
Discrete-Convex-Analysis-Based Framework for
Warm-Starting Algorithms with Predictions

Shinsaku Sakaue
The University of Tokyo

Tokyo, Japan
sakaue@mist.i.u-tokyo.ac.jp

Taihei Oki
The University of Tokyo

Tokyo, Japan
oki@mist.i.u-tokyo.ac.jp

Abstract

Augmenting algorithms with learned predictions is a promising approach for going
beyond worst-case bounds. Dinitz, Im, Lavastida, Moseley, and Vassilvitskii (2021)
have demonstrated that warm-starts with learned dual solutions can improve the
time complexity of the Hungarian method for weighted perfect bipartite matching.
We extend and improve their framework in a principled manner via discrete convex
analysis (DCA), a discrete analog of convex analysis. We show the usefulness of
our DCA-based framework by applying it to weighted perfect bipartite matching,
weighted matroid intersection, and discrete energy minimization for computer
vision. Our DCA-based framework yields time complexity bounds that depend on
the ℓ∞-distance from a predicted solution to an optimal solution, which has two
advantages relative to the previous ℓ1-distance-dependent bounds: time complexity
bounds are smaller, and learning of predictions is more sample efficient. We also
discuss whether to learn primal or dual solutions from the DCA perspective.

1 Introduction

Discrete optimization algorithms are applied to many real-world instances that take place repetitively.
For example, recommendation systems repeat to solve bipartite matching instances to match users
with services, and we solve a series of pixel-labeling instances to process images of a movie. Since
such instances arising in the same domain often have some tendencies, using predictions made from
past instances to improve algorithms’ performance is a natural and promising idea. A recent line of
work [36, 41, 4, 34, 43, 2, 5] successfully combined online algorithms with predictions and showed
that those algorithms perform provably better than known worst-case bounds if predictions are good
while enjoying worst-case guarantees even if predictions are poor. See [37] for a survey.

Dinitz et al. [17] recently initiated the study of improving the time complexity of algorithms with pre-
dictions. They focused on warm-starting the well-known Hungarian method for the weighted perfect
bipartite matching problem with predictions on dual solutions, and obtained the time complexity of
O(min{m√n∥p̂− p∗∥1,mn}), where n and m are the number of vertices and edges, respectively,
and p̂ ∈ Rn is a prediction on an optimal dual solution p∗ ∈ Rn. That is, while the Hungarian method
takes O(mn) time in the worst case, it can run faster given a good prediction. Dinitz et al. [17] also
presented an algorithm for converting infeasible learned dual solutions into initial feasible solutions,
and proved an O(C2n3 log n) sample complexity bound for learning p̂ that approximately minimizes
the expected ℓ1-error E∥p̂− p∗∥1, assuming an optimal prediction is contained in [−C,+C]n. They
thus established an end-to-end framework for warm-starting the Hungarian method with predictions.

While Dinitz et al. [17] has shown that their prediction-based warm-start framework is effective for
bipartite matching and b-matching, its application to other problems remains to be studied. Since
their idea has the potential to yield strong beyond-the-worst-case time complexity bounds, the next
question of theoretical interest is: when and how can we warm-start algorithms with predictions?

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1: Our results for weighted perfect bipartite matching (BM) on bipartite graphs with n vertices
and at most m edges, weighted matroid intersection (MI) on pairs of rank-r matroids on an identical
ground set of size n (τ is the running time of independence oracles), and discrete energy minimization
on graphs with n vertices and at most m edges.

Problem Local optimization problem Time complexity Prediction

Weighted perfect BM Maximum cardinality BM O(m
√
n∥p∗ − p̂∥∞) Dual

Weighted MI Maximum cardinality MI O(τnr1.5∥p∗ − p̂∥∞) Dual
Discrete energy min. Minimum cut O(mn2∥p∗ − p̂∥∞) Primal

argmin

Warm-start

(a) Continuous

ℓ!-distance = 3

argmin
Warm-start

ℓ!-distance = 1

(b) Discrete

Figure 1: Images of warm-starts in (a) continuous
and (b) discrete optimization, where darker colors
indicate smaller objective values.

Our contribution is to extend and improve the
framework of [17] in a principled manner. Our
idea comes from an intuition that the time com-
plexity bound of [17] seems to be originating
from some geometric property of the Hungar-
ian method. In continuous optimization, warm-
starting the gradient descent method reduces its
running time, which we can see by simple geo-
metric reasoning (see Figure 1a). We formalize
this idea for discrete optimization via discrete
convex analysis (DCA) by Murota [38], which
is a discrete analog of convex analysis [42] and
offers a gradient-descent-like interpretation of
various discrete optimization algorithms, as in
Figure 1b. Based on DCA, we show that warm-
starting with predictions is effective for a large class of problems called L/L♮-convex minimization.

As with the framework of [17], given a prediction p̂ on an optimal solution p∗, we convert p̂ into an
initial feasible solution p◦. Then, starting from p◦, we iteratively solve a local optimization problem
to find a direction, along which we proceed. We will see that the number of iterations is O(∥p∗− p̂∥∞)
(see Figure 1b for an image). Thus, if a local optimization solver runs in Tloc time, the total time
complexity is O(Tloc∥p∗ − p̂∥∞) plus the time of converting p̂ into p◦, which is often shorter than
Tloc. Table 1 summarizes the results obtained by applying our DCA-based framework to specific
problems, where Tloc is replaced with the running time of standard local optimization solvers. As for
bipartite matching, our bound is up to n times smaller than the O(m

√
n∥p̂− p∗∥1) bound of [17].1

We then provide an O(C2n) sample complexity bound for learning predictions that approximately
minimize the expected ℓ∞-error, E∥p∗ − p̂∥∞, assuming an optimal prediction to be in [−C,+C]n.
Our bound is better than the previous O(C2n3 log n) bound of [17] for approximately minimizing the
expected ℓ1-error. Our method for learning predictions is based on a recent online-learning framework
by Khodak et al. [31], and we also obtain an O(C

√
nT) regret bound for the online setting.

We finally discuss whether to learn primal or dual solutions, which depends on problems as in Table 1
and has been decided in a somewhat ad-hoc manner in literature. We provide a guideline for choosing
primal or dual from the DCA perspective by considering path connectivity of feasible regions.

1.1 Related work

Theoretically fast algorithms. We overview existing theoretically fast algorithms. We emphasize
that, as with [17], our motivation is to accelerate simple algorithms, not to develop theoretically fast
algorithms, which are often difficult to implement and empirically slow due to hidden large constants.
For maximum cardinality bipartite matching, the standard Hopcroft–Karp algorithm [26] runs in
O(m

√
n) time, and a recent fast algorithm [47] takes O(m+ n1.5) time (up to logarithmic factors).

For weighted bipartite matching with non-negative integer weights bounded by W , a scaling-type
algorithm [18] runs in O(m

√
n log(W)) time. Moreover, a recent almost-linear-time max/min-cost

1Unlike [17], our framework cannot yield worst-case bounds in general, which is a limitation of our work.
This, however, does not matter in practice if we can run standard algorithms in parallel, as discussed in Section 6.

2

flow algorithm [14] implies an O(m1+o(1) log2W)-time algorithm for weighted bipartite matching.
For maximum cardinality matroid intersection, a standard algorithm is Cunningham’s O(τnr1.5)-time
algorithm [15], and a recent faster algorithm [12] runs in O(τnr log r) time. For weighted matroid
intersection, there is an O(τnr2)-time algorithm [9]. Moreover, if the maximum weight is bounded
by W , there are O(τn2 log(nW))-time [35] and O(τnr1.5W)-time [27] algorithms. For discrete
energy minimization, there is an O(mn log(n2/m) log(nW))-time algorithm [1], where W is the
number of possible vertex labels. For a particular case where smoothness of vertex labels is measured
by linear deviation functions, there is an algorithm that takes almost the same time to solve a min-cut
instance [25]; combined with the algorithm of [14], it runs in O(m1+o(1) log2W) time.

Algorithms with predictions. Many recent studies [36, 41, 4, 34, 43, 2, 5] improved competitive
ratios of online algorithms with predictions. Dinitz et al. [17] proposed to warm-start algorithms
with predictions. Khodak et al. [31] developed an online-learning framework for learning predictions,
and applied it to the ℓ1-error minimization setting of [17] to obtain O(Cn

√
T) regret and O(C2n2)

sample complexity bounds. By contrast, we learn predictions to minimize the ℓ∞-error, yielding
better guarantees. Data-driven algorithm design [3] is closely related to algorithms with predictions.
As discussed in [31], one distinction is that the former aims to tune algorithm parameters to optimize
the expected performance, while the latter focuses on prediction-dependent bounds to quantify the
improvement gained by using predictions. A very recent study [13] also extended and improved [17],
which should be considered as independent of each other and employs a different approach from ours.

2 Preliminaries

Let ⌊·⌉ denote the rounding to the nearest integer (0.5 is rounded down). We apply ⌊·⌋, ⌈·⌉, and ⌊·⌉ to
vectors in an element-wise manner. We use V = {1, 2, . . . , n} to denote a finite ground set of size
n ∈ N. For any X ⊆ V , 1X ∈ {0, 1}V denotes an indicator vector whose entries corresponding to
X are one and the others are zero; let 1 = 1V . Let ∨ and ∧ denote the element-wise maximum and
minimum operators, respectively. For any S ⊆ ZV , let conv(S) ⊆ RV denote the convex hull of S.

