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Abstract

An overarching goal in machine learning is to build a generalizable model with
few samples. To this end, overparameterization has been the subject of immense
interest to explain the generalization ability of deep nets even when the size of the
dataset is smaller than that of the model. While the prior literature focuses on the
classical supervised setting, this paper aims to demystify overparameterization for
meta-learning. Here we have a sequence of linear-regression tasks and we ask:
(1) Given earlier tasks, what is the optimal linear representation of features for
a new downstream task? and (2) How many samples do we need to build this
representation? This work shows that surprisingly, overparameterization arises
as a natural answer to these fundamental meta-learning questions. Specifically,
for (1), we first show that learning the optimal representation coincides with the
problem of designing a task-aware regularization to promote inductive bias. We
leverage this inductive bias to explain how the downstream task actually benefits
from overparameterization, in contrast to prior works on few-shot learning. For
(2), we develop a theory to explain how feature covariance can implicitly help
reduce the sample complexity well below the degrees of freedom and lead to small
estimation error. We then integrate these findings to obtain an overall performance
guarantee for our meta-learning algorithm. Numerical experiments on real and
synthetic data verify our insights on overparameterized meta-learning.

Organization of the appendix

The appendix consists of the proof of our main results including the following parts:

• We included a short section and Figure 6 containing more experiments on real data. This verifies
the positive correlation between the canonical task covariance and feature covariance across distinct
datasets which supports the theory developed in Section 4.

• Optimal representation. The proof for optimal overparameterized representation is in Sec. B. We
show that we can use an R dimensional representation of feature for few-shot learning, and it can
beat typical PCA (low dimensional/underparameterized) representation with optimal weighting
matrix Λ∗.

– In Sec. B.1 we first prove Observation 1. In Remark 2 we analyze the projection from d to R
dimensional space, where we calculate the PCA truncation noise.

– In Sec. B.2 and B.3 we provide the asymptotic analysis of optimal weighting. By asymptotic
we refer to the regime where n2, d→∞ and the eigenvalues of task and feature covariance
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matrices converge to a fixed distribution. We show that β̂Λ converges to a Gaussian distribution
parameterized by Λ, and use it to express the risk.

– We extend the asymptotic case (infinite dimensional) to the non-asymptotic (finite dimensional)
regime in Sec. B.4. We define the risk function with respect to representation matrix Λ, and in
Sec. B.5 solve for the optimal representation by minimizing risk.

• Representation learning. Sec. C includes the proof for the result about representation learning in
Sec. 4, including the sample complexity and error guarantee of MoM estimators.

– We first analyze the estimation of feature covariance matrix ΣF in Sec. C.1 which is the most
straightforward.

– We prove the second result of Thm. 2 in Sec. C.2.2. With the assumption that each task
has Ω(sT ) corresponding samples, the sample complexity is reduced by a factor of sT
compared to MoM, which meets the information theoretical lower bound in [37].

– We extend the Bernstein type technique for obtaining the estimation error of M̂ in Sec. C.2.
The estimator given in [37], slightly different from ours, is also analyzed.

• End to end bound. We prove the robustness of the optimal representation in Sec. D, which leads to
the overall error guarantee of the proposed meta-learning algorithm.
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1 Introduction

In a multitude of machine learning (ML) tasks with limited data, it is crucial to build accurate models
in a sample-efficient way. Constructing a simple yet informative representation of features is a critical
component of learning a model that generalizes well to an unseen test set. The field of meta-learning
dates back to [9, 5] and addresses this challenge by transferring insights across distinct but related
tasks. Usually, the meta-learner first (1) learns a feature-representation from previously seen tasks and
then (2) uses this representation to succeed at an unseen task. The first phase is called representation
learning and the second is called few-shot learning. Such information transfer between tasks is
the backbone of modern transfer and multitask learning and finds ubiquitous applications in image
classification [15], machine translation [7] and reinforcement learning [18].

Recent literature in ML theory has posited that overparameterization can be beneficial to gener-
alization in traditional single-task setups for both regression [29, 40, 4, 33, 30] and classification
[32, 31] problems. Empirical literature in deep learning suggests that overparameterization is of
interest for both phases of meta-learning as well. Deep networks are stellar representation learners
despite containing many more parameters than the sample size. Additionally, overparameterization
is observed to be beneficial in the few-shot phase for transfer-learning in Figure 1(a). A ResNet-50
network pretrained on Imagenet was utilized to obtain a representation of R features for classifica-
tion on CIFAR-10. All layers except the final (softmax) layer are frozen and are treated as a fixed
feature-map. We then train the final layer of the network for the downstream task which yields a
linear classifier on pretrained features. The figure plots the effect of increasing R on the test error
on CIFAR-10, for different choices of training size n2. For each choice of n2, increasing R beyond
n2 is seen to reduce the test-error. These findings are corroborated by [18] (MAML) and [39], who
successfully use a transfer learning method that adapts a pre-trained model, with 112980 parameters,
to downstream tasks with only 1-5 new training samples.
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Figure 1: Illustration of the benefit of overparameterization in the few-shot phase. (a) Double-
descent in transfer learning: dashed lines indicate the location where the number of features R
exceed the number of training points; i.e., the transition from under to over-parameterization. The
experimental details are contained in the supplement. (b) Illustration of the benefit of using Weighted
minL2-interpolation in Definition 3 (blue). See Remark 1 for details and discussion.

In Figure 1(b), we consider a sequence of linear regression tasks and plot the few-shot error of our
proposed projection and eigen-weighting based meta-learning algorithm for a fixed few-shot training
size, but varying dimensionality of features. The resulting curve looks similar to Figure 1(a) and
suggests that the observations regarding overparameterization for meta-learning in neural networks
can, to a good extent, be captured by linear models, thus motivating their detailed study. This aligns
with trends in recent literature: while deep nets are nonlinear, recent advances show that linearized
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problems such as kernel regression (e.g., via neural tangent kernel [21, 17, 24, 35, 13]) provide a
good proxy to understand some of the theoretical properties of practical overparameterized deep nets.

