
Flashlight : Scalable Link Prediction with Effective Decoders

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Link prediction (LP) has been recognized as an important task in graph learning2

with its broad practical applications. A typical application of LP is to retrieve the3

top scoring neighbors for a given source node, such as the friend recommendation.4

These services desire the high inference scalability to find the top scoring neighbors5

from many candidate nodes at low latencies. There are two popular decoders that6

the recent LP models mainly use to compute the edge scores from node embeddings:7

the HadamardMLP and Dot Product decoders. After theoretical and empirical8

analysis, we find that the HadamardMLP decoders are generally more effective9

for LP. However, HadamardMLP lacks the scalability for retrieving top scoring10

neighbors on large graphs, since to the best of our knowledge, there does not exist11

an algorithm to retrieve the top scoring neighbors for HadamardMLP decoders in12

sublinear complexity. To make HadamardMLP scalable, we propose the Flashlight13

algorithm to accelerate the top scoring neighbor retrievals for HadamardMLP:14

a sublinear algorithm that progressively applies approximate maximum inner15

product search (MIPS) techniques with adaptively adjusted query embeddings.16

Empirical results show that Flashlight improves the inference speed of LP by17

more than 100 times on the large OGBL-CITATION2 dataset without sacrificing18

effectiveness. Our work paves the way for large-scale LP applications with the19

effective HadamardMLP decoders by greatly accelerating their inference.20

1 Introduction21

The goal of link prediction (LP) is to predict the missing links in a graph [1]. LP is drawing increasing22

attention in the past decade due to its board practical applications [2]. For instance, LP can be used to23

recommend new friends on social media [3], and recommend attractive items to the costumers on24

E-commerce sites [4], so as to improve the user experience. During inference, these applications25

demand the LP methods to retrieve the top scoring neighbors for a source node at low latencies. This26

is especially challenging on large graphs because the LP methods need to search many candidate27

nodes to find the top scoring neighbors.28

There are two main kinds of architecture followed by the recent LP models. The first uses an encoder,29

e.g., GCN [5], to obtain the node-level embeddings and uses a decoder, e.g., Dot Product, to get the30

edge scores between the paired nodes [6]. The second crops a subgraph for every edge and computes31

the edge score from the subgraph directly [7]. The inference speed of the second is much lower than32

the first, so we focus on the first kind of models to achieve fast inference on large graphs. In the33

last years, extensive research focuses on developing more expressive LP encoders [6, 8]. However,34

much less work pays attention to the essential impacts of the choice of decoders on LP’s performance.35

In this work, we theoretically and empirically analyze two popular LP decoders: Dot Product and36

HadamardMLP (a MLP following the Hadamard Product), and find that the latter is generally more37

effective than the former.38

In practical applications, we should not only consider the effectiveness of LP, but also inference39

efficiency. Many LP applications generally require fast retrieval of the top scoring neighbors for low-40

latency services [3, 9, 10]. For a Dot Product decoder, this retrieval can be approximated efficiently41

at the sublinear time complexity [11]. However, to the best of our knowledge, no such sublinear42

algorithms exist for the top scoring neighbor retrievals of the HadamardMLP decoders. This means43

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.



Flashlight : Scalable Link Prediction with Effective Decoders

Figure 1: Two popular LP decoders: The Dot Product (left), equivalent to the element-wise summa-
tion following the Hadamard product, and the HadamardMLP decoder (right).

that for every source node, we have to iterate over all the nodes in the graph to compute the scores44

so as to find the top scoring neighbors for HadamardMLP, which is of linear complexity and cannot45

scale to large graphs.46

To allow LP applications to enjoy the high effectiveness of HadamardMLP decoders while avoiding47

the poor inference scalability, we propose the scalable top scoring neighbor search algorithm named48

Flashlight. Our Flashlight progressively calls the well-developed approximate maximum inner49

product search (MIPS) techniques for a few iterations. At every iteration, we analyze the retrieved50

neighbors and adaptively adjust the query embedding for Flashlight to find the missed high scoring51

neighbors. Our Flashlight algorithm holds sublinear time complexity on finding top scoring neighbors52

for HadamardMLP decoders, allowing for fast and scalable inference. Empirical results show that53

Flashlight accelerates the inference of LP models by more than 100 times on the large OGBL-54

CITATION2 dataset without sacrificing the effectiveness. Overall, our work paves the way for the55

use of effective LP decoders in practical settings by greatly accelerating their inference.56

2 Revisiting Link Prediction Decoders57

In this section, we formalize the link prediction (LP) problem and the LP decoders. Typically, many58

LP models include an encoder that learns the node-level embeddings xi, i ∈ V , where V is the set of59

nodes, and an decoder ϕ : Rd×Rd → R that combines the node-level embeddings of a pair of nodes:60

xi,xj into a single score: sij . If sij is higher, the link between nodes i and j is more likely to exist.61

The state-of-the-art models generally use graph neural networks as the encoders [5, 6, 8, 12, 13].62

From here on, we mainly focus on the decoder ϕ.63

2.1 Dot Product Decoder64

The most common decoder of link prediction is the Dot Product [6, 8, 10]:65

sij = ϕdot(xi,xj) := xi • xj , (1)

where • denotes the dot product.66

Training a link prediction model with the Dot Product decoder encourages the embeddings of the67

connected nodes to be close to each other. Intuitively, the score sij can be thought as a measure of the68

squared Eulidean distance between the node embeddings xi,xj , as ∥xi−xj∥2 = ∥xi∥2− 2xi •xj +69

∥xj∥2, if the ∥xj∥ is constant over the neighbors j ∈ N , e.g., after normalization [14]. Because the70

node embeddings represent the semantic information of nodes, Dot Product assumes the homophily71

of graph topology, i.e., the semantically similar nodes are more likely to be connected.72

2.2 HadamardMLP (MLP following Hadamard Product) Decoder73

Multi layer perceptrons (MLPs) are known to be universal approximators that can approximate any74

continuous function on a compact set [15]. A MLP layer can be defined as a function f : Rdin →75

Rdout :76

fW(x) = ReLU(Wx) (2)
which is parameterized by the learnable weight W ∈ Rdout×din (the bias, if exists, can be represented77

by an additional column in W and an additional channel in the input x with the value as 1). ReLU78

is the activation function. In a MLP, several layers of f are stacked, e.g., a 3-layer MLP can be79

formalized as fW3
(fW2

(fW1
(x))).80

2



Flashlight : Scalable Link Prediction with Effective Decoders

Figure 2: HadamardMLP achieves higher Mean Reciprocal Rank (MRR, higher is better) than other
decoders on the OGBL-CITATION2 [16] dataset with the encoder as GraphSAGE [12] and GCN [5].
More empirical results and the detailed settings are in Sec. 5.3.

The state-of-the-art models widely use a MLP following the Hadamard Product between the paired81

nodes as the decoder (short as the HadamardMLP decoders) [6, 8, 10, 16]:82

sij = ϕMLP(xi,xj) := MLP(xi ⊙ xj) = wT
L(fWL−1

(. . . fW1(xi ⊙ xj) . . . )), (3)

where ⊙ denotes the Hadamard Product. Fig. 1 illustrates these two models the Dot Product and83

HadamardMLP decoders.84

2.3 Other Link Prediction Decoders85

In principle, every function that takes two vectors as the input and outputs a scalar can act as the86

decoder. For example, there are bilinear dot product decoder (short as Bilinear decoder) [6]:87

sij = hT
i Whj , (4)

where W is the learnable weight, and the MLPs following the concatenate decoder [6, 10] (short as88

ConcatMLP decoder):89

sij = MLP(hi∥hj) (5)
, etc. These two decoders are used much less than Dot Product and HadamardMLP in the state-of-90

the-art LP models possibly due to their lower effectiveness [6, 8, 10, 16].91

2.4 HadamardMLP is Generally More Effective than Other Decoders92

Dot Product demands the homophily of graph data to effectively infer the link between nodes. In93

contrast, thanks to the universal approximation capability, MLP can approximate any continuous94

function, and thus does not demand the homophily of graph data for effective LP. This gap in the95

expressiveness accounts for the performance difference of these two decoders on many datasets (see96

Sec. 5.3). We additionally show in Appendix. A that using a HadamardMLP is easy to learn Dot97

Product, which also partially accounts for the better effectiveness of the HadamardMLP decoders98

over the Dot Product. Existing work also finds that the effectiveness of Bilinear and ConcatMLP is99

generally worse than the HardmardMLP or Dot Product decoder [6, 8, 10, 16]. We confirm these100

findings more rigorously in the empirical results in Fig. 2 and more complete in Sec. 5.3.101