Given any function g : ZV → R ∪ {+∞}, let dom g =
{
p ∈ ZV

∣∣ g(p) < +∞
}

be its effective
domain, which indicates the feasible region of a minimization problem of form minp∈ZV g(p). We
say g is proper if dom g ̸= ∅. In this paper, we assume the following basic conditions to hold.

Assumption 1. We assume that any objective function g : ZV → R ∪ {+∞} is proper and has at
least one minimizer. Moreover, given any g, we uniquely associate p∗(g) ∈ argminp∈ZV g(p) with g
by breaking ties with an arbitrary predefined rule (to deal with the case of multiple minimizers).

2.1 Background on discrete convex analysis

We overview the basics of discrete convex analysis. We refer the reader to [38] for more information.

Considering functions on ZV , how to define convexity is already nontrivial. A well-known property
of a continuous convex function f is midpoint convexity, i.e., f(x)+f(y)

2 ≥ f
(
x+y
2

)
, and its natural

discrete analog for a function g : ZV → R∪{+∞} would be g(p)+ g(q) ≥ g
(⌈

p+q
2

⌉)
+ g

(⌊
p+q
2

⌋)
for all p, q ∈ ZV . This condition is indeed equivalent to the following L♮-convexity of g.

Definition 1. A proper function g : ZV → R ∪ {+∞} is L-convex if it has the following properties.

Submodularity: g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) for all p, q ∈ ZV .

Linearity in the direction of 1: there exists r ∈ R such that g(p+ 1) = g(q) + r for all p ∈ ZV .

A proper function g : ZV → R ∪ {∞} is L♮-convex if a function g̃ : Z× ZV → R ∪ {+∞} defined
by g̃(p0, p) = g(p− p01) for all p0 ∈ Z and p ∈ ZV is L-convex.

While L♮-convex functions form a wider class than L-convex functions, the two classes are essentially
equivalent due to the one-to-one correspondence between L♮-convex functions on ZV and L-convex
functions on Z× ZV . Thus, we can choose whichever is more convenient for modeling problems.
Note that the sum of two L/L♮-convex functions, g1 and g2, is L/L♮-convex if it is proper.

3

Algorithm 1 Steepest descent method for L-convex (L♮-convex) function minimization

1: p← p◦ ∈ dom g ▷ p◦ is an initial feasible solution.
2: while not converged :
3: d← argmin{g(p+ d′) | d′ ∈ N+ } ▷ Replace N+ with N± if g is L♮-convex.
4: if g(p+ d) = g(p) :
5: return p
6: λ← sup{λ′ ∈ Z>0 | g(p+ λ′d)− g(p) = λ′(g(p+ d)− g(p))} ▷ Alternatively, λ← 1.
7: p← p+ λd

We say a non-empty set S ⊆ ZV is L/L♮-convex if its indicator function δS is L/L♮-convex, where
δS(p) = 0 if p ∈ S and +∞ otherwise. If g : ZV → R ∪ {+∞} is L/L♮-convex, then dom g ⊆ ZV

is an L/L♮-convex set. The next proposition provides useful representations of L/L♮-convex sets.
Proposition 1. A non-empty set S ⊆ ZV is L♮-convex if and only if there exist αi ∈ Z ∪ {−∞},
βi ∈ Z ∪ {+∞}, and γij ∈ Z ∪ {+∞} (i, j ∈ V ; i ̸= j) such that

S =
{
p ∈ ZV

∣∣ αi ≤ pi ≤ βi, pj − pi ≤ γij for i, j ∈ V ; i ̸= j
}
,

and is L-convex if and only if S is written as above without the box constraints αi ≤ pi ≤ βi (i ∈ V).

Therefore, the colored area in Figure 1b illustrates an example of L♮-convex sets in Z2. We can also
represent conv(S) ⊆ RV as above by replacing ZV with RV (see [38, Section 5.5]). L/L♮-convex
sets also have the following useful property, which we prove in Appendix A.
Lemma 1. Let S ⊆ ZV be an L/L♮-convex set and p ∈ conv(S). Then, it holds ⌊p⌉ ∈ S.

2.2 Steepest descent method for L/L♮-convex function minimization

An essential property of continuous convex functions is that the local optimality implies the global
optimality, which enables the gradient descent method to reach a global optimum. L- and L♮-convexity
inherits this property with respect to neighborhoodN+ = {0,+1}V andN± = {0,−1}V ∪{0,+1}V ,
respectively, i.e., for any L-convex (L♮-convex) function g : ZV → R ∪ {+∞} and p ∈ ZV , it holds

p ∈ argmin
{
g(q)

∣∣ q ∈ ZV
}

⇐⇒ g(p) ≤ g(p+ d) for every d ∈ N+ (d ∈ N±).
This fact underpins the convergence of a steepest descent method (Algorithm 1) to a global minimum
of any L/L♮-convex function g : ZV → R ∪ {+∞}, as stated in Proposition 2 presented below.

Algorithm 1 is very simple: starting from an initial point p◦ ∈ dom g, it finds a steepest direction
by solving a local optimization problem (Step 3), sets the step length λ, and updates the solution
(Algorithm 1 is a long-step version [24, 46], and we can also let λ = 1 in Step 6). The algorithm
terminates if Step 3 does not improve the objective value. The local optimization problem in Step 3
can be written as minX⊆V f(X) = g(p+1X) (or g(p±1X) if g is L♮-convex). From L/L♮-convexity
of g, one can confirm that f : 2V → R ∪ {+∞} is a submodular function, which can be minimized
in polynomial time in general, and more efficient local optimization solvers are available for many
specific problems. Algorithm 1 thus provides an efficient way to minimize L/L♮-convex functions.

The number of iterations of Algorithm 1 is known to be bounded by the distance between an initial
point and a global optimal solution. To describe this claim precisely, for any p ∈ RV , we define
∥p∥±∞ = ∥p∥+∞ + ∥p∥−∞ where ∥p∥+∞ = max

i∈V
max{0,+pi} and ∥p∥−∞ = max

i∈V
max{0,−pi}.

Note that ∥p∥∞ ≤ ∥p∥±∞ ≤ 2∥p∥∞ holds, i.e., ∥p∥±∞ = Θ(∥p∥∞). Moreover, ∥·∥±∞ satisfies the
axioms of norms, and hence we sometimes refer to it as the ℓ±∞-norm.
Proposition 2 ([39, Theorem 1.2] and [24, Theorem 6.2]). Algorithm 1 returns a global optimal
solution to minp∈ZV g(p) in at most ∥p∗(g)− p◦∥±∞ + 1 = O(∥p∗(g)− p◦∥∞) iterations.

Note that Proposition 2 holds regardless of L/L♮ and the choice of λ in Step 6. The original results
shown in [39, 24] provide stronger bounds on the number of iterations by using a global optimal
solution p∗ with the smallest ∥p∗(g) − p◦∥±∞ value, and we obtain Proposition 2 by replacing p∗
with an optimal solution p∗(g) that is uniquely associated with g by Assumption 1; we do this to get
simple convex loss functions with which we can learn predictions (see Section 4).

4

3 DCA-based framework and its applications

We present our general DCA-based framework for L/L♮-convex minimization. Our basic idea is to
warm-start Algorithm 1 with predictions and bound the number of iterations by using Proposition 2.
Algorithm 1 has two parts that take considerable time: obtaining an initial feasible solution in Step 1
and solving a local optimization problem in Step 3. For now, we suppose that oracles for the two steps
are available and present our main theorem, which, together with learning guarantees in Section 4,
formalizes our DCA-based framework.
Theorem 1. Let g : ZV → R ∪ {+∞} be an L/L♮-convex function. If, for any q ∈ RV , we can
compute an ℓ±∞-projection P(q) ∈ argmin{∥p− q∥±∞ | p ∈ conv(dom g)} in Tprj time and we can
solve a local optimization problem in Step 3 in Tloc time, the following guarantees hold.

1. Given a possibly infeasible prediction p̂ ∈ RV , we can obtain an initial feasible solution
p◦ = ⌊P(p̂)⌉ ∈ dom g in O(Tprj + |V |) time.

2. Given the initial feasible solution p◦ = ⌊P(p̂)⌉, Algorithm 1 computes an optimal solution
to minp∈ZV g(p) in O(Tloc∥p∗(g)− p̂∥∞) time.

Proof. Regarding the first claim, the time complexity follows from the Tprj-time projection and the
O(|V |)-time rounding, and ⌊P(p̂)⌉ ∈ dom g follows from P(p̂) ∈ conv(dom g) and Lemma 1. We
below prove the second claim. Proposition 2 implies that we can compute an optimal solution in
Tloc(∥p∗(g) − p◦∥±∞ + 1) time. We further bound ∥p∗(g) − p◦∥±∞ as follows. Since the rounding
changes each entry up to ±1/2, ∥p∗(g) − p◦∥±∞ ≤ ∥p∗(g) − P(p̂)∥±∞ + 1 holds. Furthermore,
the triangle inequality of ∥·∥±∞, P(p̂) ∈ argminp∈conv(dom g)∥p− p̂∥±∞, and p∗(g) ∈ conv(dom g)

imply ∥p∗(g) − P(p̂)∥±∞ ≤ ∥p∗(g) − p̂∥±∞ + ∥P(p̂) − p̂∥±∞ ≤ 2∥p∗(g) − p̂∥±∞ ≤ 4∥p∗(g) − p̂∥∞.
Thus, the time complexity is O(Tloc∥p∗(g)− p̂∥∞), as desired.

