
Figure 8: Different goal fusion architectures considered for ViNT.

Appendix450

A ViNT Model Architecture451

Table 5 shows the model architecture in detail. We use all 18 layers of the EfficientNet-B0 convo-452

lutional encoder [31], initialized from scratch, to tokenize the input and subgoal observations. For453

fusing the subgoal image with the current observations, we use early fusion: the two RGB images454

ot and oG are stacked along their channel dimension, yielding a 6⇥ 85⇥ 64 tensor per training data455

point. The stacked subgoal tensor is encoded using the EfficientNet encoder and tokenized with a456

512-dimensional embedding. To encode a stacked tensor, we modify the first convolution to accept457

the desired number of input channels.458

Layer Input [Dimensions] Output [Dimensions] Layer Details

1 ot, og [64, 85, 3] I
g

t
[64, 85, 6] Concatenate along channel dimension.

2 I
g

t
[64, 85, 6] E

g

t
[1, 1000] Fusion EfficientNet Encoder [31]

3 ot:t�P [P+1, 64, 85, 3] Et:t�P [P+1, 1000] Context EfficientNet Encoder [31]
4 E

g

t
[1, 1000] E

g
0

t
[1, 512] Fusion Encoding Compression MLP

5 Et:t�P [P+1, 1000] E
0
t:t�P [P+1, 512] Context Encoding Compression MLP

6 E
0
t:t�P [P+1, 512], Eg

0

t
[1, 512] S [P+2, 512] Concatenate into sequence

7 S [P+2, 512] S̃ [1, 32] Feed into Transformer Decoder
8 S̃ [1, 32] D Predict distance with MLP head
9 S̃ [1, 32] A, [1, T, 4] Predict odometry and angles with MLP head

Table 5: Architectural Details of ViNT The inputs to the model are RGB images ot:t�P 2 [0, 1]P⇥3⇥85⇥64

and og 2 [0, 1]3⇥85⇥64, representing the current, past, and goal images. We seek to predict a T timestep
horizon of positions (x, y), angles (sin, cos) and a distance.

Goal fusion architectures: There are many considerations for when and where to combine the459

input data for effective feature extraction and task performance as shown in Table 6. While FiLM460

works well for language, we find that training was unstable for image-navigation. As a result, we461

consider directly encoding image information and passing them to a Transformer. Fusing the goal462

with observation information in the transformer layers by concatenating separately encoded tokens463

is known as “late fusion”. Late fusion would work effectively for adaptation as there would be a464

single goal token that’s independently encoded. As a result, any input data could become that token.465

But, late fusion tends to perform poorly as the model requires joint features between current state466

and goal state to be passed to the Transformer. If independently encoded, the Transformer will only467

be able to attend to independently extracted features. “Early fusion”, on the other hand, will fuse the468

goal and observation input before the EfficientNet encoding, allowing the learning of joint features469

between the goal image and current state. This heavily increases performance, but at the cost of470

making adaptation not possible. This is because the goal information is now forced to become an471

image to be concatenated to the observation for creating the final token. With ViNT, this can be472

bypassed though via the adaptation process described in B.4. Specifically, we can perform task473

adaptation by predicting the final token conditioned on input data and task goal information and474

directly cutting out the goal encoder.475

1



Method Performance Adaptation

Late Fusion 7 3
Early Fusion 3 7
FiLM (RT-1) [27] 7 3
ViNT 3 3

Table 6: Results of different goal fusion architectures.

B Implementation Details476

B.1 Training ViNT477

See Table 7 for a detailed list of hyperparameters for training the ViNT foundation model.1478

Training objective:479

Hyperparameter Value

ViNT Model
# Parameters 31M
Resolution 85⇥ 64
Encoder EfficientNet-B0
Token dim. 512
Attn. hidden dim. 2048
# Attn. layers nL 4
# Attn. heads nH 4
FF dim ??
Temporal context P 5
Prediction horizon H 5
MLP layer sizes (256, 128, 64, 32)

ViNT Training
# Epochs nep 30
Batch size 300 1

Learning rate 5⇥ 10�4

Optimizer AdamW
Warmup epochs 4
Scheduler Cosine
Scheduler Period 10
Compute Resources 8⇥V100
Training Time 1 - 2 days