However, existing analysis of subspace-based meta-learning algorithms for both the representation
learning and few-shot phases of linear models have typically focused on the classical underparame-
terized regime. These works (see Paragraphs 2-3 of Sec. 1.2) consider the case where representation
learning involves projection onto a lower-dimensional subspace. On the other hand, recent works on
double descent shows that an overparameterized interpolator beats PCA-based method. to build upon
these results to develop a theoretical understanding of overparameterized meta-learning.

1.1 Our contributions
This paper studies meta-learning when each task is a linear regression problem, similar in spirit to
[37, 23]. In the representation learning phase, the learner is provided with training data from T distinct
tasks, with n1 training samples per task: using this data, it selects a matrix Λ ∈ Rd×R with arbitrary
R to obtain a linear representation of features via the map x→ Λ>x. In the few-shot learning phase,
the learner faces a new task with n2 training samples and aims to use the representation Λ>x to aid
prediction performance.

We highlight that obtaining the representation consists of two steps: first the learner projects x
onto R basis directions, and then performs eigen-weighting of each of these directions, as shown in
Figure 2(b). The overarching goal of this paper is to propose a scheme to use the knowledge gained
from earlier tasks to choose Λ that minimizes few-shot risk. This goal enables us to engage with
important questions regarding overparameterization:

Q1: What should the size R and the representation Λ be to minimize risk at the few-shot phase?

Q2: Can we learn the Rd dimensional representation Λ with N � Rd samples?

The answers to the questions above will shed light on whether overparameterization is beneficial
in few-shot learning and representation learning respectively. Towards this goal, we make several
contributions to the finite-sample understanding of linear meta-learning, under assumptions discussed
in Section 2. Our results are obtained for a general data/task model with arbitrary task covariance
Σβ and feature covariance ΣF which allows for a rich set of observations.

Optimal representation for few-shot learning. As a stepping stone towards the goal of characteriz-
ing few-shot risk for different Λ, in Section 3 we first consider learning with known covariances ΣT

and ΣF respectively (Algorithm 1). Compared to projection-only representations in previous works
(see Paragraphs 2-3 of Sec. 1.2), our scheme applies eigen-weighting matrix Λ∗ to incentivize the
optimizer to place higher weight on promising eigen-directions. This eigen-weighting procedure has
been shown in the single-task case to be extremely crucial to avail the benefit of overparameterization
[6, 30, 33]: it captures an inductive bias that promotes certain features and demotes others. We show
that the importance of eigen-weighting extends to the multi-task case as well.

Canonical task covariance. Our analysis in Section 3 also reveals that, the optimal subspace and rep-
resentation matrix are closed-form functions of the canonical task covariance Σ̃T = Σ

1/2
F ΣTΣ

1/2
F ,

which captures the feature saliency by summarizing the feature and task distributions.

ΣF Feature covariance
ΣT Task covariance
Σ̃T Canonical task covariance
n1 Samples per each earlier task
T Number of earlier tasks
N Total sample size T × n1

n2 Samples for new task
Λ Eigen-weighting matrix

Table 1: Main notation

Representation learning. In practice, task and fea-
ture covariances (and hence the canonical covariance)
are rarely known apriori. However, we can estimate
the principal subspace of the canonical task covari-
ance Σ̃T (which has a degree of freedom (DoF) of
Ω(Rd)) from data. In Section 4 we first present em-
pirical evidence that feature covariance ΣF is “pos-
itively correlated” with Σ̃T . Then we propose an
efficient algorithm based on Method-of-Moments
(MoM), and show that the sample complexity of rep-
resentation learning is well below O(Rd) due to the
inductive bias. Our sample complexity bound de-
pends on interpretable quantities such as effective
ranks ΣF , Σ̃T and improves over prior art (e.g., [23, 37]), even though the prior works were special-
ized to low-rank Σ̃T and identity ΣF (see Table 2).
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Figure 2: (a) Steps of the meta-learning algorithm. (b) Our representation-learning algorithm has
two steps: projection and eigen-weighting. We focus on the use of overparameterization+weighting
matrix (Def. 3), and compare this with overparameterization with simple projection (no eigen-
weighting), and underparameterization (for which eigen-weighting has no impact and is equivalent
to projection). [37, 23, 22, 16] study underparameterized projections only. To distinguish from
eigen-weighting, we will refer to simple projections as subspace-based representations.

End to end meta-learning guarantee. In Section 5, we consider the generalization of Section 3,
where we have only estimates of the covariances instead of perfect knowledge. This leads to an overall
meta-learning guarantee in terms of Λ∗, N and n2 and uncovers a bias-variance tradeoff: As N
decreases, it becomes more preferable to use a smaller R (more bias, less variance) due to inaccurate
estimate of the weak eigen-directions of Σ̃T . In other words, we find that overparameterization is
only beneficial for few-shot learning if the quality of representation learning is sufficiently good. This
explains why, in practice, increasing the representation dimension may not help reduce few-shot risk
beyond a certain point (see Fig. 5).

1.2 Related work

Overparameterized ML and double-descent The phenomenon of double-descent was first dis-
covered by [6]. This paper and subsequent works on this topic [4, 33, 32, 30, 11] emphasize the
importance of the right prior (sometimes referred to as inductive bias or regularization) to avail the
benefits of overparameterization. However, an important question that arises is: where does this
prior come from? Our work shows that the prior can come from the insights learned from related
previously-seen tasks. Section 3 extends the ideas in [34, 40] to depict how the optimal representation
described can be learned from imperfect covariance estimates as well.