Although ConcatMLP is as expressive as HadamardMLP in theory because MLP is a universal102

function approximator [15], such an argument neglects the difficulty of learning the target function103

using ConcatMLP. The ConcatMLP decoder processes the concatenation of the paired embeddings104

instead of the Hadamard product of the paired embeddings. In contrast, HadamardMLP takes the105

Hadamard product of the paired embeddings as the input. The inductive bias of HadamardMLP106

enables HadamardMLP to decode the semantic connectivity of different embeddings more easily in107

practice. Indeed, specialized structures, e.g. Dot Product, HadamardMLP, convolutional, recurrent,108

and attention structures, are common in neural networks. There is probably no hope to replace them109

using a ConcatMLP though they should all be representable.110

Actually, our work is not the first to discuss the practical limitations of ConcatMLP decoders. For111

example, the existing work [10, 17, 18] has pointed out that In deep neural network designs, it is very112

3



Flashlight : Scalable Link Prediction with Effective Decoders

common to replace a ConcatMLP with a more specialized structure that has an inductive bias that113

represents the problem better, which is crucial for advancing the state of the art of deep learning,114

although in theory they can all be approximated by ConcatMLPs. The inefficiency of ConcatMLPs115

to capture dot and tensor products has been studied by [19] in the context of recommender systems.116

Similar to our analysis in Sec. 2 and Appendix A, [19] points out that it is hard for ConcatMLPs to117

approximate dot products and tensor products with ConcatMLPs empirically.118

3 Scalability of Link Prediction Decoders119

Most academic studies focus on training runtime when discussing scalability. However, in industrial120

applications, the inference speed is often more important. The inference of many LP applications121

needs to retrieve the top scoring neighbors given a source node, e.g., recommending friends to a122

user for friend recommendation. Given a source node, if there are n nodes in the graph, then the123

inference time complexity is O(n) if the decoder needs to iterate over all the n nodes to compute124

the edge scores. For large scale applications, n is typically in the range of millions, or even larger.125

The empirical results show that the inference time of finding the top scoring neighbors for a source126

node is longer than one second for HadamardMLP on the OGBL-CITATION2 dataset of nearly three127

million nodes (see Sec. 5.5).128

For a Dot Product decoder, the problem of finding the top scoring neighbors can be approximated129

efficiently. This is a well-studied problem, known as approximate maximum inner product search130

(MIPS) [20, 21] (see Sec. 6.2 for a comprehensive literature review). MIPS techniques allow Dot131

Product’ inference to be completed in a few milliseconds, even with millions of neighbors. There132

exists some work that tries to extend MIPS to the ConcatMLP [22, 23]. These methods hold strict133

assumptions on the models’ training and are not directly applicable to the HadamardMLP. To the best134

of our knowledge, no such sublinear techniques exist for the top scoring neighbor retrieval with the135

HadamardMLP [10], which is a complex nonlinear function.136

To summarize, the HadamardMLP decoder is not scalable for the real time LP services on large graphs,137

while the Dot Product decoder allows fast retrieval using the well established MIPS techniques.138

4 Flashlight: Scalable Link Prediction with Effective Decoders139

Sec. 2 has shown that the HadamardMLP decoder enjoys higher effectiveness than the Dot Product140

decoder, which supports the superior performance of HadamardMLP on many LP benchmarks. On141

the other hand, Sec. 3 has shown that the HadamardMLP is not scalable for real time LP applications142

on large graphs, while Dot Product supports the fast inference using the well-established MIPS143

techniques. In this section, we aim to devise fast inference algorithms for HadamardMLP to enable144

scalable LP with effective decoders.145

We try to exploit the advances in the well-developed MIPS techniques to accelerate the inference of146

HadamardMLP. Specifically, we divide the top scoring retrievals for HadamardMLP predictors into a147

sequence of MIPS. Our algorithm works in a progressive manner. The query embedding in every148

search is adaptively adjusted to find the high scoring neighbors missed in the last search.149

The challenge of retrieving the neighbors of highest scores for HadamardMLP is rooted in the150

unawareness of which neurons are activated, since if we know which neurons are activated, the151

nonlinear HadamardMLP degrades to a linear model. On the lth MLP layer, we define the mask152

matrix MA,l ∈ Rdl×dl to represent the set of activated neurons A as153

Mij =

{
1, if i = j and i ∈ A
0, otherwise

(6)

With MA,l, we reformulate the HadamardMLP decoder as:154

sij = ϕMLP(xi,xj) = wT
LMA,L−1WL−1 . . .MA,1W1(xi ⊙ xj)

= (WT
1 MA,1 . . .W

T
L−1MA,L−1wL ⊙ xi) • xj (7)

In the Equation (7), the final equation holds because the matrix computation on the left hand side of155

xi is equal to a vector of the same dimension as xi. For the simplicity of expression, we denote it as156

left vector. In this way, transposing the matrix computation on the left hand side of xi and multiply it157

4



Flashlight : Scalable Link Prediction with Effective Decoders

to xi is equivalent to the dot product between the left vector and xi, which leads to the final equation158

in Eq. (7). Because the vector WT
1 MA,1 . . .W

T
L−1M

T
A,L−1wL is determined by the weights of159

MLP and the activated neurons A, we term it as MLPA(·):160

MLPA(·) := WT
1 MA,1 . . .W

T
L−1M

T
A,L−1wL (8)

Given the source node i, because the score sij is obtained by the dot product between161

(WT
1 MA,1 . . .W

T
L−1M

T
A,L−1wL ⊙ xi) and the neighbor embedding xj , we term the former vector162

as the query embedding q:163

q := WT
1 MA,1 . . .W

T
L−1MA,L−1wL ⊙ xi = MLPA(·)⊙ xi (9)

In this way, we can reformulate the output of decoder ϕMLP (xi,xj) as164

sij = ϕMLP(xi,xj) = q • xj . (10)

In practice, we can use the q as the query embedding in MIPS to retrieve the neighbors of highest165

inner products, which correspond to the highest scores. Here, how to get the activated neurons A so166

as to obtain the query embedding q is an issue. Different node pairs activate different neurons A.167

Initially, without knowing which neurons are activated, we first assume all the neurons are activated,168

i.e., we have the initial query embedding as:169

q[1] = (

L−1∏
i=1

WT
i )wL ⊙ xi (11)

This initial design can reflect the general trends of increasing the edge scores on LP, without restricting170

which neurons are activated. We use q[1] as the query embedding to retrieve the highest inner product171

neighbors as N [1] in the first iteration. Then, given the retrieved neighbors in the tth iteration as172

N [t], we analyze the N [t] and adaptively adjust the query embedding q[t + 1] that we use in the173

next iteration to find more high scoring neighbors. Specifically, we operate the feed-forward to MLP174

for N (t). We define the function A(·, ·) that returns the set of activated neurons for a MLP (the first175

input) with the input xi ⊙ xj (the second input). Then we can use it to extract A as:176

A = A(MLP(·),xi ⊙ xj). (12)

Then, we obtain the set of activated neurons of the highest scored neighbor at the tth iteration as:177

A[t]← A(MLP(·),xi ⊙ xj⋆[t]), where j⋆[t] = arg max
j∈N [t]

MLP(xi ⊙ xj). (13)

This implies that the neighbors activating A[t] can obtain the high edge scores. Then, if we take A[1]178

as the set of neurons that we activate at the next query, we could find more high scoring neighbors. In179

this way, we set the neurons that we assume to activate in the next iteration as A[t]. We repeat the180

above iterations until enough neighbors are retrieved. The algorithm is summarized in Alg. 1.181

We name our algorithm as Flashlight because it works like a flashlight to progressively “illuminates”182

the semantic space to find the high scoring neighbors. The query embeddings are like the lights sent183

from the flashlight. And our process of adjusting the query embeddings is just like progressively184

adjusting the “lights” from the “flashlight” by checking the “objects” found in the last “illumination”.185

In the experiments, we find that our Flashlight algorithm is effective to find the top scoring neighbors186

from the massive candidate neighbors. For example, in Fig. 3, our Flashlight is able to find the top187

100 scoring neighbors from nearly three million candidates by retrieving only 200 neighbors in the188

large OGBL-CITATION2 graph dataset for the HadamardMLP decoders.189

Whether HadamardMLP degraded to a linear model, when we know which neurons are activated,190

depends on what activation functions are used. Since the link prediction decoders use ReLU [24]191

as the activation functions in the HadamardMLP decoder, the HadamardMLP degrades to a linear192

function when what neurons (with ReLU functions) are activated are known.193

The initial iteration that assumes all the neurons are activated only reflect the general trend of the194

output increasing of HadamardMLP. Then, based on the actual neuron activation condition of the195

found high scoring neighbors, we can find other high scoring neighbors that activate the close neurons196

by adaptively adjusting the query embeddings with the new assumed activated neurons. A is a197

learning based module or operator, it is just a tracker that check the neurons inside the HadamardMLP198

5



Flashlight : Scalable Link Prediction with Effective Decoders

Algorithm 1 Flashlight : progressively “illuminates” the semantic space to retrieve the high
scoring neighbors for the LP HadamardMLP decoders.