Diffusion Model
# Parameters 318M
Resolution 128⇥128
# Up/Down Blocks 4
Attn. Resolutions 32, 16, 8
Layers per Block 2
Attn. Head Dim 8
Channels 128, 128, 256, 512, 640
Diffusion Type continuous time
Noise Schedule linear

Hyperparameter Value

Diffusion Training
Dropout 0.1
Batch Size 128
Optimizer AdamW
Warmup Steps 1000
Learning Rate 1e-4
LR Schedule cosine decay
Adam �1 0.95
Adam �2 0.999
Adam ✏ 1e-8
Weight Decay 0.001
EMA Inv. Gamma 1.0
EMA Power 0.75
EMA Max Decay 0.9999
CFG Mask Proportion 0.2
Train Steps 250,000
Training Time 30 hours
Compute Resources 1⇥v4-8 TPU board

Diffusion Sampling
Sampler DDIM [42]
DDIM ⌘ 0.0
Sampling Steps 200
Guidance Weight 1.0

Other
Maximum distance 20
Distance tradeoff � 0.01

Table 7: Hyperparameters for core components of ViNT
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Figure 9: Subgoal diffusion model U-Net architecture. Each ResNet consists of 2 residual blocks. Downsam-
pling and upsampling is done with strided convolutions.

B.2 Subgoal Diffusion480

For generating subgoals, we use an image-to-image diffusion model. It takes an image ot as input481

and produces samples from g(si | ot), where si are candidate subgoal images reachable from ot.482

To produce training pairs for the diffusion model, we first select ot uniformly at random from the483

training data and then select si to fall between 5 and 20 timesteps in the future from ot.484

Following Saharia et al. [34], we implement image conditioning as simple channel-wise concatena-485

tion to the U-Net input. We use the Flax U-Net implementation from the diffusers library [43] with486

textual cross-attention removed since we do not condition on text inputs.487

We use the continuous-time diffusion formulation from Kingma et al. [44] with a fixed linear noise488

schedule rather than a learned one. Also unlike Kingma et al. [44], we use the unweighted training489

objective, called Lsimple in Ho et al. [33, Equation 14] and Kingma et al. [44, Appendix K]. We490

employ classifier-free guidance [45] and find that it helps produce subgoals with better visual fidelity,491

which is consistent with prior work [46].492

B.3 Long-Horizon Physical Search via Topological Graphs493

As in Shah and Levine [26], we implement physical search similarly to a standard A⇤ algorithm, by494

keeping track of an open set ⌦ of possible unvisited subgoals (generated by our diffusion model)495

and following Alg. 1.496

Algorithm 1: Long-Horizon Navigation via Topological Graph
1: while goal G not reached do
2: s minf (⌦);
3: P  ShortestPath(M, ot, s�)
4: for (s, s0) in P do
5: ViNT.GoToGoal(s0);
6: end for
7: ViNT.GoToGoal(s)
8: ot  Observe();
9: AddNode(M, ot, parent: s�);

10: Sample si ⇠ g(si|ot);
11: Add(⌦, si);
12: end while

1Over the course of the project, we used a variety of workstations equipped with different GPU configura-
tions, including 3⇥1080Ti, 2⇥4090, 4⇥P100, 8⇥V100, and 8⇥A100. With the model architecture fixed, the
batch size and training time varies significantly across these devices, and the entry in Table 7 is representative
of our most common training configuration.
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Nodes are visited according to a costing function f(s) that depends on the distance from the current497

state ot to the parent node s
� (measured along the graph), the predicted distance from s

� to s, and498

a heuristic function h (similar to that of A⇤) providing long-horizon navigation hints:499

f(s) = dM(ot, s
�) + dpred(s

�
, s) + h(s,G,C)

In general, the heuristic can be any function providing a notion of distance between a subgoal s and500

the long-horizon goal G, optionally with some context C. For our experiments, we considered three501

heuristics to demonstrate the flexibility of our approach:502

• Coverage maximization: For undirected exploration we have no long-horizon goal and503

thus use h(s) = 0.504

• Position-guided: For long-horizon GPS goals (outdoors) and 2D position goals (indoors),505

we use Euclidean distance h(s) = ks�Gk.506

• Satellite-guided: In the context-guided experiments, we train a learned heuristic function507

that uses the satellite image as an input to learn a a heuristic for “good” subgoals. We train508

a convolutional neural network on the overhead image to predict the probability that the509

subgoal s is included on a trajectory from ot to G, trained using a contrastive objective [47].510