That is, given a prediction p̂ ∈ RV , we can solve minp∈ZV g(p) in O(Tprj+ |V |+Tloc∥p∗(g)− p̂∥∞)
time. We below discuss how large Tprj and Tloc can be for bipartite matching, matroid intersection,
and discrete energy minimization; we also mention general L♮-convex function minimization. In all
the cases, it turns out Tprj+ |V | ≤ Tloc, implying the total time complexity of O(Tloc∥p∗(g)− p̂∥∞).
Thus, replacing Tloc with those of standard local optimization solvers, we obtain the results in Table 1.

3.1 Weighted perfect bipartite matching

We consider the weighted perfect bipartite matching problem studied in [17]. Let G = (V,E) be
a bipartite graph with bipartition V = L ∪ R, |L| = |R| = n/2 (where n is even), and |E| ≤ m.
Let w ∈ ZE be edge weights. We assume that V is fixed and G has at least one perfect matching
(which we can check by solving the maximum cardinality bipartite matching problem once). Under
this condition, we allow both w and E to change over instances generated randomly or adversarially,
as described in Section 4; this slightly extends the setting of [17], which fixes E.2 The dual problem
of the maximum weight perfect bipartite matching problem on G is given as follows:3

minimize
s∈ZL,t∈ZR

∑
i∈L

si −
∑
j∈R

tj subject to si − tj ≥ wij ∀(i, j) ∈ E. (1)

We below use p = (s, t) ∈ ZL × ZR = ZV to denote the dual variables. The objective function is
linear (L-convex), and the inequalities defining the feasible region can be written as in Proposition 1,
whose indicator function is L-convex. Thus, if we let g : ZV → R ∪ {+∞} be the sum of these two
functions, we can write (1) as an L-convex function minimization problem of form minp∈ZV g(p).

Projection. Given a prediction p̂ = (ŝ, t̂) ∈ RL×RR, we compute ε = max(i,j)∈E(wij − ŝi+ t̂j).
If ε ≤ 0, p̂ is already in conv(dom g); otherwise,

(
ŝ+ ε

21, t̂− ε
21

)
gives an ℓ±∞-projection P(p̂), as

in the following Lemma 2. The total computation time of this projection step is Tprj = O(m).

2While the minimum-weight setting is studied in [17], we consider the maximum-weight setting for conve-
nience. Note that we can deal with the minimum-weight setting since w is allowed to have negative entries.

3Since edge weights w are integer and the constraint is given by a totally unimodular matrix, there is at least
one integral optimal solution. Hence, we can restrict the domain to ZL × ZR.

5

Lemma 2. For any p̂ = (ŝ, t̂) ∈ RL×RR such that ε > 0,
(
ŝ+ ε

21, t̂− ε
21

)
gives an ℓ±∞-projection

of p̂ onto conv(dom g), the convex hull of the feasible region of (1).

Proof. For any ∆s ∈ RL and ∆t ∈ RR, we have (ŝ +∆s, t̂ +∆t) ∈ conv(dom g) if and only if
∆si −∆tj ≥ wij − ŝi + t̂j for (i, j) ∈ E; in particular, max(i,j)∈E(∆si −∆tj) ≥ ε must hold.
Thus, the ℓ±∞-distance from (ŝ, t̂) to any point in conv(dom g) is lower bounded by ε as follows:

∥(∆s,∆t)∥±∞ ≥ max
i∈L

max{0,+∆si}+max
j∈R

max{0,−∆tj} ≥ max
(i,j)∈E

(∆si −∆tj) ≥ ε.

This lower bound is attained by setting ∆s = ε
21 and ∆t = − ε

21, as in the lemma statement.

Local optimization. As in [17], local optimization reduces to the minimum vertex cover problem
(the dual of the maximum cardinality matching problem). We below briefly describe this reduction.
Given a current solution p = (s, t) ∈ dom g, Step 3 asks to find an optimal direction d = (1X ,1Y)
over X ⊆ L and Y ⊆ R. Letting S = X and T = R \ Y , we can formulate this problem as
minimize
S⊆L,T⊆R

|S|+ |T |+ const. subject to 1i∈S + 1j∈T ≥ wij − si + tj + 1 ∀(i, j) ∈ E, (2)

where 1{·} = 1 (0) if the argument is true (false). The constraint for each (i, j) ∈ E matters only
when (i, j) is tight, i.e., si − tj = wij . Thus, letting E∗ be the set of tight edges, we can write (2) as

minimize
S⊆L,T⊆R

|S|+ |T |+ const. subject to i ∈ S or j ∈ T ∀(i, j) ∈ E∗,

which is the minimum vertex cover problem on (V,E∗), the dual of maximum cardinality matching.
If we solve it with the Hopcroft–Karp algorithm [26], we have Tloc = O(m

√
n).

By the Kőnig–Egerváry theorem [44, Theorem 16.2], there exists a vertex cover (S, T) with |S|+
|T | < n/2 if and only if (V,E∗) has no perfect matching. Once a minimum vertex cover (S, T)
with |S| + |T | < n/2 is found, we update (s, t) to (s + λ1S , t + λ1R\T), where the step length
λ in Step 6 is given by mini∈L\S,j∈R\T {si − tj − wij}. If we find a vertex cover (S, T) such that
|S|+ |T | = n/2 on (V,E∗), any maximum-cardinality matching on (V,E∗) is a maximum-weight
matching on G by complementary slackness [44, Section 18.5b], thus solving the original problem.

3.2 Weighted matroid intersection

We next consider the weighted matroid intersection problem, a generalization of various problems
such as bipartite matchings, packing spanning trees, and arborescences in a directed graph. Due to
this broad coverage, the discussion here would serve as a role model for applying our DCA-based
framework to various problems, even though the general result by itself may not immediately provide
practical algorithms for specific problems.

A matroid M consists of a finite set V and a non-empty set family B ⊆ 2V satisfying the following
exchange axiom: for any B1, B2 ∈ B and i ∈ B1 \ B2, there exists j ∈ B2 \ B1 such that
B1 \ {i} ∪ {j} ∈ B and B2 \ {j} ∪ {i} ∈ B. Elements in B are called bases, and an independent set
is a subset of a base. The rank function ρ : 2V → Z of M is defined as ρ(X) = maxB∈B |X ∩B|.
The rank of M is defined by ρ(V), which coincides with the cardinality of any base B ∈ B.

Let M1 = (V,B1) and M2 = (V,B2) be rank-r matroids on an identical fixed ground set V of size
n, equipped with a weight vector w ∈ ZV . We assume that the matroids are given as independence
oracles, which test whether an input set is independent or not in τ time. We also assume B1 ∩B2 ̸= ∅
(which we can check by solving the maximum cardinality matroid intersection problem once). The
weighted matroid intersection problem on (M1,M2) asks to find B ∈ B1∩B2 that maximizes w(B),
where v(X) =

∑
i∈X vi for any v ∈ ZV and X ⊆ V . Its dual structure can be captured via the

weight-splitting theorem [22, Theorem 13.2.4] and the dual problem is written as
minimize

p∈ZV
g(p) = max

B∈B1

p(B) + max
B∈B2

(w − p)(B). (3)

The objective function g in (3) is known to be L-convex.4 Since (3) is an unconstrained problem,
nothing is needed for the projection. We below focus on the local optimization step (Step 3).

4For k = 1, 2, gk(p) = maxB∈Bk p(B) is an L-convex function obtained as the discrete Legendre–Fenchel
conjugate of the indicator function δBk of Bk (regarded as the collection of 1B for B ∈ Bk), which is M-convex.
As g1 and g2 are L-convex, so is g(p) = g1(p) + g2(w − p). See [38] for details.

6

Local optimization. We see that the local optimization reduces to the maximum cardinality matroid
intersection problem, which asks to find a maximum-cardinality common independent set of two
matroids. Letting p ∈ ZV be a current feasible solution to (3) and q = w − p, the problem of finding
an optimal direction d = 1X over X ⊆ V is written as

minimize
X⊆V

max
B∈B1

(p+ 1X)(B) + max
B∈B2

(q − 1X)(B). (4)

For a matroid M = (V,B) and v ∈ ZV , let Bv = argmaxB∈B v(B) and Mv = (V,Bv). Then, Mv

forms a matroid [20], and its rank function is given as follows (see Appendix B.1 for the proof).
Lemma 3. The rank function of Mv is given by ρv(X) = maxB∈B(v + 1X)(B)−maxB∈B v(B).

From Lemma 3, by using rank functions ρp1 and ρq2 of Mp
1 and Mq

2, respectively, we can rewrite (4) as

minimize
X⊆V

ρp1(X) + ρq2(V \X) + const., (5)

where const. = maxB∈B1 p(B)+maxB∈B2 q(B)−r. The problem (5) (without the constant term) is
the dual of the maximum cardinality matroid intersection problem on (Mp

1,M
q
2) (Edmonds’ matroid

intersection theorem [19]), thus completing the reduction. The standard augmenting-path algorithm
by Cunningham [15] makes O(nr1.5) calls to independence oracles of Mp

1 and Mq
2, and every

independence testing on Mp
1 and Mq

2 queried by the algorithm can be implemented with a single call
to independence oracles of M1 and M2, respectively, which takes τ time (see Appendix B.2).
Lemma 4. There is an algorithm that solves the maximum cardinality matroid intersection problem
on (Mp

1,M
q
2) by making O(nr1.5) calls to independence oracles of M1 and M2.