Input: A trained HadamardMLP decoder ϕMLP that outputs the logit sij for the input xi ⊙ xj . The
set of nodes V . The node embedding set X = {xi|i ∈ V}. A source node i. The number of iterations
T . The number of neighbors to retrieve at every iteration: N = [N1, N2, . . . , NT ].
Output: The recommended neighbors N for the source node i.

1: Initialize the set of retrieved recommended neighbors N ← ∅
2: Initialize the set of activated neurons as A[0] as all the neurons in MLP.
3: for t← 1 to T do
4: Calculate the query embedding q[t]← xi ⊙MLPA[t−1](·).
5: N [t]← Nt neighbors in X that maximizes the inner product with q[t].
6: X ← X \ {xj |j ∈ N [t]}.
7: j⋆[t] = argmaxj∈N [t] MLP(xi ⊙ xj)
8: A[t]← A(MLP(·),xi ⊙ xj⋆[t]).
9: N ← N ∪N [t].

10: return N

for a specific input. In other words, if the output of a neuron (the input of the following ReLU199

function) is positive, that neuron will be recorded by A and denoted as being activated. Therefore, it200

needs not to be trained and can be used directly during inference.201

The convergence of our Flashlight is guaranteed since it iterates over a limited number of times to202

find the maximum inner product neighbors with different queries, as shown in line 3 of Algorithm 1.203

We agree that more theoretical analysis on Flashlight, such as in what cases it can find all the top204

k-scoring neighbors for HardmardMLP, can further justify the effectiveness of our Flashlight. We205

take this as an important future direction for exploration.206

We agree with the reviewers that the theoretical justification surrounding the Flashlight helps to207

further improve the contribution of our work. Therefore, in Section 3 and 4, we analyze Flashlight208

and find that our Flashlight can significantly reduce the inference time complexity of HadamardMLP209

to the sublinear level and thus enhance the applicability and scalability of the state-of-the-art link210

prediction decoder HadamardMLP by a large margin. In Section 4, we analyzed in theory how to211

approximate the outputs of HadamardMLP through a sequence of maximum inner product search. In212

section 2, we analyzed the gap in the expressiveness between HadamardMLP and other decoders. In213

addition, in Appendix A, we analyze how difficult it is for HadamardMLP to learn a dot product. The214

analytic results show that the inductive bias of HadamardMLP enables it to learn a dot product easily215

and outperform other link prediction decoders.216

Both the inner product maximization search in every Flashlight iteration and the top scoring neighbors217

from HadamardMLP outputs are to maximize the sum of different paths in the MLP across neurons218

from the input layer to the output layer. The only difference is that for the former all the paths219

contribute to the output while for the later only those paths with all the neurons activated contribute220

to the final result. No matter whether activated or not, every path and every neuron’s monotonicity221

is not changed. In this sense, in the initial iteration, our Flashlight’s maximizing the inner product222

is to encourage the values from all paths to be larger, which reflect the general increasing trend of223

the HadamardMLP. In the later iterations, based on the activation patterns found on the top scoring224

neighbors, our Flashlight adaptively adjusts the query embedding to find more top scoring neighbors225

accurately. We agree that more theoretical analysis on Flashlight can further justify the effectiveness226

of our Flashlight. We take this as an important future direction for exploration and emphasize it in227

our paper.228

Complexity Analysis. Using MLP decoders to compute the LP probabilities of all the neighbors229

holds the complexity as O(N), where N is the number of nodes in the whole graph. Finding the top230

scoring neighbors from the exact probabilities of all the neighbors also holds the linear complexity231

O(N). Overall, using MLP decoders to find the top scoring neighbors is of the time complexity232

O(N). In contrast, our Flashlight progressively calls the MIPS techniques for a constant number233

of times invariant to the graph data, which leads to the sublinear complexity as same as MIPS. In234

6



Flashlight : Scalable Link Prediction with Effective Decoders

Table 1: Statistics of datasets.

Dataset OGBL-DDI OGBL-COLLAB OGBL-PPA OGBL-CITATION2

#Nodes 4,267 235,868 576,289 2,927,963
#Edges 1,334,889 1,285,465 30,326,273 30,561,187

conclusion, our Flashlight improves the scalability and applicability of HadamardMLP decoders by235

reducing their inference time complexity from linear to sublinear time.236

5 Experiments237

In this section, we first compare the effectiveness of different LP decoders. We find that the238

HadamardMLP decoders generally perform better than other decoders. Then, we implement our239

Flashlight algorithm with LP models to show that Flashlight effectively retrieves the top scoring240

neighbors for the HadamardMLP decoders. As a result, the inference efficiency and scalability of241

HadamardMLP decoders are improved significantly by our work.242

In Table 2, we report the performance of LP methods with different decoders: Dot Product, Bilinear,243

ConcatMLP, HadamardMLP, HadamardMLP with Flashlight, as denoted in different column names.244

In Fig. 3, 4, 5, we report the experimental results with the decoder HadamardMLP and HadamardMLP245

with Flashlight, which hold much better effectiveness on link prediction than other decoders, as246

discussed in Sec. 6.3.247

5.1 Datasets248

We evaluate the link prediction on Open Graph Benchmark (OGB) data [25]. We use four OGB249

datasets with different graph types, including OGBL-DDI, OGBL-COLLAB, OGBL-CITATION2,250

and OGBL-PPA. OGBL-DDI is a homogeneous, unweighted, undirected graph, representing the drug-251

drug interaction network. Each node represents a drug. Edges represent interactions between drugs.252

OGBL-COLLAB is an undirected graph, representing a subset of the collaboration network between253

authors indexed by MAG. Each node represents an author and edges indicate the collaboration254

between authors. All nodes come with 128-dimensional features. OGBL-CITATION2 is a directed255

graph, representing the citation network between a subset of papers extracted from MAG. Each256

node is a paper with 128-dimensional word2vec features. OGBL-PPA is an undirected, unweighted257

graph. Nodes represent proteins from 58 different species, and edges indicate biologically meaningful258

associations between proteins. The statistics of these datasets is presented in Table. 1.259

5.2 Hyper-parameter Settings260

For all experiments in this section, we report the average and standard deviation over ten runs with261

different random seeds. The results are reported on the the best model selected using validation262

data. We set hyper-parameters of the used techniques and considered baseline methods, e.g., the263

batch size, the number of hidden units, the optimizer, and the learning rate as suggested by their264

authors. We use the recent MIPS method ScaNN [21] in the implementation of our Flashlight. For265

the hyper-parameters of our Flashlight, we have found in the experiments that the performance of266

Flashlight is robust to the change of hyper-parameters in a board range. Therefore, we simply set the267

number of iterations of our Flashlight as T = 3 and the number of retrieved neighbors constant as268

200 per iteration by default. We run all experiments on a machine with 80 Intel(R) Xeon(R) E5-2698269

v4 @ 2.20GHz CPUs, and a single NVIDIA V100 GPU with 16GB RAM.270

5.3 Effectiveness of Link Prediction Decoders271

We follow the standard benchmark settings of OGB datasets to evaluate the effectiveness of LP with272

different decoders. The benchmark setting of OGBL-DDI is to predict drug-drug interactions given273

information on already known drug-drug interactions. The performance is evaluated by Hits@20:274

each true drug interaction is ranked among a set of approximately 100,000 randomly-sampled negative275

drug interactions, and count the ratio of positive edges that are ranked at 20-place or above. The276

task of OGBL-COLLAB is to predict the future author collaboration relationships given the past277

collaborations. Evaluation metric is Hits50, where each true collaboration is ranked among a set278

7



Flashlight : Scalable Link Prediction with Effective Decoders

Table 2: The test effectiveness comparison of LP decoders on four OGB datasets (DDI, COLLAB,
PPA, and CITATION2) [16]. We report the results of the standard metrics averaged over 10 runs
following the existing work [6, 16]. HadamardMLP is more effective than other decoders. Flashlight
effectively retrieves the top scoring neighbors for HadamardMLP and keep its exact outputs.