Additional information can be found in Shah and Levine [26].511

B.4 Fine-tuning ViNT512

Image Fine-tuning:513

• Architecture: We utilize the exact same architecture as ViNT with no changes.514

• Training: For fine-tuning the image-goal directed model, we utilize the same training515

process for ViNT with a learning rate of 0.0001, AdamW optimizer, but no warmup or516

cosine scheduler. We train with a batch size of 200 across 8 GeForce 1080 Ti GPUs for517

all fine-tuning and adaptation experiments and we do not mix any prior data for fine-tuned518

training.519

GPS-Adaptation:520

• Architecture: To adapt to GPS-style goals, we cut off the goal encoder block from ViNT.521

We then learn a fixed tensor of size 3000 and concatenate it to the GPS-command goal in522

ego-centric coordinates. We then pass this into a 2-layer MLP which outputs the prediction523

of the final token for the transformer. The architecture is shown in Figure 10.524

• Training: During training, instead of randomly sampling future images and passing them525

into the goal encoder, we sample future odometry information. Once we have a future goal526

coordinate for self-supervision, we convert to local coordinates and pass into our architec-527

ture and optimize the same objective as ViNT. We use a cosine scheduler with a learning528

rate warmup to 0.0001 for 4 epochs. We also sample goal points from between 1.25s and529

1.75s rather than from 0.5s to 2.5s.530

Command-Adaptation:531

• Architecture: For discrete command goals, we adopt a similar approach for GPS-style532

goals. We learn a fixed tensor for each discrete command and use the command index to533

select the corresponding latent to pass into a 2-layer MLP for predicting the final token. In534

this way, we learn a dictionary of latents, each corresponding to a distinct command. This535

architecture is illustrated in Figure 10 as well.536

• Training: If training data is labelled with command, we just supply the command and run537

standard training. We assume training data is not labelled with the discrete command, so538

we label the trajectories with commands on-the-fly. For our experiments, we use “left”,539

“right”, and “straight” as our discrete commands. We sample a future odometry point just540

like the GPS Adaptation, but rather than using the point itself, we use the lateral coordinates541

to determine what command that training example corresponds to. For our experiments we542

bin each trajectory that has a normalized lateral coordinate greater than 0.05, otherwise it543

is labelled as ”straight”. We use a cosine scheduler with a learning rate warmup to 0.0001544

for 4 epochs.545
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Figure 10: Different adaptation architectures for ViNT. Shown on the left is the GPS-adaptation architecture.
As seen, the local coordinates of the goal are concatenated to the fixed latent, z. On the right is the command-
adaptation architecture where we assume command index i is given, hence sending zi to the MLP.

Dataset Platform Speed Total Hrs. Hrs. Used Environment

1 GoStanford [48] TurtleBot2 0.5m/s 17h 14h office
2 RECON [38] Jackal 1m/s 25h 25h off-road
3 CoryHall [37] RC Car 1.2m/s 2h 2h hallways
4 Berkeley [26] Jackal 2m/s 4h 4h suburban
5 SCAND-S [49] Spot 1.5m/s 8h 4h sidewalks
6 SCAND-J [49] Jackal 2m/s 1h 1h sidewalks
7 Seattle [50] Warthog 5m/s 1h 1h off-road
8 TartanDrive [51] ATV 10m/s 7h 5h off-road
9 NeBula [52] ATV 10m/s 10h 10h off-road

10 SACSoN [53] TurtleBot2 0.5m/s 75h 10h office
11 BDD [13] Car(s) 20m/s 10h 4h on-road

Ours 160h 80h

Table 8: The ViNT training dataset contains over 100 hours of navigation data in diverse environments across
8 different robots.