Once a maximum common independent set I of (Mp
1,M

q
2) is found, we can obtain optimal solution

X ⊆ V to (5) by traversing the auxiliary graph constructed in the augmenting-path algorithm (see [44,
Theorem 41.3]). Thus, the total time complexity of local optimization is Tloc = O(τnr1.5). If |I| < r,
we update p to p+ λ1X , where the step length λ is determined by binary search [46] (or let λ = 1).
If |I| = r, current p is optimal to (3) and I is a maximum weight common base of (M1,M2) [21].

3.3 Discrete energy minimization

We consider discrete energy minimization problems on a fixed vertex set V . Let G = (V,E) be an
undirected graph with |V | = n and |E| ≤ m. Given univariate convex functions ϕi : Z→ R∪{+∞}
and ψij : Z→ R ∪ {+∞} for i, j ∈ V with i ̸= j, the energy minimization problem is written as

minimize
p∈ZV

g(p) =
∑
i∈V

ϕi(pi) +
∑

(i,j)∈E

ψij(pj − pi). (6)

This problem appears in many computer-vision (CV) applications [8, 25, 28] and belongs to L♮-convex
minimization [32]. In CV settings, ϕi measures how well label pi fits pixel i, and ψij quantifies
smoothness of labels of adjacent pixels i and j.

Projection. In CV applications, we usually have a box constraint representing the range of pixel
values. Also, we may have an acceptable range of non-smoothness of adjacent pixels. To deal with
such constraints, we suppose ϕi and ψij to return +∞ if input variables are out of the ranges. The
resulting feasible region can be represented as in Proposition 1. If we only have box constraints, we
can easily obtain an ℓ±∞-projection of p̂ ∈ RV by computing max{αi,min{p̂i, βi}} for each i ∈ V ,
which takes Tprj = O(n) time. When imposing the smoothness constraints, we need to compute an
ℓ±∞-projection onto a general L♮-convex set. This is reduced to the shortest path problem, and we can
compute the projection in Tprj = O(mn) time with the Bellman–Ford algorithm (see Appendix D).

Local optimization. Since the steepest descent method for problem (6) is already studied in [32], we
here briefly describe key points. Let p ∈ dom g be a current solution and consider finding a steepest
direction d ∈ N± = {0,+1}V ∪ {0,−1}V . We focus on exploring {0,+1}V ; the case of {0,−1}V
is analogous. Letting ϕ(p)i (di) = ϕi(pi + di) for i ∈ V and ψ(p)

ij (di, dj) = ψij(pj + dj − pi − di)
for (i, j) ∈ E, the local optimization problem on {0,+1}V is written as

minimize
d∈{0,+1}V

g(p)(d) =
∑
i∈V

ϕ
(p)
i (di) +

∑
(i,j)∈E

ψ
(p)
ij (di, dj).

7

Since convexity of ψij implies ψ(p)
ij (1, 0) + ψ

(p)
ij (0, 1) ≥ ψ

(p)
ij (1, 1) + ψ

(p)
ij (0, 0), g(p)(d) is a sub-

modular function that can be written as a sum of pseudo-boolean functions with at most two variables.
Minimization of such a submodular function is reduced to a min-cut problem on a graph with n+ 2
vertices and 3m+ n edges [29, 6]. If we solve the min-cut problem with the Dinic algorithm [16], it
takes Tloc = O(mn2) time. We can also use empirically fast min-cut algorithms for CV settings [7].
Once a direction d is found, the step length λ can be determined by binary search [46] (or let λ = 1).

3.4 General L♮-convex function minimization

We consider general L♮-convex function minimization minp∈ZV g(p), assuming dom g to be rep-
resented as in Proposition 1. Given a prediction p̂ ∈ RV , we can compute an ℓ±∞-projection P(p̂)
onto conv(dom g) with the Bellman–Ford algorithm in Tprj = O(n3) time (since m ≤ n2), as
mentioned in Section 3.3. As for the local optimization, given a current solution p ∈ dom g, we can
find a steepest direction by solving minX⊆V f(X), where f(X) = g(p + 1X) or g(p − 1X) is a
submodular function, as mentioned in Section 2.2. An empirically fast algorithm for submodular
function minimization is the Fujishige–Wolfe algorithm [23], which solves the local optimization
problem in Tloc = O((n4EO + n5)F 2) time [11, 33], where EO is the time of evaluating f(X)
for any X ⊆ V and F = maxi∈V max{|f({i})|, |f(V)− f(V \ {i})|} (and a theoretically faster
strongly polynomial-time algorithm runs in O(n3 log2 n · EO + n4 logO(1) n) time [35]). In total,
we can minimize a general L♮-convex function in O((n4EO+ n5)F 2 · ∥p∗(g)− p̂∥∞) time.

4 Learning predictions

We detail how to learn predictions p̂ ∈ RV . We consider online and batch learning settings where
instances of form minp∈ZV gt(p) for t = 1, . . . , T are given adversarially and randomly, respectively.
We make the following assumption, which is common with the previous studies [17, 31].
Assumption 2. Functions g1, . . . , gT are defined on the same ground set V and satisfy Assumption 1.

Furthermore, as in Theorem 2, we assume that a benchmark (optimal) prediction p̂∗ is included in
[−C,+C]V for some C > 0, which is also common with [17, 31]. As for bipartite matching, there
always exists an optimal dual solution included in [−C,+C]V if C ≥ n∥w∥∞ [30, Lemma 4.5],5
and the same condition holds for matroid intersection with C ≥ r∥w∥∞ (see Appendix B.3). This
condition is also natural in discrete energy minimization since the range of pixel values is bounded.
Also, we can choose any suboptimal solution in [−C,+C]V as a benchmark prediction at the cost of
increasing the bounds in Theorem 2.

We use the online-learning framework by Khodak et al. [31], and thus the learning method itself is not
novel. Nevertheless, the improvement in the bounds is considerable. As with [31], the regret bound is
obtained from that of the online gradient descent method (OGD) [45], and the sample complexity
bound follows from online-to-batch conversion [10]. The key to the improvement is that we apply
OGD to 1-Lipschitz convex loss functions Lt(p) = ∥p∗(gt)−p∥∞,6 while Khodak et al. [31] applied
OGD to Lt(p) = ∥p∗(gt)− p∥1, which is

√
n-Lipschitz, following the setting of [17].

Theorem 2. Let V be a finite set of size n and C > 0. For any sequence of functions g1, . . . , gT that
map ZV to R ∪ {+∞}, there is an online learning algorithm that returns p̂1, . . . , p̂T ∈ RV with the
following regret bound for any p̂∗ ∈ [−C,+C]V :

T∑
t=1

∥p∗(gt)− p̂t∥∞ ≤
T∑

t=1

∥p∗(gt)− p̂∗∥∞ + C
√
2nT .

Moreover, for any distribution D over functions g : ZV → R ∪ {+∞}, δ ∈ (0, 1], and ε > 0, if

T = Ω
((

C
ε

)2(
n+ log 1

δ

))
i.i.d. samples g1, . . . , gT from D are given, we can compute p̂ ∈ RV that

satisfies the following condition with a probability of at least 1− δ for all p̂∗ ∈ [−C,+C]V :

Eg∼D∥p∗(g)− p̂∥∞ ≤ Eg∼D∥p∗(g)− p̂∗∥∞ + ε.
5In [17], it is stated that C ≥ ∥w∥∞ is sufficient, but this is not true as shown in Appendix C.
6We can also use Lt(p) = ∥p∗(gt)− p∥±∞, which is convex and

√
2-Lipschitz; this may yield shaper bounds

on the number of iterations, as in Proposition 2. We here present the ℓ∞-loss version for ease of exposition.

8

Proof. We regard Lt(p) = ∥p∗(gt)− p∥∞ for t = 1, . . . , T as loss functions of p ∈ RV and use the
online gradient descent method (OGD). Note that Lt(p) is convex since

Lt

(
p+ q

2

)
=

∥∥∥∥p∗(gt)− p+ q

2

∥∥∥∥
∞
≤

∥∥∥∥p∗(gt)2
− p

2

∥∥∥∥
∞

+

∥∥∥∥p∗(gt)2
− q

2

∥∥∥∥
∞

=
Lt(p) + Lt(q)

2

for any p, q ∈ RV due to the triangle inequality. Furthermore, Lt(p) is 1-Lipschitz since

Lt(p)− Lt(q) = ∥p∗(gt)− p∥∞ − ∥p∗(gt)− q∥∞ ≤ ∥p− q∥∞ ≤ ∥p− q∥2
for any p, q ∈ RV due to the triangle inequality and ∥x∥∞ ≤ ∥x∥2 for any x ∈ RV . Since Lt is a
1-Lipschitz convex loss function and the ℓ2-norm of any vector in [−C,+C]V is at most C

√
n, the

regret of OGD is at most C
√
2nT (see [45, Corollary 2.7]), thus obtaining the first claim. The second

claim is obtained by using online-to-batch conversion. Specifically, since the loss function value is at
most 2C, if we feed sampled g1, . . . , gT to OGD and let p̂ = 1

T

∑T
t=1 p̂t, then [10, Proposition 1]

implies that the following inequality holds with a probability of at least 1− δ:

Eg∼D∥p∗(g)− p̂∥∞ ≤ min
p∈[−C,+C]V

Eg∼D∥p∗(g)− p∥∞ + C

√
2n

T
+ 2C

√
2

T
log

1

δ
.

Therefore, setting T = 32
(
C
ε

)2(
n+ log 1

δ

)
is sufficient for bounding the sum of the last two terms

in the right-hand side by ε from above.