Decoder Dot Product Bilinear ConcatMLP HadamardMLP HadamardMLP w/ Flashlight
OGBL-DDI

GCN [5] 13.8 ± 1.8 16.1 ± 1.2 12.9 ± 1.4 37.1 ± 5.1 37.1 ± 5.1
GraphSAGE [12] 36.5 ± 2.6 39.4 ± 1.7 34.2 ± 1.9 53.9 ± 4.7 53.9 ± 4.7
Node2Vec [26] 11.6 ± 1.9 13.8 ± 1.6 10.8 ± 1.7 23.3 ± 2.1 23.3 ± 2.1

OGBL-COLLAB
GCN [5] 42.9 ± 0.7 43.2 ± 0.9 42.3 ± 1.0 44.8 ± 1.1 44.8 ± 1.1
GraphSAGE [12] 37.3 ± 0.9 41.5 ± 0.8 37.0 ± 0.7 48.1 ± 0.8 48.1 ± 0.8
Node2Vec [26] 27.7 ± 1.1 31.5 ± 1.0 27.2 ± 0.8 48.9 ± 0.5 48.9 ± 0.5

OGBL-PPA
GCN [5] 5.1 ± 0.4 5.8 ± 0.5 6.2 ± 0.6 18.7 ± 1.3 18.7 ± 1.3
GraphSAGE [12] 3.2 ± 0.3 6.5 ± 0.7 5.8 ± 0.4 16.6 ± 2.4 16.6 ± 2.4
Node2Vec [26] 4.2 ± 0.5 7.8 ± 0.6 8.3 ± 0.4 22.3 ± 0.8 22.3 ± 0.8

OGBL-CITATION2
GCN [5] 65.3 ± 0.4 69.0 ± 0.8 62.7 ± 0.3 84.7 ± 0.2 84.7 ± 0.2
GraphSAGE [12] 62.2 ± 0.7 65.4 ± 0.9 60.8 ± 0.6 80.4 ± 0.1 80.4 ± 0.1
Node2Vec [26] 52.7 ± 0.8 54.1 ± 0.6 51.4 ± 0.5 61.4 ± 0.1 61.4 ± 0.1

of 100,000 randomly-sampled negative collaborations. The task of OGBL-PPA is to predict new279

association edges given the training edges. Evaluation metric is Hits@100, where each positive edge280

is ranked among 3,000,000 randomly-sampled negative edges. The task of OGBL-CITATION2 is281

predict missing citation given existing citations. The evaluation metric is Mean Reciprocal Rank282

(MRR), where the reciprocal rank of the true reference among 1,000 sampled negative candidates is283

calculated for each source nodes, and then the average is taken over all source nodes.284

We implement different decoders as introduced in Sec. 2, including the Dot Product, Bilinear,285

ConcatMLP, and the HadamardMLP decoders, over the LP encoders, including GCN [5], GraphSAGE286

[12], and Node2Vec [26], to compare the effects of different decoders on the LP effectiveness. We287

present the results on the OGBL-DDI, OGBL-COLLAB, OGBL-PPA, and OGBL-CITATION2288

datasets in Table. 2. We observe that the HadamardMLP decoder outperforms other decoders on all289

encoders and datasets. Our Flashlight algorithm can effectively retrieve the top scoring neighbors for290

the HadamardMLP decoder and keep the exact LP probabilities of HadamardMLPs’ output, which291

leads to the same results of the HadamardMLP decoder with and without Flashlight.292

Our Flashlight is to to reduce the search space of HadamardMLP to improve the inference efficiency.293

For the top scoring neighbors, the final exact link prediction scores and orders are still determined by294

HadamardMLP without being influenced by our Flashlight. Our Flashlight is able to accurately re-295

trieve the candidate neighbors that include the top scorning ones for the HadamardMLP decoder. This296

is why in Table 2, the HadamardMLP with and without our Flashlight exhibit the same performance.297

In Table 2, the training and inference time mainly vary by how many links that the link prediction298

models need to make predictions on. It is defined the settings of different benchmarks. For example,299

in the CITATION2 dataset, the model needs to predict the 1,000 negative neighbor candidates for300

every positive link. These settings are defined in the official OGBL benchmarks and we follow them301

to conduct the experiments in Table 2. For example, the training time on the per epoch is around 4302

minutes on the OGBL-CITATION2 dataset, in our experiments running on on a machine with 80303

Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz CPUs, and a single NVIDIA V100 GPU with 16GB RAM.304

Empirically, we observe that the training and inference time grows linearly by the number of links305

that the model needs to predict on.306

We agree with the reviewers that the different performance gaps between the baseline methods are307

worth investigation. A major difference between GraphSAGE and GCN is that the former samples308

partial neighbors for message passing during training. And a significant difference between DDI and309

other datasets is its small number of nodes and higher average degrees per node. When aggregating310

the features from massive neighbors in DDI, it is challenging for GCN to aggregate the most valuable311

information from massive neighbors. In contrast, GraphSAGE is able to aggregate information from312

partial neighbors at different training steps, which act as a kind of data augmentation for GraphSAGE313

8



Flashlight : Scalable Link Prediction with Effective Decoders

to adapt to different neighbors’ diverse information specialized by the complex graph topology. We314

follow the reviewers’ comments to discuss this phenomenon among the baseline methods to improve315

our paper.316

In our experiments, we strictly follow the official settings of OGBL leaderboards to guarantee a fair317

comparison. Therefore, our results are as same as those reported in the leaderboards. In the OGBL318

leaderboards, the decoders that are used with the method GCN, GraphSAGE, and Node2Vec in the319

OGBL leaderboards are all the HadmardMLP, as shown in the official implementations given by the320

OGBL group .321

In Table 2, different columns refer to the performances of different decoders. Therefore, to compare322

the results in Table 2 with those in the OGBL leaderboard of the same encoders, please refer to the323

column of HadmardMLP, the fifth column in Table 2. The performance in Table 2 is as same as those324

in the OGBL leaderboard for the same encoders since we strictly follow the official settings of OGBL325

leaderboards to guarantee a fair comparison.326

Note that the benchmark settings of these datasets sample a small portion of negative edges for the test327

evaluation, which is not challenging enough to evaluate the scalability of LP decoders on retrieving328

the top scoring neighbors from massive candidates in practice.329

5.4 The Flashlight Algorithm Effectively Finds the Top Scoring Neighbors330

To evaluate the effectiveness of our Flashlight on retrieving the top scoring neighbors for the331

HadamardMLP decoder, we propose a more challenging test setting for the OGB LP datasets.332

Given a source node, we takes its top 100 scoring neighbors of the HadamardMLP decoder as the333

ground-truth for retrievals. We set the task as retrieving k neighbors for a source node that can match334

the ground-truth neighbors as much as possible. We formally define the metric as Recall@k, which is335

the portion of the ground-truth neighbors being in the top k neighbors retrieved by different methods.336

0 100 200 300 400 500
k Neighbors Retrieved by Flashlight

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

@
k

(%
)

Oracle

Flashlight on OGBL-CITATION2

Flashlight on DDI

Figure 3: Recall@k is the fraction of the 100 top
scoring neighbors of HadamardMLP ranked in the
top k neighbors retrieved by Flashlight. We report
Recall@k averaged over all the source nodes on OGBL-
CITATION2 and OGBL-DDI.