Theory for representation learning Recent papers [23, 22, 37, 16] propose the theoretical bounds
of representation learning when the tasks lie in an exactly r dimensional subspace. [23, 22, 37]
discuss method of moment estimators and [37, 16] discuss matrix factorized formulations. [37] shows
that the number of samples that enable meaningful representation learning is O(dr2). [23, 22, 37]
assume the features follow a standard normal distribution. We define a canonical covariance which
handles arbitrary feature and task covariances. We also show that our estimator succeeds with O(dr)
samples when n1 ∼ r, and extend the bound to general covariances with effective rank defined.

Subspace-based meta learning With tasks being low rank, [23, 22, 37, 19, 16] do few-shot learning
in a low dimensional space. [41, 42] study meta-learning for linear bandits. [27] gives information
theoretic lower and upper bounds. [8] proposes subspace-based methods for nonlinear problems such
as classification. We investigate a representation with arbitrary dimension, specifically interested
in overparameterized case and show it yields a smaller error with general task/feature covariances.
Related work [16] provides results on overparameterized representation learning, but [16] requires
number of samples per pre-training task to obey n1 & d, whereas our results apply as soon as n1 & 1.

Mixed Linear Regression (MLR) In MLR [43, 25, 12], multiple linear regression are executed,
similar to representation learning. The difference is that, the tasks are drawn from a finite set, and
number of tasks can be larger than d and not necessarily low rank. [26, 10, 28] propose sample
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complexity bounds of representation learning for mixed linear regression. They can be combined
with other structures such as binary task vectors [3] and sparse task vectors [2].

2 Problem Setup
The problem we consider consists of two phases:

1. Representation learning: Prior tasks are used to learn a suitable representation to process features.
2. Few-shot learning: A new task is learned with a few samples by using the suitable representation.

This section defines the key notations and describes the data generation procedure for the two phases.
In summary, we study linear regression tasks, the features and tasks are generated randomly, i.i.d.
from their associated distributions DT and DF , and the two phases share the same feature and task
distributions.The setup is summarized in Figure 2(a).

2.1 Data generation

Definition 1 (Task and feature distributions) Throughout, DT and DF denote the distributions
of tasks βi and features xij respectively. These distributions are subGaussian, zero-mean with
corresponding covariance matrices ΣT and ΣF .
Definition 2 (Data distribution for a single task) Given a specific realization of task vector β ∼
DT , the corresponding label/input distribution (y,x) ∼ Dβ is obtained via y = x>β + ε where
x ∼ DF and ε is zero-mean subgaussian noise with variance σ2.

Data for Representation Learning (Phase 1). We have T tasks, each with n1 training examples.
The task vectors (βi)

T
i=1 ⊂ Rd are drawn i.i.d. from the distribution DT . The data for ith task is

given by (yij ,xij)
n1
j=1

i.i.d.∼ Dβi . In total, there are N = T × n1 examples.

Data for Few-Shot Learning (Phase 2). Sample task β? ∼ DT . Few-shot dataset has n2 examples
(yi,xi)

n2
j=1

i.i.d.∼ Dβ? .

We use representation learning data to learn a representation of feature-task distribution, called
eigen-weighting matrix Λ in Def. 3 below. The matrix Λ is passed to few-shot learning stage, helping
learn β? with few data.

2.2 Training in Phase 2

We will define a weighted representation, called eigen-weighting matrix, and show how it is applied
for few-shot learning. The matrix is learned during representation learning using the data from the T
tasks. DenoteX ∈ Rn2×d whose ith row is xi, and y = [y1, ..., ym]>. We are interested in studying
the weighted 2-norm interpolator defined below for overparameterization regime R ≥ n2.

Definition 3 (Eigen-weighting matrix and Weighted `2-norm interpolator) Let the representa-
tion dimension be R, where R is any integer between 1 and d. We define an eigen-weighting
matrix Λ ∈ Rd×R and the associated weighted `2-norm interpolator

β̂Λ = arg min
β
‖Λ†β‖2 s.t. y = Xβ and β ∈ range_space(Λ).

The solution is equivalent to defining α̂Λ = Λ†β̂Λ and solving an unweighted minimum 2-norm
regression with featuresXΛ. This corresponds to our few-shot learning problem

α̂Λ = arg min
α
‖α‖2 s.t. y = XΛα

from which we obtain β̂Λ = Λα̂Λ. When there is no confusion, we can replace β̂Λ with β̂. One
can easily see that β̂ = Λ(XΛ)†y. We note that Definition 3 is a special case of the weighted
ridge regression discussed in [40], as stated in Observation 1. An alternative equivalence between
min-norm interpolation and ridge regression can be found in [33].

Observation 1 LetX ∈ Rn2×d and y ∈ Rn2 , define

β̂1 = lim
t→0

argminβ‖Xβ − y‖22 + tβ>(ΛΛ>)†β, β ∈ column space of Λ. (2.1)

We have that β̂1 = β̂.
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Algorithm 1 Constructing the optimal representation

Require: Projection dimension R, noise level σ, canonical covariance Σ̃T , task covariance ΣF .

1: function COMPUTEOPTIMALREP(R,ΣF , Σ̃T , σ, n2)
2: U1,Σ

R
F , Σ̃

R
T , σR = COMPUTEREDUCTION(R,ΣF , Σ̃T , σ)

3: Optimization: Get θ∗ from (OPT-REP).
4: Map to eigenvalues: Set diagonal Λ∗R ∈ RR×R with entries Λ∗R,i = (1/θ∗i − 1)−2.
5: Lifting and feature whitening: Λ∗ ← U1(ΣR

F )−1/2Λ∗R.
6: return Λ∗

7: function COMPUTEREDUCTION(R,ΣF ,Σ̃T , σ)
8: Get eigen-decomposition Σ̃T = UΣU>.
9: Principal eigenspace U1 ∈ Rd×R = the first R columns of U .