5 Whether to learn primal or dual solutions

We discuss whether to learn primal or dual solutions for successfully warm-starting algorithms with
predictions from the DCA perspective (we refer the reader to [38] for more information). We expect
that the discussion here is also useful in the context of augmenting online algorithms with predictions.

We consider a minimization problem of form minp∈ZV g(p), where g : ZV → R∪{+∞} is a general
objective function. As we have seen above, iterative algorithms look for an optimal solution by
alternately exploring a neighborhood to find a steepest direction and proceeding along the direction.
Intuitively, such an iterative algorithm can benefit from a prediction that is close to an optimum if
the feasible region, dom g, is path connected with respect to the neighborhood; conversely, if the
feasible region is not connected, good predictions are not always helpful. We below elaborate more
on this idea for the case of L-convex minimization (the L♮-convex case is analogous).

First, we need to define a neighborhoodN so that we can efficiently solve local optimization problems
onN . In the case of L-convex minimization, the local optimization onN = N+ = {0,+1}V reduces
to submodular function minimization in general, which we can solve in polynomial time (and more
efficient methods are available for many specific problems). Once a neighborhood N is defined,
the next important requirement is the path connectivity of the feasible region dom g with respect
to N , i.e., given any p, q ∈ dom g, we can move from p to q by iteratively finding an appropriate
direction d ∈ N and proceeding along d. L-convex sets are path connected with respect to N+, and
this property is necessary for ensuring that the steepest descent method converges to an optimum.

Under the above conditions, a prediction close to an optimum is expected to be beneficial since it
provides a short path to an optimum. In other words, if feasible regions are not path connected,
predictions close to an optimum do not always improve the performance of iterative algorithms. This
observation gives a guideline for judging whether to learn primal or dual solutions: we should choose
the one such that a prediction can be converted into a solution in a path-connected feasible region.

In DCA, there are other convexity notions than L-convexity: M-, L2-, and M2-convexity (and their
L♮ counterparts). In these classes, L-convex sets are path connected with respect to N+, and so
are M-convex sets with respect to N =

{
1{i} − 1{j}

∣∣ i, j ∈ V }
. By contrast, no appropriate

neighborhoods are known that make L2- and M2-convex sets path connected. In the cases of bipartite
matching and matroid intersection, the primal problems belong to M2-concave maximization, while
their dual problems are L-convex minimization. Thus, learning dual solutions for bipartite matching
and matroid intersection is reasonable. On the other hand, the primal problem of discrete energy
minimization is L-convex, and thus we do not need to consider its dual.

9

6 Conclusion

We have developed a framework for warm-starting the steepest descent method for L/L♮-convex
function minimization with predictions, thus bridging between discrete convex analysis and algorithms
with predictions. We have demonstrated its effectiveness for weighted bipartite matching, weighted
matroid intersection, and discrete energy minimization. We have also presented regret and sample
complexity bounds for learning of predictions and discussed whether to learn primal or dual solutions.
As for the practical aspect, experiments in Appendix F show that our DCA-based approach performs
comparably to (or slightly better than) the method of [17].

A limitation of our work is that it does not yield prediction-independent worst-case bounds in general.
This, however, is often not a serious matter since we can run standard algorithms with worst-case
guarantees in parallel and terminate both once either one returns a solution. This point should
be contrasted with the situation of augmenting online algorithms with predictions, where every
decision made over time is irrevocable and thus attaining good prediction-dependent and worst-case
guarantees simultaneously by a single algorithm is crucial. In Appendix E, we further discuss worst-
cae guarantees of our DCA-based framework. In addition, we cannot deal with problems without
L/L♮-convexity, and extending our framework to M/M♮-convex function minimization, which also
enjoys the path connectivity as mentioned in Section 5, will be an interesting future direction.

Acknowledgements

The authors thank Mikhail Khodak for sharing the latest results of [31] and anonymous reviewers for
their valuable suggestions. This work was supported by JST ERATO Grant Number JPMJER1903
and JSPS KAKENHI Grant Number JP22K17853.

References
[1] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the convex cost integer dual network

flow problem. Manage. Sci., 49(7):950–964, 2003. ↰ p.3

[2] Y. Azar, D. Panigrahi, and N. Touitou. Online graph algorithms with predictions. In Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 35–66.
SIAM, 2022. ↰ p.1, ↰ p.3

[3] M.-F. Balcan. Data-driven algorithm design. In Beyond the Worst-Case Analysis of Algorithms,
pages 626–645. Cambridge University Press, 2021. ↰ p.3

[4] E. Bamas, A. Maggiori, and O. Svensson. The primal-dual method for learning augmented
algorithms. In Advances in Neural Information Processing Systems (NeurIPS 2020), volume 33,
pages 20083–20094. Curran Associates, Inc., 2020. ↰ p.1, ↰ p.3

[5] N. Bansal, C. Coester, R. Kumar, M. Purohit, and E. Vee. Learning-augmented weighted paging.
In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2022), pages 67–89. SIAM, 2022. ↰ p.1, ↰ p.3

[6] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Appl. Math., 123(1):
155–225, 2002. ↰ p.8

[7] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124–1137,
2004. ↰ p.8

[8] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001. ↰ p.7

[9] C. Brezovec, G. Cornuéjols, and F. Glover. Two algorithms for weighted matroid intersection.
Math. Program., 36(1):39–53, 1986. ↰ p.3

[10] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Trans. Inf. Theory, 50(9):2050–2057, 2004. ↰ p.8, ↰ p.9

[11] D. Chakrabarty, P. Jain, and P. Kothari. Provable submodular minimization using Wolfe’s algo-
rithm. In Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. ↰ p.8

10

[12] D. Chakrabarty, Y. T. Lee, A. Sidford, S. Singla, and S. C.-W. Wong. Faster matroid intersection.
In Proceedings of the 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS 2019), pages 1146–1168. IEEE, 2019. ↰ p.3

[13] J. Chen, S. Silwal, A. Vakilian, and F. Zhang. Faster fundamental graph algorithms via learned
predictions. In Proceedings of the 39th International Conference on Machine Learning (ICML
2022), volume 162, pages 3583–3602. PMLR, 2022. ↰ p.3

[14] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva. Maximum flow and
minimum-cost flow in almost-linear time. arXiv:2203.00671, 2022. to appear in FOCS 2022.
↰ p.3

[15] W. H. Cunningham. Improved bounds for matroid partition and intersection algorithms. SIAM
J. Comput., 15(4):948–957, 1986. ↰ p.3, ↰ p.7, ↰ p.15

[16] E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power
estimation. Dokl. Akad. Nauk SSSR, 194(4):754–757, 1970. ↰ p.8

[17] M. Dinitz, S. Im, T. Lavastida, B. Moseley, and S. Vassilvitskii. Faster matchings via learned
duals. In Advances in Neural Information Processing Systems (NeurIPS 2021), volume 34,
pages 10393–10406. Curran Associates, Inc., 2021. ↰ p.1, ↰ p.2, ↰ p.3, ↰ p.5, ↰ p.6, ↰ p.8, ↰ p.10,
↰ p.16, ↰ p.18

[18] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in bipartite graphs.
In Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2012), pages 1413–1424. SIAM, 2012. ↰ p.2

[19] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial
Structures and Their Applications, pages 69–87. Gordon and Breach, 1970. ↰ p.7

[20] J. Edmonds. Matroids and the greedy algorithm. Math. Program., 1:127–136, 1971. ↰ p.7,
↰ p.14

[21] A. Frank. A weighted matroid intersection algorithm. J. Algorithm. Comput. Technol., 2(4):
328–336, 1981. ↰ p.7

[22] A. Frank. Connections in Combinatorial Optimization. Oxford Lecture Series in Mathematics
and Its Applications. Oxford University Press, 2011. ↰ p.6

[23] S. Fujishige. Submodular Functions and Optimization. Elsevier Science, second edition, 2005.
↰ p.8

[24] S. Fujishige, K. Murota, and A. Shioura. Monotonicity in steepest ascent algorithms for
polyhedral L-concave functions. J. Oper. Res. Soc. Japan, 58(2):184–208, 2015. ↰ p.4

[25] D. S. Hochbaum. An efficient algorithm for image segmentation, Markov random fields and
related problems. J. ACM, 48(4):686–701, 2001. ↰ p.3, ↰ p.7

[26] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225–231, 1973. ↰ p.2, ↰ p.6, ↰ p.18

[27] C. C. Huang, N. Kakimura, and N. Kamiyama. Exact and approximation algorithms for
weighted matroid intersection. Math. Program., 177(1):1–28, 2018. ↰ p.3, ↰ p.15

[28] H. Ishikawa. Exact optimization for Markov random fields with convex priors. IEEE Trans.
Pattern Anal. Mach. Intell., 25(10):1333–1336, 2003. ↰ p.7

[29] P. L. Ivănescu. Some network flow problems solved with pseudo-boolean programming. Oper.
Res., 13(3):388–399, 1965. ↰ p.8

[30] S. Iwata, T. Oki, and M. Takamatsu. Index reduction for differential-algebraic equations with
mixed matrices. J. ACM, 66(5):1–34, 2019. ↰ p.8

[31] M. Khodak, M.-F. Balcan, A. Talwalkar, and S. Vassilvitskii. Learning predictions for algorithms
with predictions. In Advances in Neural Information Processing Systems (NeurIPS 2022),
volume 35. Curran Associates, Inc., 2022. ↰ p.2, ↰ p.3, ↰ p.8, ↰ p.10, ↰ p.18

