Published as a conference paper at ICLR 2022

Yan Zhang, Jonathon Hare, and Adam Priigel-Bennett. Fspool: Learning set representations with
featurewise sort pooling. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HJgBA2VYwH.

A PROOF OF LEMMA 1

Generative adversarial networks Given a set generator f, a discriminator function d, and
X1, ..., X, atraining dataset, the standard loss function for GANSs is formulated as

m

If.d, Xu,... X Zlog)] + Ez[log(1 — d(f(2))).

In order to obtain I(f,d, X1, ..., X)) = I(f,d,71. X1, ..., 7. X,,) for every choice of 7;, it is
therefore sufficient to choose a permutation invariant discriminator.

Autoencoder based models We assume that the autoencoder is made of a permutation invariant
encoder enc and an arbitrary decoder f. For any set size n, set X € R"*¢ and permutation 7 € S,,
we have

I(r.X,X)=1(X,X) = I(r.X, f(enc(X)) = (X, f(enc(X))
= (7. X, f(enc(m.X)) = (X, f(enc(X)) (enc is invariant)
= Vo l(n.X, f(enc(7.X))) = Vo (X, f(enc(X)))

B LOSS FUNCTIONS FOR SETS

Chamfer’s loss and the Wasserstein 2 distance are defined as

_ : el 12 : AT
dcham = Z jnélTIL}Hml x5 + Z ?EEH:BZ x5

1<i<n”’~ 1<j<n’ =

doy = _nf Y el s —

1<i<n

1<j<n’
where T is the set of couplings (i.e., bistochastic matrices) between X and X’. Both loss functions
solve a matching problem over the space of permutations, which makes them invariant to permu-
tations of one argument, as required by Lemma [T} Chamfer’s loss runs in quadratic time, while
the standard implementation of Wasserstein distance runs in O(n?) if both sets have the same size.
However, efficient algorithms exist for approximating the Wasserstein distance, and the computa-
tions can be parallelized on GPUs (Cuturi, 2013} [Feydy et al.,2019).

Note however that the equation [(. X, X) = [(X, X) is may be difficult to satisfy in other settings:
matching graphs up to permutations, or sets up to the SE(3) group, leads to difficult problems for
which no polynomial time algorithm is known (Mémoli,|2007). In these settings, the design of VAE
is harder and other architectures may be better suited.

C PROOF OF PROPOSITION 2
Proof. We first give the proof for First-n creation:

First-n GivenasetY = {y,...,y,} of points in R, we propose to sort the points y; by alphanu-
meric sort (sort the values using the first feature, then sort points that have the same first features
along the second feature, etc.). We denote the resulting matrix by Y. We choose as a latent vector
z = flatten(Y"") € R™. It is the vector that contains the representation of ¥/ in the first d features,
y} is the next d features... By construction, z is a permutation invariant representation of the set
Y (this reflects the fact that there are canonical ordering for sets, which is not the case for general
graphs).

13

https://openreview.net/forum?id=HJgBA2VYwH

Published as a conference paper at ICLR 2022

We choose as a reference set the canonical basis in R (R = I,,). After the latent vector is appended
to the representation of each point, we have r; = (e;, z). We are now looking for a function f that
allows to approximate the set Y, i.e., that satisfies Vi < n, f(e;,z) = z[i d : (i + 1)d]. We can
choose f(e;, z) = el W Wy z, where

1 0 0
0 1 0
111000 00 0 0 0 1
W;=10 0 0 1 1 1 0 0 0] eR™™ and W, = € Rraxd
00 0000 11 1 1 0 0
0 1 0
0 0 1

This function is continuous, and its output is Y’ = reshape,,, ;(z). Y’ is equal to Y up to a
permutation of the rows, so that ||[Y — Y”||,y, = 0. If the entries of z are bounded, we can use
standard approximation results for continuous functions over a compact space (Cybenko, |1989) to
conclude that it be uniformly approximated by a 2-layer MLP.

Top-n Consider a Top-n network with n reference points such that:

* The angles of the reference points are 2d vectors such that ¢; = (cos(£ 2), sin(£ Z)).
* The representations are r; = ¢;/ cos(nl0 7). where (e;) is the canonical basis in R".
» The MLP of equation 1 (that predicts an angle from the latent vector) always outputs (1,0).