10: Top eigenvalues: Set Σ̃R
T = U>1 Σ̃TU1,Σ

R
F = U>1 ΣFU1

11: Equivalent noise level: σ2
R ← σ2 + tr(Σ̃T )− tr(Σ̃R

T ).
12: return U1,Σ

R
F , Σ̃

R
T , σR

3 Canonical Covariance and Optimal Representation

In this section, we ask the simpler question: if the covariances ΣT and ΣF are known, what is
the best choice of Λ to minimize the risk of the interpolator from Definition 3? In general, the
covariances are not known; however, the insights from this section help us study the more general
case in Section 5. Define the risk as the expected error of inferring the label on the few-shot dataset,

risk(Λ,ΣT ,ΣF ) = Ex,y,β(y − x>β̂Λ)2 = Eβ(β̂Λ − β)>ΣF (β̂Λ − β) + σ2. (3.1)

The natural choice of optimization for choosing Λ would be to choose the weighting that minimizes
the eventual risk of the learned interpolator.

Λ∗ = arg min
Λ′∈Rd×R

risk(Λ′,ΣT ,ΣF ) (3.2)

Since the label y is bilinear in x and β, we introduce whitened features x̃ = Σ
−1/2
F x and associated

task vector β̃ = Σ
1/2
F β. This change of variables ensures xTβ = x̃T β̃; now, the task covariance in

the transformed coordinates takes the form

Σ̃T = Σ
1/2
F ΣTΣ

1/2
F ,

which we call the canonical task covariance; it captures the joint behavior of feature and task
covariances ΣF ,ΣT . Below, we observe that the risk in Equation (3.1) is invariant to the change of
co-ordinates that we have described above i.e it does not change when Σ

1/2
F ΣTΣ

1/2
F is fixed and we

vary ΣF and ΣT .

Observation 2 (Equivalence to problem with whitened features) Let data be generated as in
Phase 1. Denote Σ̃T = Σ

1/2
F ΣTΣ

1/2
F . Then risk(Σ

−1/2
F Λ,ΣT ,ΣF ) = risk(Λ, Σ̃T , I).

This observation can be easily verified by substituting the change-of-coordinates into Equation (3.1)
and evaluating the risk.

The risk in (3.1) quantifies the quality of representation Λ; however it is not a manageable function
of Λ that can be straightforwardly optimized. In this subsection, we show that it is asymptotically
equivalent to a different optimization problem, which can be easily solved by analyzing KKT optimal-
ity conditions. Theorem 1 characterizes this equivalence; the COMPUTEREDUCTION subroutine of
Algorithm 1 calculates key quantities that are used in specifying the reduction, and the COMPUTEOP-
TIMALREP subroutine of Algorithm 1 uses the solution of the simpler problem to obtain a solution
for the original.

Assumption 1 (Bounded feature covariance) There exist positive constants Σmin, Σmax such that
ΣF is lower/upper bounded as follows: 0 ≺ ΣminI � ΣF � ΣmaxI .

Assumption 2 (Joint diagonalizability) ΣF and ΣT are diagonal matrices.1
1This is equivalent to the more general scenario where ΣF and ΣT are jointly diagonalizable.
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Assumption 3 (Double asymptotic regime) We let the dimensions and the sample size grow as
d,R, n2 →∞ at fixed ratios κ̄ := d/n2 and κ := R/n2.

Assumption 4 The joint empirical distribution of the eigenvalues of ΛR and Σ̃R
T is given by the

average of Dirac δ’s: 1
R

∑R
i=1 δΛR,i,

√
RΣ̃R

T,i
. It converges to a fixed distribution as d→∞.

With these assumptions, we can derive an analytical expression to quantify the risk of a representation
Λ. We will then optimize this analytic expression to obtain a formula for the optimal representation.

Theorem 1 (Asymptotic risk equivalence) Suppose Assumptions 1, 2, 3, 4 hold. Let ξ > 0 be the
unique number obeying n2 =

∑R
i=1

(
1 + (ξΛ2

i )
−1
)−1

. Define θ ∈ RR with entries θi =
ξΛ2

i

1+ξΛ2
i

and calculate Σ̃R
T , σR using the COMPUTEREDUCTION procedure of Algorithm 1. Then, define the

analytic risk formula

f(θ, Σ̃R
T , n2) =

1

n2 − ‖θ‖22

(
n2

R∑
i=1

(1− θi)2Σ̃R
T,i + (‖θ‖22 + 1)σ2

R

)
. (3.3)

We have that
lim

n2→∞
f(θ, Σ̃R

T , n2) = lim
n2→∞

risk(Σ
−1/2
F Λ,ΣT ,ΣF ) (3.4)

The proof of Theorem 1 applies the convex Gaussian Min-max Theorem (CGMT) in [36] and can
be found in the Appendix B.2.We show that as dimension grows, the distribution of the estimator β̂
converges to a Gaussian distribution and we can calculate the expectation of risk.

Theorem 1 provides us with a closed-form risk for any linear representation. Now, one can solve
for the optimal representation by computing (OPT-REP) below. In order to do this, we propose an
algorithm for the optimization problem in Appendix B.5 via a study of the KKT conditions for the
problem 2.

θ∗ = arg min
θ

f(θ,ΣT ,ΣF ), s.t. 0 ≤ θ < 1,

R∑
i=1

θi = n2 (OPT-REP)
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Figure 3: Theoretical risk of optimal
representation. ΣF = I100, ΣT =
diag(I20, ιI80), n2 = 40.

The optimal representation is3 Λ∗R,i = ((1/θ∗i − 1)ξ)−2.
The subroutine COMPUTEOPTIMALREP in Algorithm 1
summarizes this procedure.