[32] V. Kolmogorov and A. Shioura. New algorithms for convex cost tension problem with applica-
tion to computer vision. Discrete Optim., 6(4):378–393, 2009. ↰ p.7

[33] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank–Wolfe optimization
variants. In Advances in Neural Information Processing Systems (NIPS 2015), volume 28.
Curran Associates, Inc., 2015. ↰ p.8

11

[34] S. Lattanzi, T. Lavastida, B. Moseley, and S. Vassilvitskii. Online scheduling via learned
weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA
2020), pages 1859–1877. SIAM, 2020. ↰ p.1, ↰ p.3

[35] Y. T. Lee, A. Sidford, and S. C.-W. Wong. A faster cutting plane method and its implications
for combinatorial and convex optimization. In Proceedings of the 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science (FOCS 2015), pages 1049–1065. IEEE, 2015.
↰ p.3, ↰ p.8

[36] T. Lykouris and S. Vassilvtiskii. Competitive caching with machine learned advice. In Pro-
ceedings of the 35th International Conference on Machine Learning (ICML 2018), volume 80,
pages 3296–3305. PMLR, 2018. ↰ p.1, ↰ p.3

[37] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. In Beyond the Worst-Case
Analysis of Algorithms, pages 646–662. Cambridge University Press, 2021. ↰ p.1

[38] K. Murota. Discrete Convex Analysis. Discrete Mathematics and Applications. SIAM, 2003.
↰ p.2, ↰ p.3, ↰ p.4, ↰ p.6, ↰ p.9

[39] K. Murota and A. Shioura. Exact bounds for steepest descent algorithms of L-convex function
minimization. Oper. Res. Lett., 42(5):361–366, 2014. ↰ p.4

[40] J. G. Oxley. Matroid Theory. Oxford Graduate Texts in Mathematics. Oxford University Press,
second edition, 2011. ↰ p.14

[41] M. Purohit, Z. Svitkina, and R. Kumar. Improving online algorithms via ML predictions.
In Advances in Neural Information Processing Systems (NeurIPS 2018), volume 31. Curran
Associates, Inc., 2018. ↰ p.1, ↰ p.3

[42] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970. ↰ p.2
[43] D. Rohatgi. Near-optimal bounds for online caching with machine learned advice. In Pro-

ceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), pages
1834–1845. SIAM, 2020. ↰ p.1, ↰ p.3

[44] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. ↰ p.6,
↰ p.7, ↰ p.15, ↰ p.17

[45] S. Shalev-Shwartz. Online Learning and Online Convex Optimization, volume 4. Now Publish-
ers, 2012. ↰ p.8, ↰ p.9, ↰ p.18

[46] A. Shioura. Algorithms for L-convex function minimization: Connection between discrete
convex analysis and other research fields. J. Oper. Res. Soc. Japan, 60(3):216–243, 2017. ↰ p.4,
↰ p.7, ↰ p.8, ↰ p.17

[47] J. van den Brand, Y.-T. Lee, D. Nanongkai, R. Peng, T. Saranurak, A. Sidford, Z. Song, and
D. Wang. Bipartite matching in nearly-linear time on moderately dense graphs. In Proceedings
of the 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS 2020),
pages 919–930, 2020. ↰ p.2

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1 for details of our contributions.
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is a

theoretical paper and no negative societal impacts are expected.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-
tions 1 and 2

(b) Did you include complete proofs of all theoretical results? [Yes] Due to the space
limitation, some proofs are shown in the supplementary.

12

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] All details are
described in Appendix F.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

Appendix
A Proof of Lemma 1

Lemma 1. Let S ⊆ ZV be an L/L♮-convex set and p ∈ conv(S). Then, it holds ⌊p⌉ ∈ S.

Proof. We focus on the case where S is L♮-convex; the following proof subsumes the case where S
is L-convex. From Proposition 1, S can be written as

S =
{
p ∈ ZV

∣∣ αi ≤ pi ≤ βi, pj − pi ≤ γij for i, j ∈ V ; i ̸= j
}

with some αi ∈ Z ∪ {−∞}, βi ∈ Z ∪ {+∞}, and γij ∈ Z ∪ {+∞}. Also, conv(S) has the same
representation except for the replacement of ZV with RV . We prove that for any p ∈ RV satisfying
the inequality constraints, ⌊p⌉ ∈ ZV also satisfies the constraints, which implies the lemma statement.

Since αi ∈ Z ∪ {−∞} and βi ∈ Z ∪ {+∞}, αi ≤ pi ≤ βi implies αi ≤ ⌊pi⌉ ≤ βi. We below
discuss the remaining constraints of form pj − pi ≤ γij . Since pj − pi ≤ γij and γij ∈ Z ∪ {+∞}
imply ⌈pj − pi⌉ ≤ γij , it suffices to prove ⌊pj⌉ − ⌊pi⌉ ≤ ⌈pj − pi⌉. Let pi = a+ r and pj = b+ s,
where a, b ∈ Z and r, s ∈ [0, 1). If s > r, since ⌊pi⌉ ≥ a and ⌊pj⌉ ≤ b+ 1, we have

⌊pj⌉ − ⌊pi⌉ ≤ b+ 1− a = ⌈b− a+ s− r⌉ = ⌈pj − pi⌉.
If s ≤ r, we have

⌊pj⌉ − ⌊pi⌉ = ⌊b+ s⌉ − ⌊a+ r⌉ ≤ ⌊b+ r⌉ − ⌊a+ r⌉ = b− a = ⌈b− a+ s− r⌉ = ⌈pj − pi⌉.
In any case, we have ⌊pj⌉ − ⌊pi⌉ ≤ ⌈pj − pi⌉ ≤ γij . Hence p ∈ conv(S) implies ⌊p⌉ ∈ S.

B Details of matroid intersection

We describe details of the weighted matroid intersection algorithm discussed in Section 3.2 and
present proofs of Lemmas 3 and 4. We also give a bound on dual optimal solutions to the weighted
matroid intersection problem. Readers interested in matroid theory are referred to [40].

B.1 Proof of Lemma 3

Let M = (V,B) be a matroid and v ∈ ZV be a weight vector. Recall that Mv = (V,Bv) denotes
the matroid with Bv = argmaxB∈B v(B). A maximum-weight base B ∈ Bv can be obtained by
the following greedy algorithm [20]. First, sort elements of V in a non-increasing order of v as
i1, . . . , i|V |, i.e., vi1 ≥ · · · ≥ vi|V | . Starting with B = ∅, from k = 1 to |V |, add ik to B if B ∪ {ik}
is independent. The resulting B is a base of M that maximizes v(B). The correctness of this greedy
algorithm justifies Lemma 3 as follows.
Lemma 3. The rank function of Mv is given by ρv(X) = maxB∈B(v + 1X)(B)−maxB∈B v(B).

Proof. By the definitions of the rank function and Bv , we have

ρv(X) = max
B∈Bv

|X ∩B| = max
B∈Bv

1X(B) = max
B∈Bv

(v + 1X)(B)−max
B∈B

v(B).

Therefore, our goal is to show maxB∈B(v+1X)(B) = maxB∈Bv (v+1X)(B). Consider an ordering
of elements in V that is non-increasing with respect to v+ 1

21X . Since v is an integer vector, this order
is non-increasing with respect to both v and v+ 1X , meaning that there exists B ∈ B that maximizes
v and v + 1X simultaneously, hence maxB∈B(v + 1X)(B) = maxB∈Bv (v + 1X)(B).

B.2 Proof of Lemma 4

We give preliminaries on matroid theory (see [40] for details). Let M = (V,B) be a matroid and
X be a subset of V . The restriction of M to X , denoted by M | X , is the matroid on X whose
independent sets are subsets ofX that are independent in M. The contraction of M with respect toX
is the matroid M/X = (V \X,B/X) with B/X = {B ⊆ V \X | B ∪B′ ∈ B}, whereB′ is any
base of M |X (indeed, M /X does not depend on the choice of B′). The direct sum of two matroids

14

M1 = (V1,B1) and M2 = (V2,B2) with V1∩V2 = ∅ is the matroid M1⊕M2 = (V1∪V2,B1⊕B2)
with B1 ⊕ B2 = {B1 ∪B2 | B1 ∈ B1, B2 ∈ B2 }.
Define V v

≥(t) = { i ∈ V | vi ≥ t} for any t ∈ Z. The correctness of the greedy algorithm for v ∈ ZV

also gives the following well-known decomposition theorem of Mv (see, e.g., [27, Lemma 1]).
Lemma 5. It holds Mv =

⊕∞
t=−∞ Mv(t), where Mv(t) =

(
M | V v

≥(t)
)
/ V v

≥(t+ 1).

We are ready to prove Lemma 4.
Lemma 4. There is an algorithm that solves the maximum cardinality matroid intersection problem
on (Mp

1,M
q
2) by making O(nr1.5) calls to independence oracles of M1 and M2.

Proof. Cunningham’s algorithm [15] asks the independence of sets in the form I∪{j} or I\{i}∪{j},
where I is a common independent set of (Mp

1,M
q
2), i ∈ I , and j ∈ V \ I . Thus, it suffices to show

the following: for a matroid M = (V,B), a weight vector v ∈ ZV , an independent set I of Mv,
i ∈ I , and j ∈ V \ I , one can check whether I ∪ {j} and I \ {i} ∪ {j} are independent or not in Mv

by a single call to the independence oracle of M.