Then this Top-n creation module is equivalent to the First-n module build previously: for any set, it
selects the first n points and returns X °[i] = e;. The same MLP that is built for First-n can therefore
be used for this network. O

D DETAILS ABOUT THE EXPERIMENAL SETTING

D.1 SET MNIST AnND CLEVR

Since we use existing code for this task, we refer to the respective papers (Zhang et al.,[2019) and
(Kosiorek et al., 2020) for details on the model used and the loss function. The code used for TSPN
is not the original code (which is not available) but a reimplementation (not by one of the authors
of the present paper). The reader will notice that our results for DSPN are approximately 3 times
worse than in the original paper. The reason is that we fixed what we believe to be a bug in the
implementation of Chamfer’s loss in DSPN: a mean over channels was used instead of a sum, which
explains this difference of a factor 3. We also note that the results for TSPN are around 3 times
worse than the original paper. One possible reason could be that the authors of TSPN used the code
of DSPN and had a similar bug.

For Top-n generation, we set the number of points in the reference set to twice the cardinality n of
the generated sets. We also experimented with ng = m which resulted in better performance for
DSPN (with a Chamfer loss of 6.14 4+ 0.56 e-5), but not for TSPN (16.07 + 0.47). We observed
that reducing the learning rate improves results for all methods: TSPN was therefore trained for 100
epochs with a learning rate of 5e-4, and DSPN with a learning rate of 1e-4 for 200 epochs. No other
hyper-parameter was tuned.

D.2 SYNTHETIC SET GENERATION

Dataset generation procedure Each set is created via rejection sampling: points are drawn itera-
tively from a uniform distribution within a bounding box in R3. The first point is always accepted,
and the next ones are accepted only if they satisfy a predefined set of constraints: i) they are not
closer to any other point than a given threshold min-distance. ii) they are connected to the rest of
the set, i.e., have at least one neighbor than a distance neighbor-distance iii) they do not have too
many neighbors. Our dataset is made of 2000 sets that have between 2 and 35 points, with 9 points
per set on average. It is a simplification of real molecules in several aspects: there are only single

14

Published as a conference paper at ICLR 2022

Table 6: Train reconstruction error and valency loss in the generated sets over 5 runs for a modified
version of our dataset, where the cardinality varies less across sets. We observe a tradeoff between
reconstruction performance and generalization.

Reference points 11 13 15 20 30 50
W, train loss 0.75+.04 0.78+.03 0.79+.04 0.87+.05 0.93+.04 1.03+.06
Valency loss (e-1) 2.8+.7 2.240.7 2.1+9 2.4+1.2 1.6+.2 2.8+.8

bonds, angles between bonds are not constrained and the atom types are only defined by the valency,
which reflects the fact that atoms with the same valency tend to play a similar role and be more
interchangeable.

Model The set encoder is made of a 2-layer MLP, 3 transformer layers followed by a PNA global
pooling layer (that computes the sum, mean, max and standard deviation over each channel) (Corso
et al.;, [2020) and a 2-layer MLP. The decoder is made of a set generator followed by a linear layer,
3 transformer layers and a 2-layer MLP. We use residual connections when possible and batch nor-
malization between each layer. The reference set contains 35 points.

We experimented with the two ways to sample the number of points presented in Section 2] but we
found the results to be quite similar. We therefore opted sampling the number of points from the
data distribution, which is the simplest method.

Loss function We use a standard variational autoencoder loss with a Wasserstein reconstruction
term and two additional regularizers. Given an input set X and its reconstruction X, the loss can be
written:

L(X,X) = dw,(X,X)+ A\ KL(p(z | X),N(0,1})) + Aaregy (X) + A3 regs(X)

where
regy(X) = > (do—|lw;i — xj|l2)4 with do =1

1<i<j<n

prevents atoms from being generated too close to each other. reg;(X) penalizes atoms that have
either no neighbor, or a too large valency. It is computed in the following way:

« for each point i, compute s' = sort((di;)j<n, j=i). This vector contains the sorted
distances between 7 and all other points. Points that are at distance less than d; =
neighbor-distance from i are considered as its neighbours.

 Compute (i) = (s} — d1)4. This term penalizes atoms that have no neighbour.

* Compute l2(i) = Z?;niax_mlmcy(dl — 5%) . This term penalizes atoms that have too many
neighbors.

* regs(X)is defined as } 0, o, l1(2) + l2(3).

Training details In order to train the model efficiently, mini-batches have to be used. This may not
be easy when dealing with sets and graphs, since they do not have all the same shape. To circumvent
this issue, we reorganise the training data in order to ensure that all sets inside a mini-batch have the
same size. At generation time, this method cannot be applied, so we simply generate sets one by
one.

The optimizer is Adam with its default parameters. We use a learning rate of 2~ and a scheduler
that halves it when reconstruction performance does not improve significantly after 750 epochs.
Experimentally, we found the learning rate decay to be important to achieve good reconstruction.

