrapping out of 120 trials.
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