Let V v(t) = { i ∈ V | vi = t} for t ∈ Z. By Lemma 5, a set X ⊆ V is independent in Mv if and
only if X ∩ V v(t) is independent in Mv(t) for every t ∈ Z. This and the independence of I in
Mv imply that I ∪ {j} and I \ {i} ∪ {j} are independent in Mv if and only if (I ∪ {j}) ∩ V v(vj)
and (I \ {i} ∪ {j}) ∩ V v(vj), respectively, are independent in Mv(vj). The independence of a set
X ⊆ V v(t) in Mv(t) is equivalent to that of X ∪ (B ∩ V v

≥(t + 1)) in M, where B is an arbitrary
base of Mv . Therefore, we can reduce the independence testing of I ∪ {j} and I \ {i} ∪ {j} in Mv

to that of (I ∪ {j}) ∪ (B ∩ V v
≥(vj + 1)) and (I \ {i} ∪ {j}) ∪ (B ∩ V v

≥(vj + 1)), respectively, in
M. We can obtain B ∈ Bv by running the greedy algorithm once in advance, which makes O(n)
calls to the independence oracle of M. Thus, we obtain the desired oracle complexity.

B.3 Bound on dual optimal solutions

Let M1 = (V,B1) and M2 = (V,B2) be matroids and w ∈ ZV be a weight vector. Fixing any
maximum-weight common base B ∈ B1 ∩ B2, let D = (V,A) be a directed bipartite graph with
bipartition V = B ∪ (V \B) and arc set A = A1 ∪A2 given by

A1 = {(i, j) | i ∈ B, j ∈ V \B,B \ {i} ∪ {j} ∈ B1 },
A2 = {(j, i) | i ∈ B, j ∈ V \B,B \ {i} ∪ {j} ∈ B2 }.

(7)

We define an arc-length vector γ ∈ ZA by γij = −wj for (i, j) ∈ A1 and γji = wi for (j, i) ∈ A2.
Then, D has no negative cycles [44, Theorem 41.5] and thus has a potential p ∈ ZV , which is a
vector satisfying pj − pi ≤ γij for (i, j) ∈ A. Indeed, the potentials coincide with the dual optimal
solutions, as in the following lemma.
Lemma 6 ([44, Theorem 41.9]). A vector p ∈ ZV is optimal to (3) if and only if p is a potential of D
with respect to the arc-length vector γ ∈ ZA.

This lemma gives a bound on an optimal dual solution to the weighted matroid intersection problem.
Proposition 3. There exists a dual optimal solution p∗ ∈ ZV such that ∥p∗∥∞ ≤ rW , where r is the
rank of M1 and M2 and W = ∥w∥∞.

Proof. Let p ∈ ZV be the vector whose ith component pi is the minimum length of any directed
paths on D that ends at i (starting from wherever). Then, p is a potential of D [44, Theorem 8.2] and
thus is a dual optimal solution by Lemma 6. The number of arcs in a simple path on D is at most 2r,
and each arc has a length at least −W , hence −2rW ≤ pi ≤ 0. Let p∗ = p+ rW1, which is also a
dual optimal solution and satisfies −rW ≤ p∗i ≤ rW for i ∈ V . Hence, we have ∥p∗∥∞ ≤ rW .

The following example shows that the bound given in Proposition 3 is tight.
Example 1. Let n ∈ N be odd. Define M1 = (V,B1) and M2 = (V,B2) by V = {1, . . . , n} and

B1 = {B ⊆ V | 1 /∈ B and |B ∩ {i, i+ 1}| = 1 for even i ∈ V },
B2 = {B ⊆ V | n /∈ B and |B ∩ {i, i+ 1}| = 1 for odd i ∈ V }.

15

Then, M1 and M2 are matroids (partition matroids) of rank r = (n− 1)/2 having a unique common
base B∗ = {2, 4, . . . , n − 3, n − 1}. The sets A1 and A2 defined in (7) with respect to B = B∗

are A1 = {(2, 3), (4, 5), . . . , (n− 1, n)} and A2 = {(1, 2), (3, 4), . . . , (n− 2, n− 1)}, respectively,
meaning that D = (V,A) with A = A1 ∪ A2 is the directed path graph from 1 to n. Let W ∈ N
and w ∈ ZV be a weight vector defined by wi = (−1)i+1

W for i ∈ V . Then, the corresponding arc
length γ ∈ ZA is γi,i+1 = −W for every arc (i, i+ 1) ∈ A.

Let p∗ ∈ ZV be a dual optimal solution. By Lemma 6, p∗ is a potential of D with respect to γ.
Thus, we have p∗i+1 − p∗i ≤ −W for i = 1, . . . , n− 1, hence p∗i ≤ p∗1 − (i− 1)W for i ∈ V . The
ℓ∞-norm of p∗ is minimized when p∗i = ((n+ 1)/2− i)W for i ∈ V with the minimum value of
(n− 1)W/2 = rW , thus implying the tightness of the bound in Proposition 3.

C Counterexample to the bound on dual solutions for bipartite matching

In the proof of [17, Lemma 22], the following claim is used: if all edge costs ce of a bipartite graph
(V,E) are non-negative and at most C, there is an optimal dual solution y∗ ∈ RV to the minimum
cost perfect bipartite matching problem such that ∥y∗∥∞ ≤ C, where the dual problem is given as

maximize
y∈RV

∑
i∈V

yi subject to yi + yj ≤ ce (e = {i, j} ∈ E).

We give a counterexample to this claim.

Example 2. Let n ∈ N be even and Pn = (V,E) be the path graph with vertices V = {1, . . . , n} and
edges E = {{i, i+ 1} | i = 1, . . . , n− 1}. Then, Pn is a bipartite graph with bipartition {L,R} of
V , where L and R consist of the odd and even numbers in V , respectively. Set an edge cost ce of
e = {i, i+ 1} ∈ E to C > 0 if i ∈ L and to 0 if i ∈ R \ {n}. Since M∗ = {{i, i+ 1} | i ∈ L} is
a unique perfect matching, any optimal dual solution y∗ must satisfy the tightness condition for all
edges in M∗, i.e., y∗i + y∗i+1 = C for i ∈ L. In addition, the feasibility of y∗ implies y∗i + y∗i+1 ≤ 0
for i ∈ R \{n}. Thus, we have y∗i ≥ y∗i+2+C for i ∈ L\{n− 1}, hence y∗1 ≥ y∗n−1+(n/2−1)C.
For n ≥ 8, y∗n−1 ∈ [−C,+C] implies y∗1 ≥ 2C > C, contradicting the claim.

D Projection onto general L♮-convex sets

Let S ⊆ ZV be a non-empty L♮-convex set. We assume that S is represented as in Proposition 1, i.e.,

S =
{
p ∈ ZV

∣∣ αi ≤ pi ≤ βi, pj − pi ≤ γij for i, j ∈ V ; i ̸= j
}

where αi ∈ Z ∪ {−∞}, βi ∈ Z ∪ {+∞}, and γij ∈ Z ∪ {+∞}. We define an edge set E =
{(i, j) | i, j ∈ V ; i ̸= j, γij < +∞} and let m = |E| (note that constraints with γij = +∞ can be
ignored). Given any p̂ ∈ RV , we show that an ℓ±∞-projection P(p̂) ∈ argminp∈conv(S)∥p− p̂∥±∞ can
be computed in O(mn) time, where n = |V |.
Using variables q = p− p̂ ∈ RV , we rewrite the problem of computing P(p̂) as

minimize ∥q∥±∞ = max
i∈V

max{0,+qi}+max
i∈V

max{0,−qi}
subject to αi − p̂i ≤ qi ≤ βi − p̂i ∀i ∈ V

qj − qi ≤ γij − p̂j + p̂i ∀i, j ∈ V ; i ̸= j.

For convenience, let γ̂i0 = −αi + p̂i, γ̂0i = βi − p̂i, and γ̂ij = γij − p̂j + p̂i for i, j ∈ V such
that i ̸= j, V0 = {0} ∪ V , and E0 = E ∪ {(i, 0) | i ∈ V, αi > −∞}∪ {(0, i) | i ∈ V, βi < +∞}.
Then, using variables (q0, q) ∈ R× RV , we can rewrite the problem as

minimize max
i∈V0

qi −min
i∈V0

qi

subject to qj − qi ≤ γ̂ij ∀(i, j) ∈ E0

q0 = 0.

We further rewrite this problem as a linear programming problem with additional variables qs, qt ∈ R
(s, t /∈ V0). Letting qs and qt represent maxi∈V0

qi and mini∈V0
qi, respectively, the objective

16

function is written as qs − qt, and this yields additional constraints qi − qs ≤ 0 and qt − qi ≤ 0 for
i ∈ V0. Thus, the negative of the above problem is written as

maximize qt − qs
subject to qj − qi ≤ γ̂ij ∀(i, j) ∈ E0

qi − qs ≤ 0 ∀i ∈ V0
qt − qi ≤ 0 ∀i ∈ V0
q0 = 0.

(8)

If we do not have the last constraint, q0 = 0, (8) is the dual of the shortest s–t path problem on a
graph G̃ = (Ṽ , Ẽ, w̃), where Ṽ = V0 ∪ {s, t}, Ẽ = E0 ∪ {(s, i) | i ∈ V0 } ∪ {(i, t) | i ∈ V0 }, and

w̃ij =

{
γ̂ij for (i, j) ∈ E0

0 otherwise

for (i, j) ∈ Ẽ. Moreover, given any optimal solution q′ ∈ RṼ to (8) without the last constraint,
q∗ = q′ − q′01 is also optimal and satisfies q∗0 = 0. Hence, the remaining task is to solve the shortest
path problem on G̃. Since |Ṽ | = n+ 3, |Ẽ| ≤ m+ 4n+ 2, and the L♮-convexity of S ̸= ∅ rules out
the presence of negative cycles, the Bellman–Ford algorithm can solve the shortest path problem on
G̃ in O(mn) time. More precisely, to obtain an optimal solution q∗ ∈ RṼ to (8), we find shortest
paths from s to all vertices in Ṽ \ {s} with the Bellman–Ford algorithm, and we set the potential q∗
along the found paths so that q∗0 = 0 holds. We obtain a desired projection as p = p̂ + q∗V , where
q∗V ∈ RV is the restriction of q∗ ∈ RṼ to V .

