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A Appendix

A.1 Keypoint Transfer Evaluation

We visualize keypoint transfer evaluation procedure in Fig. 1. Keypoints are annotated for meaningful
body parts of human and elephants in the MSCOCO format. For human, we annotate fifteen points
including “nose, neck, right shoulder, right elbow, right wrist, left shoulder, left elbow, left wrist, mid
hip, right hip, right knee, right ankle, left hip, left knee, and left ankle”. For elephants, we annotate
eleven keypoints including two keypoints for each leg, two keypoint for nose, and one keypoint for
tail.
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Figure 1: Visualization of keypoint transfer results. Red dots indicate annotated keypoints, green circle indicates
successful transfer, and blue circle indicates unsuccessful transfer. We transfer keypoints in the reference image
with inferred dense correspondence fields as discussed in Sec. 4.1. Such correspondence fields can be established
between any two frame in a video, or a set of videos by re-projection via a canonical 3D model. The inferred
correspondence field of ViSER is crisper and generally more accurate than CSE [5].

A.2 Implementation Details

Surface property rendering As briefly mentioned in Sec. 3.1, we render surface properties using a
differentiable renderer, SoftRas [3]. Specifically, we have

Ît = R(Ct;Vt,F) (1)

where Ît is the rendered raw pixels,R(·) is the rasterization function, Ct is the texture sampled at
each mesh vertex position using Eq. (13) of the main text, Vt is the articulated vertices defined in Eq.
(1) of the main text, and F is the topology of a mesh. We refer readers to LASR [12] for rendering
equations of optical flow.

Surface coordinate-based MLPs As discussed in Sec. 3.2 and Sec. 3.4, we use coordinate-based
MLPs with Fourier encoding to represent canonical surface properties, including surface features F,
texture Ct, and instance-specific shape deformation ∆Vk.
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Specifically, we follow NeRF [4] to encode the input (X,Y, Z) coordinates (but not viewing direction)
with a set of sine and cosine functions of increasing frequency before passing into an MLP regressor,
which is shown useful for learning high-frequency functions from low-dimensional inputs [10].

To encode time-varying texture (due to lighting and shadows), we follow Pixel-NeRF [14] to further
learn an image-dependent latent code that modulates the intermediate features of the video-specific
texture MLPs. Similarly, to learn instance-specific shape deformation, we learn an instance-specific
latent code to modulate the category-specific deformation MLPs.

A.3 Additional Regularization

Regularization on bones Following LASR [13], we use a set of Gaussian "bones" in the canonical
space to represent skinning weights. However, we find the bones tend to move outside the surface.
We posit that the skinning weights are ambiguous to optimize from limited video observations. In
practice, we force the bones to stay around the object surface by minimizing the distance between
bone centers and sampled surface points. The distance is measured with Sinkhorn divergence [1],
which interpolates between optimal Wasserstein and kernel distances.

Regularization on surface appearance To handle time-dependent surface appearances, we use a
coordinate-based MLP with an CNN-predicted appearance code (Sec. 3.4). To ensure the appearance
does not change drastically over time, we apply temporal L1 regularization on surface appearance,

Lapp−reg =
∑
i,t

||Ci,t −Ci,t+1||1, (2)

where i is the index to the mesh vertex and t is the time index.

Regularization on surface deformation To handle shape variations over instances of the same
category, we use a coordinate-based MLP with a video-specific shape code (Sec. 3.4). To ensure the
shape does not change too much over a category, we apply L2 regularization on surface deformation,

Ldeform−reg =
∑
i,k

||Vi,k − V̄i||2, (3)

where i is the index to the mesh vertex and k is the video index.

A.4 Comparison to Neural Scene Flow Fields [2]

Related to our problem setup, some recent methods reconstruct dynamic neural radiance fields (NeRF)
from a monocular video [2, 6, 7, 11] by differentiable volume rendering, and achieve promising
results for novel view synthesis and depth estimation in dynamic scenes.

However, such methods may not work well when the objects exhibit large motion, such as root body
rotations. To illustrate this point, we compare with Neural Scene Flow Fields [2] (NSFF), which also
use two-frame optical flow as inputs. We ran the public code of NSFF on the DAVIS “dance-twirl”
sequence, and the results are shown in Fig. 2.

Specifically, we use COLMAP [8, 9] to estimate camera parameters with regard to the static back-
ground (with foreground objects removed). For the “dance-twirl” sequence, COLMAP registers all
90 frames and reconstruct a reasonable background. Then we train NSFF using 4 GPUs for 280k
iterations. To extract the reconstructed surface, we sample points from a 256x256x256 grid in the
canonical space and run marching cubes. As a result, we find that although NSFF can “overfit” to the
input image and optical flow, the extracted surface of the dynamic human is completely off – with
streaks connecting the background to the foreground. We hypothesize that one of the possible reasons
for NSFF to fail is the lack of long-range correspondence. In contrast, our method is able to deal with
root body rotation due to the estimation of long-range correspondences via canonical surface features,
as well as the usage of blend-skinning model which regularizes the motion.
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Table 1: Table of notations.

Symbol Description

Constants
T Number of frames in the input video
M Number of faces in the mesh
N Number of vertices in the mesh
B Number of bones for linear blend skinning (LBS)
F Topology of the mesh
β Weights of losses

Input Measurements
It Input RGB image at time t
St Input or measured object silhouette image at time t
u+t Input or measured forward optical flow map from time t to t+ 1
u−t Input or measured backward optical flow map from time t to t− 1

Renderings
Ît Rendered color image of the object at time t
Ŝt Rendered object silhouette image at time t
û+t Rendered forward optical flow map of the object from time t to t+ 1
û−t Rendered backward optical flow map of the object from time t to t− 1

Shared Model Parameters
V̄i Position of the i-th mesh vertex of the rest shape
W Skinning weights matrix
ψp(It) Weights of the ResNet-18 pose network
ψtex(It) Weights of the ResNet-18 that produces texture code ωt

ψe(It) Pixel embedding, parameterized by a 2D U-Net
φe(X,Y, Z) Surface embedding, parameterized by a coordinate-MLP
φtex(X,Y, Z, ωt) Surface texture, parameterized by a coordinate-MLP
τ Temperature parameter for softmax matching distribution over surface points, Eq. (5)

Time-Varying Model Parameters
ωt A texture code associated with each image t
Vt Position of mesh vertices at time t
Ci,t Color of mesh vertices at time t
Kt Intrinsic matrix of a simple pinhole camera (with zero skew and square pixel) at time t
G0,t Object root body SE(3) transformation at time t
G1...B,t Bone SE(3) transformations at time t

Additional Parameters for Multi-Video Optimization (Sec. 3.4)
αk A shape code associated with each video k
φshape(X,Y, Z, αk) Video-specific shape deformation from a canonical shape, parameterized by a coordinate-MLP
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Step 1: Data preparation. Step 2: NSFF-training. Step 3: Surface extraction and comparison.

Figure 2: Comparison to Neural Scene Flow Fields (NSFF) on dance-twirl sequence. Data preparation: We
run COLMAP to reconstruct the background and register cameras (in red) of all frames with regard to the
reconstructed background. NSFF-training: We train NSFF for 280k iterations on 4 GPUs, and observe that NSFF
is able to “overfit” to the input image and optical flow. Surface extraction: we extract surface with marching
cubes at a 256x256x256 sampled grid. For NSFF, we observe that the extracted surface of the dynamic human
is completely off – with streaks connecting the background to the foreground. In contrast, ViSER is able to
correctly reconstruct the dancer.
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