Remark 1 Thm. 1 states that risk(Σ
−1/2
F Λ,ΣT ,ΣF ) can

be arbitrarily well-approximated by f(θ, Σ̃R
T , n2) if n2 is

sufficiently large. In Fig. 1(b), we set ΣF = I100, ΣT =
diag(I20, 0.1I80), n2 = 40. The curves in Fig1(b) are the
finite dimensional approximation of f (LHS of (3.4)); the
dots are empirical approximations of the risk (RHS of (3.4)).
We tested two cases when Λ is the optimal eigen-weighting
or projection matrix with no weighting. Our theorem is
corroborated by the observation that the dots and curves are
visibly very close. The approximation is already accurate
for the finite dimensional problem with just n2 = 40.

The benefit of overparameterization. Theorem 1 leads to
an optimal eigen-weighting strategy via asymptotic analysis.
In Figure 3, we plot the effect on the risk of increasing R for different shapes of task covariance;
the parameter ι controls how spiked ΣT is, with a smaller value for ι indicating increased spiked-
ness. For the underparameterized problem, the weighting does not have any impact on the risk. In
the overparameterized regime, the eigen-weighted learner achieves lower few-shot error than its
unweighted (Λ = I) counterpart, showing that eigen-weighting becomes critical.

2In Sec. 5 the constraint is θ ≤ θ ≤ 1− d−n2
n2

θ for robustness concerns.
3In the algorithm, ξ = 1 and ΛR,i = (1/θ∗i − 1)−2, because cΛ∗ for any constant c gives the same β̂.
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The eigen-weighting procedure can introduce inductive bias during few-shot learning, and helps
explain how optimal representation minimizing the few-shot risk can be overparameterized with
R � n2. We note that, an R dimensional representation can be recovered by a d dimensional
representation matrix of rank R, thus the underparameterized case can never beat d dimensional case
in theory. The error with optimal eigen-weighting in overparameterized regime is smaller than the
respective underparameterized counterpart. The error is lower with smaller ι. It implies that, while
Σ̃T gets closer to low-rank, the excess error caused by choosing small dimension R (equal to the gap
σ2
R − σ2 in Algo 1) is not as significant.

Low dimensional representations zero out features and cause bias. By contrast, when Σ̃T ∈ Rd×d is
not low rank, every feature contributes to learning with the importance of the features reflected by the
weights. This viewpoint is in similar spirit to that of [20] where the authors devise a misspecified
linear regression to demonstrate the benefits of overparameterization. Our algorithm allows arbitrary
representation dimension R and eigen-weighting.

4 Representation Learning

In this section, we will show how to estimate the useful distribution in representation learning phase
that enables us to calculate eigen-weighting matrix Λ∗. Note that Λ∗ depends on the canonical
covariance Σ̃T = Σ

1/2
F ΣTΣ

1/2
F . Learning the R-dimensional principal subspace of Σ̃T enables us4

to calculate Λ∗. Denote this subspace by S̃T .

Subspace estimation vs. inductive bias. The subspace-based representation S̃T has degrees of
freedom= Rd. When Σ̃T is exactly rank R and features are whitened, [37] provides a sample-
complexity lower bound of Ω(Rd) examples and gives an algorithm achieving O(R2d) samples.
However, in practice, deep nets learn good representations despite overparameterization. In this
section, recalling our Q2, we argue that the inductive bias of the feature distribution can implicitly
accelerate learning the canonical covariance. This differentiates our results from most prior works
such as [23, 22, 37] in two aspects:

1. Rather than focusing on a low dimensional subspace and assuming N & Rd, we can estimate Σ̃T

or S̃T in the overparameterized regime N . Rd.
2. Rather than assuming whitened features ΣF = I and achieving a sample complexity of R2d,

our learning guarantee holds for arbitrary covariance matrices ΣF ,ΣT . The sample complexity
depends on effective rank and can be arbitrarily smaller than DoF. We showcase our bounds via a
spiked covariance setting in Example 1 below.

For learning Σ̃T or its subspace S̃T , we investigate the method-of-moments (MoM) estimator.
Definition 4 (MoM Estimator) For 1 ≤ i ≤ T , define b̂i,1 = 2n−1

1

∑n1/2
j=1 yijxij , b̂i,2 =

2n−1
1

∑n1

j=n1/2+1 yijxij . Set

M̂ = n−1
1

T∑
i=1

(bi,1b
>
i,2 + bi,2b

>
i,1),

The expectation of M̂ is equal toM = ΣFΣTΣF .

Inductive bias in representation learning: Recall that canonical covariance Σ̃T = Σ
1/2
F ΣTΣ

1/2
F

is the attribute of interest. However, feature covariance Σ
1/2
F term implicitly modulates the estimation

procedure because the population MoM is not Σ̃T but M = Σ
1/2
F Σ̃TΣ

1/2
F . For instance, when

estimating the principle canonical subspace S̃T , the degree of alignment between ΣF and Σ̃T can
make or break the estimation procedure: If ΣF and Σ̃T have well-aligned principal subspaces, S̃T
will be easier to estimate since ΣF will amplify the S̃T direction withinM .