E Discussion on worst-case guarantees

While we have focused on prediction-dependent bounds, we can bound the worst-case time complexity
of the DCA-based algorithms for bipartite matching and matroid intersection, as described below.
The following bounds are, however, weaker than those of standard algorithms; therefore, we should
run standard algorithms in parallel to obtain better worst-case guarantees, as discussed in Section 6.

As shown in [46, Theorem 4.17], the long-step steepest descent algorithm for an L-convex function
g : ZV → Z ∪ {+∞} converges in n ·max

{
g(p)− g(p+ d)

∣∣ p ∈ ZV , d ∈ N+

}
iterations if the

minimum minimizer d ∈ N+ is chosen in every local optimization. Thus, the DCA-based algorithm
for bipartite matching (resp. matroid intersection) terminates in O(n2) (resp. O(nr)) iterations.
Since a single iteration takes O(m

√
n) (resp. O(τnr1.5)) time, the total worst-case time complexity

is O(mn2.5) (resp. O(τn2r2.5)). We can also obtain a similar worst-case bound for discrete energy
minimization if the derivatives of ϕi and ψij are bounded. We, however, do not know whether those
bounds are tight; i.e., we do not know whether there is, for example, a worst-case bipartite-matching
instance such that the DCA-based algorithm incurs Θ(mn2.5) time.

E.1 Difficulty in recovering Õ(mn) time guarantee for bipartite matching

We also explain why the DCA-based algorithm cannot immediately recover the Õ(mn)-time bound
for bipartite matching (Õ hides logarithmic factors). In short, this is because the DCA-based algorithm
is subtly different from the standard Õ(mn)-time Hungarian method, as briefly described below (see
[44, Section 18.5b] for more details).

Let G = (L ∪ R,E) be a bipartite graph with edge weights w ∈ ZE . Keeping a dual solution
p = (s, t) ∈ RL∪R, the DCA-based algorithm alternately computes a maximum matching of the tight
subgraph G∗ = (L ∪R,E∗) with respect to (s, t) from scratch using the Hopcroft–Karp algorithm
and updates (s, t). This results in the O(mn2.5) time complexity bound, as described above. By
contrast, the standard Hungarian method keeps a maximum matching M of G∗ in addition to a dual
solution (s, t). In every iteration, it augments M or updates (s, t) by searching an augmenting path
in an orientation D∗

M of G∗ defined from M . Moreover, the sequence of dual updates between two
augmentations of M can be aggregated into the single shortest-path searching on DM , the orientation
of G by M defined similarly to D∗

M , where edge lengths are given by lij := si− tj −wij for ij ∈ E.
Since the edge lengths are non-negative, we can use Dijkstra’s Õ(m)-time algorithm to find a shortest
path on DM , thus achieving the Õ(mn) time.

17

To recover this Õ(mn)-time bound with the DCA-based algorithm, we need to convert it into the
above standard Hungarian method. This modification, however, is specific to the bipartite-matching
case and is not covered by the general DCA theory. Furthermore, the modification may worsen the
prediction-dependent bound. This is because, while the DCA-based algorithm always updates a dual
solution in every iteration, the standard Hungarian method may not when M is augmented, implying
that the bound based on ∥p∗ − p̂∥∞ does not follow immediately.

F Experiments

We compare our DCA-based method with that of Dinitz et al. [17] using synthetic weighted bipartite
matching instances. First, we summarize the differences between the two methods. Both methods
are based on the same basic methodology: predict an (infeasible) dual solution p̂, convert p̂ into an
initial feasible solution p◦, and warm-start the bipartite-matching solver with p◦. As for the weighted-
bipartite-matching solver, both iteratively call the Hopcroft–Karp algorithm [26] to compute an
optimal dual solution; hence the bipartite-matching solver is identical. The differences between
our method and [17] lie in how to learn (infeasible) predictions p̂ and how to obtain initial feasible
solutions p◦. Below we detail these two differences.

Learning predictions. Dinitz et al. [17] learned predictions p̂ to minimize the empirical ℓ1-loss,
while we have replaced the ℓ1-loss with the ℓ∞-loss. In the following experiment, as described in
Section 4 and [31], both methods learn predictions using the online gradient descent method (OGD),
where the ℓ1- and ℓ∞-losses are used for the method of [17] and ours, respectively.

Obtaining feasible solutions. Dinitz et al. [17] converted an infeasible prediction p̂ into feasible
p◦ using a greedy approximation algorithm tailored to the ℓ1-loss. By contrast, we obtain feasible
solutions p◦ by minimally shifting p̂ in the all-one direction as in Section 3.1 and rounding the
resulting vector to the nearest integer point.

Due to the above differences, the method of [17] and ours yield different initial feasible solutions p◦,
which are fed to the common bipartite-matching solver. The following experiment examines how this
difference affects the number of iterations taken by the bipartite-matching solver.

Settings. We generated three random bipartite graphs (V,E) such that V = L∪R and |L| = |R| =
5 (i.e., n = 10) with three probability values θ = 0.5, 0.7, 0.9 for edge creation. For each graph, we
generated T = 1000 sets {we}e∈E of random edge weights by setting we = 5+ ⌊u⌉ for each e ∈ E,
where u is drawn from the standard normal distribution. We thus created 1000 bipartite-matching
instances with various edge weights for each graph. For each sequence of the 1000 instances, we
iteratively predicted a dual solution p̂ with OGD, converted p̂ into a feasible solution p◦, and solved
the instance by warm-starting the bipartite-matching solver with p◦. We implemented OGD based on
that of [45, Section 2.4]. The original OGD uses the step size of B

L
√
2T

, where B is the radius of the
ℓ2-ball that contains optimal predictions and L is the Lipschitz constant of the loss functions. In our
setting, we have B = C

√
n = n1.5∥w∥∞, where we set ∥w∥∞ = 9 since all the instances satisfied

|we| ≤ 9 for all e ∈ E. The Lipschitz constant L was set to 1 for the ℓ∞-loss and
√
n for the ℓ1-loss.

We, however, observed that the step size of B
L
√
2T

was too large to achieve better performances than a
baseline method with random initial solutions p◦, which we call the cold-start baseline. Thus, we
rescaled the step size as α× B

L
√
2T

, where α is the scaling parameter. We let α = 0.001, 0.01, 0.1.

Results. Figure 2 presents the cumulative number of iterations taken by the common weighted-
bipartite-matching solver for ours (ℓ∞), the method of [17] (ℓ1), and the cold-start baseline (Cold).
We conducted 10 independent trials with random initial points of OGD drawn from the n-dimensional
standard normal distribution; the error band indicates the 95% confidence interval of the 10 random
trials. Both ours and the method of [17] took fewer iterations than the cold-start baseline, and ours
with α = 0.01, 0.1 outperformed the method of [17]. The results suggest the practical usefulness of
our DCA-based framework.

18

0 200 400 600 800 1000
t

0

1000

2000

3000

4000

5000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.5, α = 0.001

0 200 400 600 800 1000
t

0

1000

2000

3000

4000

5000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.5, α = 0.01

0 200 400 600 800 1000
t

0

1000

2000

3000

4000

5000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.5, α = 0.1

0 200 400 600 800 1000
t

0

1000

2000

3000

4000

5000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.7, α = 0.001

0 200 400 600 800 1000
t

0

1000

2000

3000

4000

5000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.7, α = 0.01

0 200 400 600 800 1000
t

0

1000

2000

3000

4000

5000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.7, α = 0.1

0 200 400 600 800 1000
t

0

2000

4000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.9, α = 0.001

0 200 400 600 800 1000
t

0

2000

4000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.9, α = 0.01

0 200 400 600 800 1000
t

0

2000

4000

#
It

er
at

io
n

(c
u

m
u

la
ti

ve
) `∞

`1

Cold

θ = 0.9, α = 0.1

Figure 2: The cumulative number of iterations taken by the bipartite-matching solver for each method.
The parameter θ is the probability of edge creation, and α is the scaling parameter to control the step
size of OGD. The error band indicates the 95% confidence interval over the 10 random trials.

19

	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Background on discrete convex analysis
	2.2 Steepest descent method for L/L-natural-convex function minimization

	3 DCA-based framework and its applications
	3.1 Weighted perfect bipartite matching
	3.2 Weighted matroid intersection
	3.3 Discrete energy minimization
	3.4 General L-natural-convex function minimization

	4 Learning predictions
	5 Whether to learn primal or dual solutions
	6 Conclusion
	A Proof of Lemma 1
	B Details of matroid intersection
	B.1 Proof of Lemma 3
	B.2 Proof of Lemma 4
	B.3 Bound on dual optimal solutions

	C Counterexample to the bound on dual solutions for bipartite matching
	D Projection onto general L-natural-convex sets
	E Discussion on worst-case guarantees
	E.1 Difficulty in recovering O(mn) time guarantee for bipartite matching

	F Experiments