We sample 1000 nodes as the source337

nodes from the OGBL-DDI and OGBL-338

CITATION2 datasets respectively for eval-339

uation. We evaluate the effectivness of our340

Flashlight algorithm by checking whether it341

can find the top scoring neighbors for every342

source node. We set the number of Flash-343

light iterations as 10 and the number of re-344

trieved neighbors per iteration as 50. We345

present the Recall@k for k from 1 to 500346

averaged over all the source nodes in Fig.347

3. The “oracle” curve represents the perfor-348

mance of a optimum searcher, of which the349

retrieved top k neighbors are exactly the top350

k scoring neighbors of HadamardMLP.351

When k = 100, the 100 neighbors retrieved352

by our Flashlight can cover more than 80%353

ground-truth neighbors. When k ≥ 200,354

the recall reaches 100%. As a comparison,355

if we randomly sample the candidate neighbors for retrievals, the Recall@k grows linearly with k356

and is less than 1× 10−4 for k = 100 on the OGBL-CITATION2 dataset. The curves of Flashlight is357

close the optimum curve of the “oracle”. These results demonstrate the highly effectiveness of our358

Flashlight on finding the top scoring neighbors.359

Given the large OGBL-Citation2 dataset and smaller DDI dataset, our Flashlight exhibits similar360

Recall@k performance given different numbers k of retrieved neighbors. This implies that our361

Flashlight can accurately find the top scoring neighbors for both small and large graphs.362

5.5 Inference Efficiency of Link Prediction with Our Flashlight Algorithm363

We use the throughputs to evaluate the inference speed of neighbor retrieval of different methods.364

The throughput is defined as how many source nodes that a method can serve to retrieve the top365

100 scoring neighbors per second. Except for the LP models that follow the encoder and decoder366

9



Flashlight : Scalable Link Prediction with Effective Decoders

Figure 4: The inference speed of different LP methods on the OGBL-CITATION2 dataset. The
y-axis (througputs) is in the logarithmic scale.

0.0 0.2 0.4 0.6 0.8 1.0
Recall @100

10−1

100

101

102

T
h

ro
u

gh
p

u
t

(n
od

es
/

se
co

n
d

)

HadmardMLP w/ Random Sampling

HadmardMLP w/ Flashlight

0.0 0.2 0.4 0.6 0.8 1.0
Recall @100

10−1

100

101

102

T
h

ro
u

gh
p

u
t

(n
od

es
/

se
co

n
d

)

HadmardMLP w/ Random Sampling

HadmardMLP w/ Flashlight

Figure 5: The tradeoff between the inference speed (y-axis) and the effectiveness of finding the top
scoring neighbors (x-axis) on the OGBL-CITATION2 (left) and OGBL-PPA (right) datasets.

architectures, e.g., GraphSAGE [12], GCN [5], and PLNLP [6], there are some subgraph based LP367

models, e.g., SUREL [7] and SEAL [27]. The common issue of the subgraph based models is the poor368

efficiency: they have to crop a seperate subgraph for every node pair to calculate the LP probability369

on the node pair. In this sense, the node embeddings cannot be shared on the LP calculation for370

different node pairs. This leads to the much lower inference speed of the subgraph based LP models371

than the encoder-decoder LP models. We compare the inference effeciency of different methods on372

the OGBL-CITATION2 dataset in Fig. 4, where we present the inference speed of different methods373

when achieving the 100% Recall for the top 100 scoring neighbors.374

We observe that our Flashlight significantly accelerate the inference speed of LP models GraphSAGE375

[12], GCN [5], and PLNLP [6] with the HadamardMLP decoders by more than 100 times. This gap376

will be even larger for the datasets of larger scales, because the inference with our Flashlight holds the377

sublinear time complexity while the HadamardMLP decoders holds the linear complexity. Note that378

the y-axis is in logoratimic scale. The subgraph based methods SUREL [7] and SEAL [27] hold the379

inference speed of throuputs lower than 1×10−2 and 1×10−3 respectively, which is not applicable to380

the practical services that require the low latency of milliseconds.381

Taking a further step, we comprehensively evaluate the tradeoff between the inference speed and the382

effectiveness of finding the top scoring neighbors. Taking GraphSAGE as the encoder, we present383

the tradeoff curves between the throughputs and the Recall on retrieving the top 100 neighbors for384

the OGBL-CITATION2 and OGBL-PPI datasets in Fig. 5. In comparison with our Flashlight, we385

take the HadamardMLP decoder with the Random Sampling as the baseline for comparison. For386

example, on the OGBL-CITATION2 dataset, when achieving the Recall as more than 80%, the387

HadamardMLP with our Flashlight can serve more than 200 source nodes per second, while the388

HadamardMLP with the random sampling can only serve less than 1 node per second. Overall, our389

Flashlight achieves much better inference speed and effectiveness tradeoff than the HadamardMLP390

with random sampling.391

10



Flashlight : Scalable Link Prediction with Effective Decoders

We take the random sampling as a baseline method to reduce the search space for HadmardMLP392

because it is easy to understand and can act as a default choice when reducing the search space.393

Wwe have taken a stronger baseline DotMax for comparison. We believe that the DotMax is a good394

baseline for comparison to distinguish the effectiveness on inference acceleration of our Flashlight.395

5.6 Ablation Study396

We analyze the sensitivity of Flashlight to the hyper-parameter: the number of iterations, and the397

number of retrieved neighbors per iteration. The recall result on retrieving the top 100 scoring398

neighbors for the OGBL-CITATION2 dataset is presented in the following table: We alter number

Number of Iterations 1 2 3 4 5
Retrieving 100 neighbors per iteration 58.7% 91.5% 99.2% 100.0% 100.0%
Retrieving 200 neighbors per iteration 64.3% 94.2% 100.0% 100.0% 100.0%
Retrieving 300 neighbors per iteration 66.2% 95.7% 100.0% 100.0% 100.0%
Retrieving 400 neighbors per iteration 67.6% 98.9% 100.0% 100.0% 100.0%

399
the number of iterations among {1, 2, 3, 4, 5} and number of retrieved neighbors per iteration400

among {100, 200, 300, 400}. For the result corresponding to Flashlight using the all-one mask401

neuron activation, please refer to the first column. The performance of Flashlight is relatively smooth402

when parameters are within certain ranges. However, extremely small values of the number of403

iterations and the number of retrieved neighbors per iteration result in poor performances. A too404

small number of iterations make the Flashlight unable to adaptively adjust its querying embedding405

on finding neighbors, while a too small number of retrieved neighbors per iteration make Flashlight406

unable to retrieve enough neighbors to cover the top 100 scoring neighbors, i.e., the ground-truth407

ones. Empirically, increasing the number of iterations for Flashlight can boost the performance408

more fast than increasing the number of retrieved neighbors per iteration. The reason is that with409

more iterations, Flashlight can find the neuron activation patterns of the high scoring neighbors more410

effectively and thus be able to adaptively adjust the query embeddings. Moreover, only a poorly set411

hyper-parameter does not lead to significant performance degradation, which demonstrates that our412

Flashlight framework is able to find the high scoring neighbors among massive candidates on large413

graphs. We follow the reviewers’ suggestions to add these additional experimental results to improve414

our paper.415

5.7 Comparison with More Baselines and Datasets416

We agree with the reviewers that comparing our Flashlight method with more baselines can better417

justify the effectiveness of Flashlight. We also agree that finding the neighbors that maximize the418

dot product between the target node and neighbors’ embeddings to reduce the search space for419

the HadmardMLP is a good baseline to compare with. For the simplicity of expression, we term420

this baseline as DotMax. We conducted the experiments on finding the top scoring neighbors for421

HadmardMLP with DotMax. We found that DotMax needs to retrieve much more neighbors than422

our Flashlight to achieve the same Recall as Flashlight on finding the top 100 scoring neighbors.423

For example, on the OGBL-CITATION2 dataset, which is the largest dataset among the used data424

holding nearly 3 million nodes as shown in Table 1, we follow the experimental settings as introduced425

in Sec. 6.4 to test DotMax. DotMax achieves the following Recall on finding the top 100 scoring426

neighbors for HadmardMLP with different numbers of retrieved neighbors: In comparison, under

Number of Neighbors Retrieved by DotMax 20000 40000 60000 80000 100000
Recall on Finding the Top 100 Scoring Neighbors 28.3% 42.5% 51.1% 63.4% 71.2%

427
the same experimental setting, when retrieving only 100 neighbors, our Flashlight can cover more428

than 80% of the top 100 scoring neighbors for HadmardMLP (as shown in Fig. 3). When retrieving429

more than 200 neighbors, Flashlight achieves the recall of 100%. Overall, our proposed Flashlight430

can reduce the search space for the HadmardMLP decoder much more effectively than the DotMax.431

The reason is that Dot Product demands the homophily of graph data to effectively infer the link432

between nodes. In contrast, thanks to the universal approximation capability, MLP can approximate433

any continuous function, and thus does not demand the homophily of graph data for effective LP. This434

constraint makes the Dot Product and HadamardMLP prefer different patterns of nodes’ semantic435