We verify the inductive bias on practical image dataset, reported in Appendix A. We assessed
correlation coefficient between covariances Σ̃T ,ΣF via the canonical-feature alignment score defined

4We also need to estimate ΣF for whitening. Estimating ΣF is rather easy and incurs smaller error compared
to Σ̃T . The analysis is provided in the first part of Appendix B.
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feature cov ΣF = I , ΣT = diag(IsT ,0)
ΣF = diag(IsF , ιF Id−sF ),
ΣT = diag(IsT , ιT Id−sT )

estimator sample N sample n1 error sample N sample n1 error
MoM ds2

T 1 (ds2
T /N)1/2 rF r

2
T 1 (rF r

2
T /N)1/2

MoM dsT sT (sT /n1)1/2 rF rT rT (rT /n1)1/2

Table 2: Right side: Sample complexity and error of MoM estimators. sF (sT ) is the dimension of the
principal eigenspace of the feature (task) covariance. rF = sF + ιF (d− sF ), rT = sT + ιT (d− sT )
are the effective ranks. Left side: This is the well-studied setting of identity feature covariance and
low-rank task covariance. Our bound in the second row is the first result to achieve optimal sample
complexity of O(dsT ) (cf. [37, 23]).

as the correlation coefficient

ρ(ΣF , Σ̃T ) :=

〈
ΣF , Σ̃T

〉
‖ΣF ‖F ‖Σ̃T ‖F

=
trace(M)

‖ΣF ‖F ‖Σ̃T ‖F
.

Observe that, the MoM estimator M naturally shows up in the alignment definition because the
inner product of Σ̃T ,ΣF is equal to trace(M). This further supports our inductive bias intuition. As
reference, we compared it to canonical-identity alignment defined as trace(Σ̃T )√

d‖Σ̃T ‖F
(replacing ΣF with

I). The canonical-feature alignment score is higher than the canonical-identity alignment score. This
significant score difference exemplifies how ΣF and Σ̃T can synergistically align with each other
(inductive bias). This alignment helps our MoM estimator defined below, illustrated by Example 1
(spiked covariance).

In the following subsections, let N = n1T refer to the total tasks in representation-learning phase.
Let rF = tr(ΣF ), rT = tr(ΣT ), and r̃T = tr(Σ̃T ). Define the approximate low-rankness measure
of feature covariance by5

sF = min s′F , s.t. s′F ∈ {1, ..., d}, s′F /d ≥ λs′F+1(ΣF )

We have two results for this estimator.

1. Generally, we can estimateM with O(rF r̃
2
T ) samples.

2. Let n1 ≥ sT , we can estimateM with O(sF r̃T ) samples.

Paper [37] has sample complexity O(dr2) (r is exact rank). Our sample complexity is O(rF r̃
2
T ).

rF , r̃T can be seen as effective ranks and our bounds are always smaller than [37]. We will discuss
later in Example 1. Our second result says when n1 ≥ sT , our sample complexity achieves theO(dr)
which is proven a lower bound in [37].

Theorem 2 Let data be generated as in Phase 1. Assume ‖ΣF ‖, ‖ΣT ‖ = 1 for normalization6.

1. Let n1 be a even number. Then with probability at least 1−N−100,

‖M̂ −M‖ . (r̃T + σ2)

√
rF
N

+

√
rT
T
.

2. Assume T ≥ sF . If n1 & r̃T + σ2, then with probability at least

‖M̂ −M‖ .
(
(r̃T + σ2)/n1

)1/2
.

Denote the top-R principal subspaces ofM ,M̂ byMtop,M̂top and assume the eigen-gap condition
λR(M) − λR+1(M) > 2‖M̂ −M‖. Then a direct application of Davis-Kahan Theorem [14]
bounds the subspace angle as follows

angle(Mtop,M̂top) . ‖M̂ −M‖/(λR(M)− λR+1(M)).

5The (sF + 1)-th eigenvalue is smaller than sF /d. Note the top eigenvalue is 1.
6This is simply equivalent to scaling yij , which does not affect the normalized error ‖M̂ −M‖/‖M‖. In

the appendix we define S = max{‖ΣF ‖, ‖ΣT ‖} and prove the theorem for general S.
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Figure 4: Error of MoM estimator

Estimating eigenspace of canonical covariance. Note that
if ΣF and ΣT are aligned, (e.g. Example 1 below with
sF = sT = R), then Mtop = S̃T is exactly the principal
subspace of Σ̃T . Theorem 2 indeed gives estimation error
for the principal subspace of Σ̃T . Note that, such alignment
is and more general requirement compared to related works
which require whitened features [37, 23].

Example 1 (Spiked Σ̃T , Aligned principal subspaces)
Suppose the spectra of ΣF and Σ̃T are bimodal
as follows ΣF = diag(IsF , ιF Id−sF ), ΣT = diag(IsT , ιT Id−sT ). Set statistical error
ErrT,N :=

√
r2
T rF /N +

√
rT /T . When ιT , ιF < 1, sF ≥ sT , the recovery error of Σ̃T and its

principal subspace S̃T are bounded as

angle(M̂top, S̃T ) . ErrT,N + ι2F ιT and ‖M̂ − Σ̃T ‖ . ErrT,N + ιF ιT .

The estimation errors for Σ̃T , S̃T are controlled in terms of the effective ranks and the spectrum
tails ιF , ιT . Typically sF sT & n1 so

√
r2
T rF /N term dominates the statistical error in practice. In

Fig. 4 we plot the error of estimating M (whose principal subspace coincides with Σ̃T ). ΣF =
diag(I30, ιI70), ΣT = diag(I30,070). T = N = 100. We can see that the error increase with ι .

5 Robustness of Optimal Representation and Overall Meta-Learning Bound

In Section 3, we described the algorithm for computing the optimal representation with known
distributions of features and tasks. In Section 4, we proposed the MoM estimator in representation
learning phase to estimate the unknown covariance matrices. In this section, we study the algorithm’s
behaviors when we calculate Λ using the estimated canonical covariance, rather than the full-
information setting of Section 3.

Armed with the provably reliable estimators of Section 4, we can replace Σ̃T and ΣF in Algorithm 1
with our estimators. In this section, we inquire: how does the estimation error in covariance-estimation
in representation learning stage affect the downstream few-shot learning risk? That says, we are
interested in7 risk(Λ,ΣT ,ΣF )− risk(Λ∗,ΣT ,ΣF ).