C Training Dataset546

The ViNT training dataset contains over 100 hours of real-world navigation trajectories, sourced547

entirely from existing datasets. The dataset consists of a combination of tele-operated and au-548

tonomous navigation behaviors collected across 8 distinct robotic platforms, including 4 commer-549

cially available platforms (TurtleBot, Clearpath Jackal, Warthog and Spot) and several custom plat-550

forms (Yamaha Viking ATV, RC Car, passenger automobiles). The trajectories contain widely vary-551

ing robot dynamics and top speeds, ranging between 0.2 and 10m/s, operating in a diverse set of552

environments (e.g., office buildings, hallways, suburban, off-road trails, university campuses, etc.).553

All data is either publicly available, or collected by other researchers for past projects; no additional554

training data was collected specifically for training ViNT.555

Remember to mention: total size, number of robots, conversion to number of frames and so on.556

D Robotic Platforms for Evaluating ViNT557

Vizbot: A custom-built robot platform inspired by the design of Niwa et al. [54], based on a558

Roomba. It is equipped with an off-the-shelf PCB-mounted fisheye camera.559

Unitree Go 1: A commercially available quadruped robot equipped with the original forward-facing560

camera. There is no training data from a Go1 in the training dataset, although SCAND has some561

data from a Boston Dynamics Spot, which is a very different platform.562
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Clearpath Jackal UGV: A commercially available off-road platform equipped with an off-the-563

shelf PCB-mounted fisheye camera. This system resembles the data collection platform used for the564

RECON, Berkeley, and SCAND-J datasets, but has a different camera and mounting height.565

LoCoBot: A popular open-source platform based on a Kobuki, equipped with an off-the-shelf PCB-566

mounted fisheye camera. There is no training data from a LoCoBot, although GS was collected on567

a similar TurtleBot2, albeit with a different spherical camera at a lower height.568

E Evaluation Setup and Details569

E.1 Real-World Setup570

E.1.1 Indoor Experiments571

For setting up the indoor coverage exploration experiments on the LoCoBot, we choose a random572

starting point on the building’s floor, and keep the starting point consistent across all baselines we573

test. For large scale floors, we test a variety of starting points on the floor, since most baselines are574

not able to cover the entire floor in the 10 minute time limit we enforce on the experiments.575

For setting up the indoor guidance exploration experiments on the LoCoBot, we mark the starting576

point of the LoCoBot we drive the LoCoBot to the desired goal point (around 50m to 100m away),577

and use the in-built odometry tracking system on the LoCoBot to specify an odometry goal point to578

the exploration algorithm when we evaluate it.579

E.2 Multi-robot Generalization Experiments580

The setup for the multi-robot generalization experiment is very similar to the coverage exploration581

experiments. The only differences are the baselines we evaluate.582

E.2.1 Baselines583

For generating Table 1, we test three baseline low-level policies on each robot. Each baseline uses584

the graph-based exploration scheme described in Section 4.2. We use the following baselines:585

1. In-Domain: We train a single-dataset policy model (ViNT architecture) and diffusion586

model on the RECON and SACSoN datasets, the largest outdoor and indoor datasets in587

our training set, and evaluate them on each of our robots to identify the best single-dataset588

model for each robot.589

2. GNM: We use the pre-trained model checkpoint from the authors of GNM [18] coupled590

with our diffusion model (since GNM is not compatible with the exploration task) to eval-591

uate each robot.592

3. ViNT: We use our pre-trained ViNT policy and image diffusion model (no fine-tuning) to593

evaluate each robot.594

E.3 CARLA Setup595

This section describes the setup and implementation details for ViNT fine-tuning and adaptation596

experiments in the CARLA autonomous driving simulator, as presented in Sections 6.3 and 6.4.597

E.3.1 CARLA Data Collection598

We collect expert trajectories with an oracle rule-based self-driving agent and gather odometry and599

RGB information across the trajectory at 4 Hz. These trajectories have random spawn points and600

random destination points up to to 900 meters in length. We collect 52 trajectories in the CARLA601

Town 02 for held-out testing, and collect 181 trajectories in Town 01 for training. This makes602

for a dataset size of 5 hours for the autopilot control data. Inspired by [21], we also collect short603

trajectories of the agent correcting back onto the right lane after drifting off course in Town 01604

and Town 02 for training and testing, respectively. This data is 4 hours long, and we add it to the605

autopilot data for training.606
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E.3.2 Fine-tuning Experiments607