11



Flashlight : Scalable Link Prediction with Effective Decoders

embeddings on computing the link prediction scores. As a result, using DotMax to reduce the search436

space cannot effectively cover the top scoring neighbors for HadamardMLP with a small number of437

retrieved neighbors.438

Overall, our Flashlight improves the link prediction inference speed of HadmardMLP much more439

significantly than DotMax. For example, under the experimental setting introduced in Sec. 6.5. The440

inference speed in terms of throughputs of HadmardMLP (nodes/second), of HadmardMLP with441

DotMax, and of HadmardMLP with Flashlight on OGBL- CITATION2, when the Recall on retrieving442

the top 100 neighbors on the OGBL-CITATION2 dataset is 100%, are as following respectively: The

Method HadmardMLP HadmardMLP w/ DotMax HadmardMLP w/ Flashlight
Inference Throughputs (nodes/second) 0.62 6.13 108.45

443
experiments are run on on a machine with 80 Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz CPUs, and a444

single NVIDIA V100 GPU with 16GB RAM. Overall, our Flashlight achieves much higher inference445

acceleration than the DotMax for the HadamardMLP decoder.446

Our Flashlight algorithm holds sublinear time complexity on finding top scoring neighbors for447

HadamardMLP decoders, allowing for fast and scalable inference. Empirical results show that448

Flashlight accelerates the inference of LP models by more than 100 times on the large OGBL-449

CITATION2 dataset without sacrificing the effectiveness. Overall, our work paves the way for the450

use of effective LP decoders in practical settings by greatly accelerating their inference.451

We take the newly constructed OGBL dataset OGBL leaderboard OGBL-VESSEL as an additional452

dataset for evaluation. OGBL-VESSEL holds 3,538,495 nodes and 5,345,897 edges. The OGBL-453

VESSEL dataset is an undirected, unweighted spatial graph of the whole mouse brain [28]. To454

generate it, the authors developed a graph extraction pipeline, where nodes represent bifurcation455

points, and edges represent the vessels. The node features are 3-dimensional, representing the spatial456

(x, y, z) coordinates of the nodes in Allen Brain atlas reference space. The OGBL-VESSEL graph457

aims to inspire researchers in the neuroscience domain to adapt graph-structure representations458

for their research. For machine learning researchers, this dataset raises challenging graph learning459

research questions in terms of incorporating biological priors into learning algorithms, or in scaling460

these algorithms to handle sparse, spatial graphs with millions of nodes and edges.461

Following the experimental setting in Sec. 6.5, we test the inference speed in terms of throughputs of462

HadmardMLP (nodes/second), of HadmardMLP with DotMax, and of HadmardMLP with Flashlight463

on OGBL-VESSEL, when the Recall on retrieving the top 100 neighbors on the OGBL-VESSEL464

dataset is 100%. The results are presented as follows: The experiments are run on on a machine with

Method HadmardMLP HadmardMLP w/ DotMax HadmardMLP w/ Flashlight
Inference Throughputs (nodes/second) 0.49 4.11 91.52

465
80 Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz CPUs, and a single NVIDIA V100 GPU with 16GB466

RAM. Overall, our Flashlight achieves much higher inference acceleration than the DotMax for the467

HadamardMLP decoder on the OGBL-VESSEL dataset.468

We agree that the evaluation on more complex datasets can further justify the applicability of our469

method. Therefore, we additionally test our Flashlight method on the heterogenous OGB dataset:470

OGBN-MAG. OGBN-MAG is a heterogeneous network composed of a subset of the Microsoft471

Academic Graph (MAG). It contains 736,389 papers and 1,134,649 authors as well as the links472

between the above two kinds of nodes: an author “writes” a paper. Each paper is associated with a473

128-dimensional word2vec feature vector.474

We follow the experimental settings in Sec. 5.4 to conducted the experiments on finding the top475

scoring authors for every paper for GCN with HadmardMLP. We found that our Flashlight exhibits476

consistently high effectiveness on finding the top scoring neighbors on the OGBN-MAG. Specifically,477

our Flaslight achieves the following Recall on finding the top 100 scoring neighbors for HadmardMLP478

with different numbers of retrieved neighbors:479

We found that DotMax needs to retrieve much more neighbors than our Flashlight to achieve the480

same Recall as Flashlight on finding the top 100 scoring neighbors. For example, on the OGBL-481

CITATION2 dataset, which is the largest dataset among the used data holding nearly 3 million nodes482

12



Flashlight : Scalable Link Prediction with Effective Decoders

as shown in Table 1, we follow the experimental settings as introduced in Sec. 6.4 to test DotMax.483

DotMax achieves the following Recall on finding the top 100 scoring neighbors for HadmardMLP484

with different numbers of retrieved neighbors:

Number of Neighbors Retrieved by Flashlight 50 100 150 200 250
Recall on Finding the Top 100 Scoring Neighbors 42.8% 77.9% 91.6% 97.1% 99.2%

485

In contrast, the baseline method DotMax (as shown in our response to Q1 of reviewer LgUa), DotMax486

needs to retrieve much more neighbors than our Flashlight to achieve the same Recall as Flashlight487

on finding the top 100 scoring neighbors:488

Number of Neighbors Retrieved by DotMax 20000 40000 60000 80000 100000
Recall on Finding the Top 100 Scoring Neighbors 22.1% 39.3% 46.4% 55.2% 60.1%

We observe that, under the same experimental setting, when retrieving only 150 neighbors, our489

Flashlight can cover more than 90% of the top 100 scoring neighbors for HadmardMLP, while490

DotMax needs to retrieve more than 100000 neighbors to achieve the recall of only around 60%. Dot491

Product demands the homophily of graph data to effectively infer the link between nodes, which492

makes it hard to effectively work on the heterogenous graphs. In contrast, our Flashlight effectively493

retrieve the high scoring neighbors for HadamardMLP, which does not rely on the homophily of494

graph data for effective link prediction.495

Our Flashlight algorithm holds sublinear time complexity on finding top scoring neighbors for496

HadamardMLP decoders, allowing for fast and scalable inference. Empirical results show that497

Flashlight accelerates the inference of LP models by more than 100 times on the large OGBL-498

CITATION2 and OGBL-VESSEL datasets without sacrificing the effectiveness. Overall, our work499

paves the way for the use of effective LP decoders in practical settings by greatly accelerating their500

inference.501

6 Related Work502

6.1 Link Prediction Models503

Existing LP models can be categorized into three families: heuristic feature based [3, 9, 29–31],504

latent embedding based [12, 26, 32–35], and neural network based ones. The neural network-based505

link prediction models are mainly developed in recent years, which explore non-linear deep structural506

features with neural layers. Variational graph auto-encoders [13] predict links by encoding graph with507

graph convolutional layer [5]. Another two state-of-the-art neural models WLNM [36] and SEAL508

[37] use graph labeling algorithm to transfer union neighborhood of two nodes (enclosing subgraph)509

as meaningful matrix and employ convolutional neural layer or a novel graph neural layer DGCNN510

[38] for encoding. More recently, [6, 8] summarized the architectures LP models, and formally define511

the encoders and decoders.512

Different from the previous work, we focus on analyzing the effectiveness of different LP decoders513

and improving the scalability of the effective LP decoders. In practice, we find that the Hadamard514

decoders exhibit superior effectiveness but poor scalability for inference. Our work significantly515

accelerates the inference of HadamardMLP decoders to make the effective LP scalable.516

6.2 Maximum Inner Product Search517

Finding the top scoring neighbors for the Dot Product decoder at the sublinear time complexity is a518

well studied research problem, known as the approximate maximum inner product search (MIPS).519

There are several approaches to MIPS: sampling based [11, 39, 40], LSH-based [41–44], graph based520

[45–47], and quantization approaches [20, 21]. MIPS is a fundamental building block in various521

application domains [48–53], such as information retrieval [54, 55], pattern recognition [56, 57], data522

mining [58, 59], machine learning [60, 61], and recommendation systems [62, 63].523

With the explosive growth of datasets’ scale and the inevitable curse of dimensionality, MIPS is524

essential to offer the scalable services. However, the HadamardMLP decoders are nonlinear and there525

do not exist the well studied sublinear complexity algorithms to find the top scoring neighbors for526