Let us replace the constraint in (OPT-REP) by θ ≤ θ ≤ 1− d−n2

n2
θ. This changes the “optimization"

step in Algorithm 1. Theorem 3 does not require an explicit computation of the optimal representation
by enforcing θ. Instead, we use the robustness of such a representation (due to its well-conditioned
nature) to deduce its stability. That said, for practical computation of optimal representation, we
simply use Algorithm 1. We can then evaluate θ after-the-fact as the minimum singular value of this
representation to apply Theorem 3 without assuming an explicit θ.

Let Λθ(R) = COMPUTEOPTIMALREP(R,ΣF ,M̂ , σ, n2) denote the estimated optimal representa-
tion and Λ∗θ(R) = COMPUTEOPTIMALREP(R,ΣF , Σ̃T , σ, n2) denote the true optimal representa-
tion, which cannot be accessed in practice. Below we present the bound of the whole meta-learning
algorithm. It shows that a bounded error in representation learning leads to a bounded increase on the
downstream few-shot learning risk, thus quantifying the robustness of few-shot learning to errors in
covariance estimates.

Theorem 3 Let Λθ(R), Λ∗θ(R) be as defined above, and rF = tr(ΣF ), rT = tr(ΣT ), r̃T =

tr(Σ̃T ). The risk of meta-learning algorithm satisfies8

risk(Λθ(R),ΣT ,ΣF )− risk(Λ∗θ(R),ΣT ,ΣF ) .
n2

2

d(R− n2)(2n2 −Rθ)θ

[
(r̃T + σ2)

√
rF
N

+

√
rT
T

]
.

7Note that Sec.6 of [40] gives the exact value of risk(Λ∗,ΣT ,ΣF ) so we have an end to end error guarantee.
8The bracketed expression applies first conclusion of Theorem 3. One can plug in the second as well.
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Figure 5: End to end learning guarantees.
d = 100, n2 = 40, T = 200, ΣT =
(I20, 0.05 · I80), ΣF = I100.

Notice that as the number of previous tasks T and total
representation-learning samples N observed increases, the
risk of the estimated Λθ(R) approaches that of the optimal
Λ∗θ(R) as we expect. The result only applies to the overpa-
rameterized regime of interest R > n2. The expression of
risk in the underparameterized case is different, and cov-
ered by the second case of Equation(4.4) in [40]. We plot
it in Fig 1(b) on the left side of the peak as a comparison.

Risk with respect to PCA level R. In Fig. 5, we plot
the error of the whole meta-learning algorithm. We simu-
late representation learning and get M̂ , use it to compute
Λ and plot the theoretical downstream risk (experiments
match, see Fig. 1 (b)). Mainly, we compare the behavior
of Theorem 3 with differentR. WhenR grows, we search
Λ in a larger space. The optimal Λ in a feasible subset is always no better than searching in a larger
space, thus the risk decreases with R increasing. At the same time, representation learning error
increases with R since we need to fit a matrix in a larger space. In essence, this result provides a theo-
retical justification on a sweet-spot for the optimal representation. d = R is optimal when N =∞,
i.e., representation learning error is 0. As N decreases, there is a tradeoff between learning error and
truncating small eigenvalues. Thus choosing R adaptively with N can strike the right bias-variance
tradeoff between the excess risk (variance) and the risk due to suboptimal representation.

6 Conclusion

In this paper, we study the sample efficiency of meta-learning with linear representations. We
show that the optimal representation is typically overparameterized and outperforms subspace-based
representations for general data distributions. We refine the sample complexity analysis for learning
arbitrary distributions and show the importance of inductive bias of feature and task. Finally we
provide an end-to-end bound for the meta-learning algorithm showing the tradeoff of choosing larger
representation dimension v.s. robustness against representation learning error.
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A Numerical verification of inductive bias for representation learning
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Figure 6: (a) Alignment of feature-task on image classification models. The result of MNIST
uses the setting in Sec. 4. We apply the pretrained ResNet classification model on the other three
datasets, compute the (last layer) feature/task covariances and get the alignments. The alignment
is a measure of correlation which is denoted by ρ here. (b) We use the cifar100 dataset, take the
pretrained ResNet18 network and vary the number of tasks (i.e., varying the number of output classes
of the neural net, also equivalent to number of rows of the last layer matrix B defined below). The
alignments increase with number of tasks.

We add a figure with experiments on a few image datasets. We take the pretrained ResNet18 neural
network, and feed the images into it. For every image, we take the last (closest to output) layer output
as the feature x, which is of dimension d = 512. The weights of the last layer are the tasks, which is
a T × d matrix (We call it B). T = 1000, each row of B is a task vector. Then Bx ∈ RT generates
the label, whose each entry corresponds to each class. We calculate the feature and task covariance,
as well as the alignments defined in Sec. 4. We can clearly see the inductive bias of every dataset.

B Analysis of optimal representation

B.1 Proof of Observation 1 and equivalent noise

Observation 1 Let Λ ∈ Rd×R,X ∈ Rn2×d and y ∈ Rn2 , and define

β̂ = Λ(XΛ)†y, (B.1)

β̂1 = lim
t→0

argminβ‖Xβ − y‖2 + tβ>(ΛΛ>)†β (B.2)

Then β̂1 = β̂.

Proof Denote the SVD (XΛ)> = UΣV >, where U ∈ RR×R,Σ ∈ RR×n2 ,V ∈ Rn2×n2 .

β̂1 = lim
t→0

argminβ‖Xβ − y‖2 + tβ>(ΛΛ>)†β

= lim
t→0

(X>X + t(ΛΛ>)†)−1Xy

= lim
s→∞

sΛ(sΛ>X>XΛ + I)−1Λ>X>y

= lim
s→∞

sΛ(sUΣV >V Σ>U> + I)−1UΣV >y

= lim
s→∞

sΛ(sUdiag(Σ>Σ + In2 , IR−n2)U>)−1UΣV >y

= lim
s→∞

ΛU(diag(Σ>Σ, IR−n2
/s))−1ΣV >y.