We also run a study with different reference set sizes. For this purpose, we slightly modify our
dataset so that each set has only up to 11 points (still with 9 points on average). The reason is that
there is more flexibility in the choice of the reference size if the maximal size is not too large. By
training a Top-n network with several reference set sizes, we obtain the results of Table 6]

15

Published as a conference paper at ICLR 2022

D.3 MOLECULAR GRAPH GENERATION ON QM9

Model Our encoder is a graph neural network is made of 3 message-passing layers followed by a
PNA global pooling layer and a final MLP. For the decoder, we use a set creation method followed
by transformer layers. The resulting representation is then processed by i) a Set2Graph layer (Ser-
viansky et al.}[2020) followed by two MLPs to generate edge probabilities and edge features a MLP
which generates node features ii) a MLP that takes as input the set representation and the valencies
predicted for each atom, and returns an atom type.

Graph matching and loss function As explained in Appendix [B} the loss function of the vari-
ational autoencoder should solve a graph matching problem, which is hard in general. Instead of
using a proper graph matching method, we propose to use the atom types to perform an imperfect
but much cheaper alignment between the target and the predicted molecules.

For both molecules, we compute a score for each atom 7 defined as:

s(i) = 10%atom-type(i) + 10 num-edges(i) + Z edge-type(i, j) * atom-type(j)
JEN()
This score cannot differentiate between all atoms in each molecule, but it reduces drastically the
number of permutations that can represent the same input. It is motivated by the fact that empirically,
we observe that our method quickly learns to reconstruct the molecular formula very well. Once they
are all computed, we use these scores to sort the atoms reorder the adjacency matrix and the atom
and edge types.

Our model learns to predict a probabilistic model for the atom types, edge presence and edge types.
For this purpose, we use standard cross entropy loss between the predicted probabilities and the
ground truth. However, these metrics can be hard to optimize because of the imperfect graph match-
ing algorithm. We therefore regularize these metrics with several other measures at the graph level,
that do not depend on matching:

* The mean squared error between the real atomic formula and the predicted one.

* The mean squared error between the average number of edges per atom in the input and
predicted molecule.

* The mean squared error between the distribution of edge types in the real and predicted
molecule.

Finally, we add a matching dependent term, which is the mean squared error between the valencies
of the input and the target molecule.

Training details The model is trained over 600 epochs with a batch size of 512 and a learning
rate of 2e 3. It is halved after 100 epochs when the loss does not improve anymore. The optimizer
is Adam with default parameters. The reference set has 12 points. When using more points, we
obtained overall similar results, but with a larger variance.

16

Published as a conference paper at ICLR 2022

E TRAINING CURVES

Mean train loss and 95% confidence interval over 6 runs

—— Random i.i.d.
—— First-n
25 —— Top-n (n_max)
—— Top-n (2 n_max)
B 20 A
&
]
L
:‘_-, 154
£
2
o
10 A
o W T g gy A " P e o
R L T T R
54
(I) 260 4{‘)0 660 860 10‘00
Epoch
(a) DSPN training on Set-MNIST
= MP =—i.i.d ampling = First-n = Top-n
0.01
0.008
0.006
0.004
0.002

50k 150k

(c) DSPN training on CLEVR for bounding box pre-
diction.

Mean train loss and 95% confidence interval over 5 runs

—— Random i.i.d.
—— First-n
— Top-n
2.5 — MLP
P 2.01
k]
£
©
e
= 1.5 4
1.04
| | Ll g
0.5 T T T T T T T T T
0 100 200 300 400 500 600 700 800
Epoch

(e) Molecule generation on QM9. First-n, Top-n and
MLP mostly overlap.

Mean train loss and 95% confidence interval over 6 runs

—— Randomi.i.d.
275 —— First-n
h —— Top-n (n_max)
—— Top-n (2 n_max)
25.0 A
a
@
‘&’ 22.5 A
°
3
20.0 A
£
&
=3
(o]
17.51
15.0 1
12.51
T y T T T T
0 20 40 60 80 100
Epoch
(b) TSPN training on Set-MNIST
= First-n =1i.i.d. sampling == Top-n = MLP
«
2
0.06 |
»
[}
0.05 E
0.04
0.03
0.02
0.01
0 Step
100k 200k 300k 400k 500k 600k

(d) DSPN training on Set-MNIST for full state pre-
diction.

Mean train loss and 95% confidence interval over 5 runs

—— Random
—— First-n

8 —— Top-n
<

S 4

p — MLP
S

=1

(5]

2

a

531

5]

L

4

~

£

a 2

B

o

&

)

=

< 11

o

&

0 T T T T T T
0 2000 4000 6000 8000 10000
Epoch

(f) Synthetic molecule-like dataset in 3d.

Figure 4: Training curves for all models. We observe that random i.i.d. generation is in general
harder to train than the other models, while the differences between the other methods are smaller.

17