13



Flashlight : Scalable Link Prediction with Effective Decoders

HadamardMLP [10]. In this work, we utilize the well studied approximate MIPS techniques with the527

adaptively adjusted query embeddings to find the top scoring neighbors for the MLP decoders in a528

progressive manner. Our method supports the plug-and-play use during inference and significantly529

acclerates the LP inference with the effective MLP decoders.530

7 Conclusion531

Our theoretical and empirical analysis suggests that the HadamardMLP decoders are a better default532

choice than the Dot Product in terms of LP effectiveness. Because there does not exist a well-533

developed sublinear complexity top scoring neighbor searching algorithm for HadamardMLP, the534

HadamardMLP decoders are not scalable and cannot support the fast inference on large graphs. To535

resolve this issue, we propose the Flashlight algorithm to accelerate the inference of LP models with536

HadamardMLP decoders. Flashlight progressively operates the well-studied MIPS techniques for a537

few iterations. We adaptively adjust the query embeddings at every iteration to find more high scoring538

neighbors. Empirical results show that our Flashlight accelrates the inference of LP models by more539

than 100 times on the large OGBL-CITATION2 graph. Overall, our work paves the way for the use540

of strong LP decoders in practical settings by greatly accelerating their inference.541

References542

[1] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A:543

statistical mechanics and its applications, 390(6):1150–1170, 2011. 1544

[2] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link prediction in545

complex networks. ACM computing surveys (CSUR), 49(4):1–33, 2016. 1546

[3] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):547

211–230, 2003. 1, 13548

[4] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-549

mender systems. Computer, 42(8):30–37, 2009. 1550

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional551

networks. arXiv preprint arXiv:1609.02907, 2016. 1, 2, 3, 8, 10, 13552

[6] Zhitao Wang, Yong Zhou, Litao Hong, Yuanhang Zou, and Hanjing Su. Pairwise learning for553

neural link prediction. arXiv preprint arXiv:2112.02936, 2021. 1, 2, 3, 8, 10, 13, 17, 18554

[7] Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. Algorithm and555

system co-design for efficient subgraph-based graph representation learning. arXiv preprint556

arXiv:2202.13538, 2022. 1, 10557

[8] Chuxiong Sun and Guoshi Wu. Adaptive graph diffusion networks with hop-wise attention.558

arXiv preprint arXiv:2012.15024, 2020. 1, 2, 3, 13, 17, 18559

[9] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information.560

The European Physical Journal B, 71(4):623–630, 2009. 1, 13561

[10] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. Neural collaborative filtering vs.562

matrix factorization revisited. In Fourteenth ACM conference on recommender systems, pages563

240–248, 2020. 1, 2, 3, 4, 14, 17, 18564

[11] Rui Liu, Tianyi Wu, and Barzan Mozafari. A bandit approach to maximum inner product search.565

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4376–4383,566

2019. 1, 13567

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large568

graphs. Advances in neural information processing systems, 30, 2017. 2, 3, 8, 10, 13569

[13] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint570

arXiv:1611.07308, 2016. 2, 13571

[14] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure572

Leskovec. Graph convolutional neural networks for web-scale recommender systems. In573

Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &574

data mining, pages 974–983, 2018. 2575

14



Flashlight : Scalable Link Prediction with Effective Decoders

[15] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of576

control, signals and systems, 2(4):303–314, 1989. 2, 3577

[16] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-578

lsc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430,579

2021. 3, 8580

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,581

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information582

processing systems, 30, 2017. 3583

[18] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang584

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine585

translation system: Bridging the gap between human and machine translation. arXiv preprint586

arXiv:1609.08144, 2016. 3587

[19] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H Chi. Latent588

cross: Making use of context in recurrent recommender systems. In Proceedings of the Eleventh589

ACM International Conference on Web Search and Data Mining, pages 46–54, 2018. 4590

[20] Xinyan Dai, Xiao Yan, Kelvin KW Ng, Jiu Liu, and James Cheng. Norm-explicit quantization:591

Improving vector quantization for maximum inner product search. In Proceedings of the AAAI592

Conference on Artificial Intelligence, volume 34, pages 51–58, 2020. 4, 13593

[21] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv594

Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International595

Conference on Machine Learning, pages 3887–3896. PMLR, 2020. 4, 7, 13596

[22] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. Fast item ranking under neural network597

based measures. In Proceedings of the 13th International Conference on Web Search and Data598

Mining, pages 591–599, 2020. 4599

[23] Rihan Chen, Bin Liu, Han Zhu, Yaoxuan Wang, Qi Li, Buting Ma, Qingbo Hua, Jun Jiang,600

Yunlong Xu, Hongbo Deng, et al. Approximate nearest neighbor search under neural similarity601

metric for large-scale recommendation. arXiv preprint arXiv:2202.10226, 2022. 4602

[24] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu603

activation. Advances in neural information processing systems, 30, 2017. 5604

[25] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele605

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.606

Advances in neural information processing systems, 33:22118–22133, 2020. 7607

[26] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In608

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and609

data mining, pages 855–864, 2016. 8, 13610

[27] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using611

graph neural networks for multi-node representation learning. Advances in Neural Information612

Processing Systems, 34:9061–9073, 2021. 10613

[28] Johannes C Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Büschl, Chinmay614

Prabhakar, Anjany Sekuboyina, Mihail Todorov, Georgios Kaissis, Ali Ertürk, et al. Whole brain615

vessel graphs: A dataset and benchmark for graph learning and neuroscience. In Thirty-fifth616

Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round617

2), 2021. 12618

[29] Gobinda G Chowdhury. Introduction to modern information retrieval. Facet publishing, 2010.619

13620

[30] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In621

Proceedings of the twelfth international conference on Information and knowledge management,622

pages 556–559, 2003.623

[31] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity. In Proceed-624

ings of the eighth ACM SIGKDD international conference on Knowledge discovery and data625

mining, pages 538–543, 2002. 13626

[32] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Joint627

european conference on machine learning and knowledge discovery in databases, pages 437–628

452. Springer, 2011. 13629

15



Flashlight : Scalable Link Prediction with Effective Decoders

[33] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-630

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge631

discovery and data mining, pages 701–710, 2014.632

[34] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-633

scale information network embedding. In Proceedings of the 24th international conference on634

world wide web, pages 1067–1077, 2015.635

[35] Zhitao Wang, Chengyao Chen, and Wenjie Li. Predictive network representation learning for636

link prediction. In Proceedings of the 40th international ACM SIGIR conference on research637

and development in information retrieval, pages 969–972, 2017. 13638

[36] Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In639

Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and640

data mining, pages 575–583, 2017. 13641

[37] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in642

neural information processing systems, 31, 2018. 13643

[38] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning644

architecture for graph classification. In Proceedings of the AAAI conference on artificial645

intelligence, volume 32, 2018. 13646

[39] Edith Cohen and David D Lewis. Approximating matrix multiplication for pattern recognition647

tasks. Journal of Algorithms, 30(2):211–252, 1999. 13648

[40] Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S Dhillon. A greedy approach for budgeted649

maximum inner product search. Advances in neural information processing systems, 30, 2017.650

13651

[41] Qiang Huang, Guihong Ma, Jianlin Feng, Qiong Fang, and Anthony KH Tung. Accurate652

and fast asymmetric locality-sensitive hashing scheme for maximum inner product search. In653

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &654

Data Mining, pages 1561–1570, 2018. 13655

[42] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product656

search. In International Conference on Machine Learning, pages 1926–1934. PMLR, 2015.657

[43] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner658

product search (mips). Advances in neural information processing systems, 27, 2014.659

[44] Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. Norm-ranging lsh for660

maximum inner product search. Advances in Neural Information Processing Systems, 31, 2018.661

13662

[45] Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, and Ming-Chang Yang. Understanding663

and improving proximity graph based maximum inner product search. In Proceedings of the664

AAAI Conference on Artificial Intelligence, volume 34, pages 139–146, 2020. 13665

[46] Stanislav Morozov and Artem Babenko. Non-metric similarity graphs for maximum inner666

product search. Advances in Neural Information Processing Systems, 31, 2018.667

[47] Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. Möbius transformation for fast inner668

product search on graph. Advances in Neural Information Processing Systems, 32, 2019. 13669

[48] Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, and Naonori Ueda. Fast approximate similarity670

search based on degree-reduced neighborhood graphs. In Proceedings of the 17th ACM SIGKDD671

international conference on Knowledge discovery and data mining, pages 1055–1063, 2011. 13672

[49] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. Hd-index: Pushing the673

scalability-accuracy boundary for approximate knn search in high-dimensional spaces. arXiv674

preprint arXiv:1804.06829, 2018.675

[50] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search676

with the navigating spreading-out graph. arXiv preprint arXiv:1707.00143, 2017.677