For testing the fine-tuning system which trains ViNT to do the same task in new domains, we utilize608

the collected test trajectories as expert maps to follow. Each Town 02 test trajectory creates a graph609

where every node is a timestamped odometry point corresponding to an image. To evaluate a model610

on a test trajectory, we spawn it at the same start point and localize it on the trajectory’s map. We611

then query the image for the goal node which corresponds to node 1.5s after the current node. This612

goal image is sent to ViNT along with the 4Hz image context to compute a short-range trajectory.613

This is tracked by a simple PID controller. The average progress towards the goal before collision614

is collected and reported across all trials. Table 4 summarizes the results of these experiments with615

multiple baselines and data sizes.616

E.3.3 Adaptation Experiments617

To test the new tasks, we adopt a similar evaluation setup to the fine-tuning experiments. But we618

query the odometry for the goal node which corresponds to node 1.5s after the current node rather619

than the image. For positional-adaptation, we move the goal coordinates into a local frame and send620

it to ViNT. For routing-adaptation, we determine the difference in lateral coordinates between the621

current node and the goal node. We choose the current node as reference to ensure an open-loop622

experiment and to allow for pre-computation of the command signals to be sent. We then apply the623

same binning strategy during training using a 0.05 normalized distance as the boundary between624

“left”, “right”, and “straight”. The control system downstream of this is identical to image fine-625

tuning and the experiment terminates when at the goal or when colliding. The progress towards the626

goal before collision is collected and averaged across all trials in Table 4.627

E.3.4 Baselines628

We have the following baselines for the CARLA experiments:629

1. Scratch: ViNT trained from scratch on the CARLA on-task dataset.630

2. Pre-trained Visual Representations631

(a) ImageNet: ViNT initialized with the EfficientNet-B0 weights pre-trained on Ima-632

geNet, other parameters initialized from scratch, and fine-tuned with the CARLA on-633

task dataset.634

(b) SimCLR: ViNT initialized with the EfficientNet-B0 weights pre-trained with Sim-635

CLR [7] on the training data described in Section C, other parameters initialized from636

scratch, and fine-tuned with the CARLA on-task dataset.637

(c) VC-1: ViNT initialized with a pre-trained ViT-B model checkpoint from the authors638

of VC-1 [40] and frozen, other parameters initialized from scratch, and fine-tuned639

with the CARLA on-task dataset. The VC-1 encoder is pre-trained on a combina-640

tion of Ego4D, manipulation, navigation, and ImageNet images using Masked Auto-641

Encoding [39, 55].642

3. GNM: The pre-trained embodiment-agnostic model checkpoint from the authors of643

GNM [18], fine-tuned with the CARLA on-task dataset. Note that GNM has 8.7M trainable644

parameters, compared to ViNT’s 31M.645

Method Images Positions

VC-1 [40] 0.19 0.49
ViNT-FE 0.32 0.78
ViNT 0.82 0.89

Table 9: Evaluation of ViNT fine-tuning with and with-
out a frozen encoder, as compared to a general-purpose
visual encoder. Even when frozen, ViNT’s navigation-
relevant features appear to transfer more readily to out-
of-distribution inputs than general-purpose features.

We note that the VC-1 baseline’s weak per-646

formance in Section 6.4 may be explained by647

the fact that it is frozen, while all other visual648

encoders were free to fine-tune. This is rep-649

resentative of typical downstream usage [40].650

Despite training on multiple, diverse datasets,651

the visual representation’s general-purpose fea-652

tures are not optimized for the navigation task,653

hampering zero-shot transfer to out-of-domain654

tasks. To provide a fair comparison of the qual-655

ity of pre-trained visual features, we compare this performance to ViNT-FE (a pre-trained ViNT656

model that has it’s visual encoder frozen). ViNT-FE has an equal number of trainable parameters to657

the VC-1 baseline, and frozen visual representations (see Table 9).658
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F Code and Video Release659

We are providing the code for implementation and deployment of ViNT in the supplemental material.660

We are also sharing videos of ViNT deployed on diverse robots and in challenging terrains on our661

project page (we were not able to upload it due to size limitations). Please check our project page662

for these videos: sites.google.com/view/vint-anon/663
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