[51] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search678

using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and679

machine intelligence, 42(4):824–836, 2018.680

[52] Philipp M Riegger. Literature survey on nearest neighbor search and search in graphs. 2010.681

16



Flashlight : Scalable Link Prediction with Effective Decoders

[53] Wenhui Zhou, Chunfeng Yuan, Rong Gu, and Yihua Huang. Large scale nearest neighbors682

search based on neighborhood graph. In 2013 International Conference on Advanced Cloud683

and Big Data, pages 181–186. IEEE, 2013. 13684

[54] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron Dom,685

Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, et al. Query by image and video686

content: The qbic system. computer, 28(9):23–32, 1995. 13687

[55] Chun Jiang Zhu, Tan Zhu, Haining Li, Jinbo Bi, and Minghu Song. Accelerating large-scale688

molecular similarity search through exploiting high performance computing. In 2019 IEEE689

International Conference on Bioinformatics and Biomedicine (BIBM), pages 330–333. IEEE,690

2019. 13691

[56] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on692

information theory, 13(1):21–27, 1967. 13693

[57] Atsutake Kosuge and Takashi Oshima. An object-pose estimation acceleration technique for694

picking robot applications by using graph-reusing k-nn search. In 2019 First International695

Conference on Graph Computing (GC), pages 68–74. IEEE, 2019. 13696

[58] Qiang Huang, Jianlin Feng, Qiong Fang, Wilfred Ng, and Wei Wang. Query-aware locality-697

sensitive hashing scheme for l_p norm. The VLDB Journal, 26(5):683–708, 2017. 13698

[59] Masajiro Iwasaki. Pruned bi-directed k-nearest neighbor graph for proximity search. In699

International Conference on Similarity Search and Applications, pages 20–33. Springer, 2016.700

13701

[60] Yuan Cao, Heng Qi, Wenrui Zhou, Jien Kato, Keqiu Li, Xiulong Liu, and Jie Gui. Binary702

hashing for approximate nearest neighbor search on big data: A survey. IEEE Access, 6:703

2039–2054, 2017. 13704

[61] Scott Cost and Steven Salzberg. A weighted nearest neighbor algorithm for learning with705

symbolic features. Machine learning, 10(1):57–78, 1993. 13706

[62] Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo, Benben Liao,707

and Guangyong Chen. Pmd: An optimal transportation-based user distance for recommender708

systems. In European Conference on Information Retrieval, pages 272–280. Springer, 2020. 13709

[63] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative710

filtering recommendation algorithms. In Proceedings of the 10th international conference on711

World Wide Web, pages 285–295, 2001. 13712

[64] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via713

over-parameterization. In International Conference on Machine Learning, pages 242–252.714

PMLR, 2019. 17715

[65] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials with716

neural networks. In International conference on machine learning, pages 1908–1916. PMLR,717

2014. 17718

A Learning a Dot Product decoder with a HadamardMLP decoder is Easy719

Before we have discussed the limitations of the Dot Product decoder. An interesting questions is720

whether the HadamardMLP decoder can replace the Dot Product decoder by approximating it. If the721

MLP decoder can learn a dot product easily, it is safe to use MLP decoder instead of the dot product722

ones in most cases. There are similar problems actively studied in machine learning. Existing work723

imply that the difficulty scales polynomial with dimensionality d and 1/ϵ in theory [10, 64, 65]. This724

motivates us to investigate the question empirically.725

We set up a synthetic learning task where given two embeddings xi,xj ∈ Rd and a label xi • xj , we726

want to obtain a MLP function that approximates the xi • xj with the inputs xi,xj ∈ Rd. For this727

experiment, we create the datasets including the embedding matrix as E ∈ R106×d. We draw every728

row in E from N (0, I) independently. Then, we uniformly sample (without replacement) 104 and S729

embedding pair combinations from E to form the test and training sets (no overlap) respectively.730

We train the MLP on the training and evalute it on the test set. For the architecture of the MLP, we731

keep it simple: we follow the existing work [6, 8] to set the number of layers as 2 and the number of732

17



Flashlight : Scalable Link Prediction with Effective Decoders

0 2000 4000 6000 8000 10000
Epoch

10−4

10−3

10−2

10−1

100

101

102

T
es

t
M

S
E

Naive Output

1000 training pairs

2000 training pairs

5000 training pairs

10000 training pairs

20000 training pairs

0 2000 4000 6000 8000 10000
Epoch

10−4

10−3

10−2

10−1

100

101

102

T
es

t
M

S
E

Naive Output

5000 training pairs

10000 training pairs

20000 training pairs

50000 training pairs

100000 training pairs

Figure 6: A MLP decoder can learn a Dot Product decoder well with enough training data. The left
and right figures shows the MSE differences (y-axis) per epoch (x-axis) between the outputs of dot
product and the MLP decoders given different training sizes with the input embedding dimenionality
as d = 64 and d = 128 respectively. The naive output denotes the outputs of zeros.

2000 4000 8000 16000 32000 64000

Training Set Size (Number of Embedding Pairs)

101

102

103

104

105

106

107

T
es

t
In

ve
rs

e
M

S
E

d = 64

d = 96

d = 128

Figure 7: Test inverse MSE differences between the outputs of Dot Product and MLP decoders after
convergence (y-axis) versus the training set size (x-axis).

hidden units as same as the input embeddings: d. For the optimizer, we also folow the existing work733

[6, 8] to choose the Adam optimizer.734

As for evaluation metrics, we compute the MSE (Mean Squared Error) differences between the735

predicted score of the MLP and the dot product decoders. We measure the MSE of a naive model that736

predicts always 0 (the average rating). Every experiment is repeated 5 times and we report the mean.737

Fig. 6 shows the approximation errors on the MLP per epoch given different number of training738

pairs and dimensions. The figure suggests that an MLP can easily approximate the dot product with739

enough training data. Consistent with the theory, the number of samples needed scales polynominally740

with the increasing dimensions and reduced errors. Ancedotally, we observe the number of needed741

training samples is about O(dα/ϵβ) for α ≈ 2, β ≪ 1 (see Fig. 7). In all cases, the MSE errors of742

the MLP decoder are negligible compared with the naive output.743

This experiment shows that an MLP can easily approximate the dot product with enough training744

data. We hope this can explain, at least partially, why the MLP decoder generally performs better745

than the dot product.746

Our conclusion seems to be distinct to to the existing work [10], which claims that the ConcatMLP747

is hard to learn a Dot Product. Actually, our conclusion is not conflicted with that in [10]. This748

ConcatMLP decoder processes the concatenation of the paired embeddings instead of the Hadamard749

product of the paired embeddings as the HadamardMLP. The HadamardMLP holds the inductive bias750

similar to the Dot Product, which makes the former easily learns the latter. Actually, we show that751

a simple two-layer MLP with only two hidden units is equivalent to the Dot Product with specific752

weights. We assign the first layer weights for two hidden units as 1 and −1 and the second layer753

weights as ones. Then, we have its output as:754

sij = ϕMLP(xi,xj) = ReLU(1•(xi⊙xj))+ReLU(−1•(xi⊙xj)) = 1•(xi⊙xj) = xi •xj , (14)

18



Flashlight : Scalable Link Prediction with Effective Decoders

which is equivalent to the Dot Product decoder. From this result, we find that any MLP decoder with755

the careful initialization is equivalent to the Dot Product decoder and thus can learn the Dot Product756

easily.757

19


	1 Introduction
	2 Revisiting Link Prediction Decoders
	2.1 Dot Product Decoder
	2.2 HadamardMLP (MLP following Hadamard Product) Decoder
	2.3 Other Link Prediction Decoders
	2.4 HadamardMLP is Generally More Effective than Other Decoders

	3 Scalability of Link Prediction Decoders
	4 Flashlight: Scalable Link Prediction with Effective Decoders
	5 Experiments
	5.1 Datasets
	5.2 Hyper-parameter Settings
	5.3 Effectiveness of Link Prediction Decoders
	5.4 The Flashlight Algorithm Effectively Finds the Top Scoring Neighbors
	5.5 Inference Efficiency of Link Prediction with Our Flashlight Algorithm
	5.6 Ablation Study
	5.7 Comparison with More Baselines and Datasets

	6 Related Work
	6.1 Link Prediction Models
	6.2 Maximum Inner Product Search

	7 Conclusion
	A Learning a Dot Product decoder with a HadamardMLP decoder is Easy