= Λ(XΛ)†y
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The risk of β̂ is given by

risk(β̂) = E(y − x>β̂) = E(β̂ − β)>ΣF (β̂ − β) + σ2.

In Sec. B.2, we study the asymptotic optimal representation. Below, we characterize the properties of
the problem for fixed β and arbitrary input covariance ΣF . We first go over this and then discuss
how to obtain the optimal representation Λ∗ minimizing test risk.

Remark 2 Projection onto R dimensional subspace. For the remaining proof after this part, we
will mainly analyze the relation between ΛR and θ in Thm. 1, which lie in an R dimensional
subspace. Here we will build the connection from the d dimensional problem to R dimensional,
mainly computing the equivalent noise below. The equivalent noise consists of original noise and the
extra noise caused by PCA truncation.

Let xR be the projection of x onto the R-dimensional subspace spanned by columns of U1, and
xR⊥ is the projection of x onto the orthogonal complement. Namely, xR = U>1 x ∈ RR and
xR⊥ = U>2 x ∈ R(d−R). Similarly we can define βR and βR⊥ . Thus,

y = x>β + ε = x>RβR + x>R⊥βR⊥ + ε (B.3)

We can treat εR = x>R⊥βR⊥ + ε as the new noise, and try to solve for βR. Then define ΣT,R⊥ as the
matrix containing the same eigenvectors as ΣT and the top R eigenvalues are zeroed out, our noise
variance becomes σ2

R = σ2 +E(‖xR⊥‖2‖βR⊥‖2) = σ2 + tr(Σ̃T )− tr(Σ̃R
T ) in our algorithm. If

we are still in overparameterized regime, namely R > n2, then we define optimal representation on
top of it.

In summary, the R-SVD truncation reduces the search space of Λ into R dimensional space, where
the covariance of the noise in y increases from σ2I to σ2

RI .

B.2 Distributional characterization of least norm solution

In this part, for simplicity of discussion, we focus on the R dimensional space while omitting the
projection step, and the equivalence of a diagonal eigen-weighting matrix ΛR ∈ RR×R and θ ∈ RR

in Thm. 1. Here, we assume a truncated feature matrix X̃ ∈ Rn×R where the feature is projected
into an R dimensional space.

Define X̃ ∈ Rn×R, ỹ ∈ Rn. We study the following least norm solution of the least squares problem

β̂ = arg min
β′
‖β′‖, s.t., X̃β′ = ỹ (B.4)

Assumption 5 Assume the rows of X̃ are independently drawn from N (0, Σ̃X). We focus on a
double asymptotic regime where R,n→∞ at fixed overparameterization ratio κ := R/n > 0.

Assumption 6 The covariance matrix Σ̃X is diagonal and there exist constants Σmin,Σmax ∈
(0,∞) such that: 0 ≺ ΣminI � Σ̃X � ΣmaxI.

Assumption 7 The joint empirical distribution of {(λi(Σ̃X),βi)}i∈[R] converges in Wasserstein-
k distance to a probability distribution µ on R>0 × R for some T ≥ 4. That is
1
R

∑
i∈[R] δ(λi(Σ̃X),βi)

Wk=⇒ µ.

Definition 5 (Asymptotic distribution characterization – Overparameterized regime) [36] Let
random variables (Σ, B) ∼ µ (where µ is defined in Assumption 7) and fix κ > 1. Define parameter
ξ as the unique positive solution to the following equation

Eµ
[(

1 + (ξ · Σ)−1
)−1
]

= κ−1 . (B.5)

Define the positive parameter γ as follows:

γ :=
(
σ2 + Eµ

[ B2Σ

(1 + ξΣ)2

])/(
1− κEµ

[ 1

(1 + (ξΣ)−1)
2

])
. (B.6)
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With these and H ∼ N (0, 1), define the random variable

Xκ,σ2(Σ, B,H) :=
(

1− 1

1 + ξΣ

)
B +

√
κ

√
γ Σ−1/2

1 + (ξΣ)−1
H, (B.7)

and let Πκ,σ2 be its distribution.

Theorem 4 (Asymptotic distribution characterization – Overparameterized linear Gaussian problem)
[36] Fix κ > 1 and suppose Assumptions 6 and 7 hold. Let

1

R

R∑
i=1

δ√Rβ̂i,
√
Rβi,Σ̃Xi,i

be the joint empirical distribution of (
√
Rβ̂,
√
Rβ, Σ̃X) and it converges to a fixed distribution as

dimension grows. Let f : R3 → R be a function in PL(2). We have that

1

R

R∑
i=1

f(
√
Rβ̂i,

√
Rβi, Σ̃Xi,i

)
P−→ E

[
f(Xκ,σ2 , B,Σ)

]
. (B.8)

In particular, the risk is given by

risk(β̂n)
P−→ E[Σ(B −Xκ,σ2)] + σ2

R (B.9)

= E[
Σ

(1 + ξΣ)2
B2 +

κγ

(1 + (ξΣ)−1)2
] + σ2

R. (B.10)

B.3 Finding Optimal Representation

Now, for simplicity (and actually without losing generality) assume Σ̃X = I . This means that
empirical measure of ΣF trivially converges to Σ = 1. With the representation Λ∗ with asymptotic
distribution Λ, the ML problem has the following mapping

β → Λ−1
R β and Σ̃X → ΛRΣ̃XΛR.

This means the empirical measure converges to the following mapped distributions

B → B̄ = Λ−1B and Σ = 1→ Σ̄ = Λ2Σ = Λ2.

Our question: Craft the optimal distribution Λ to minimize the representation learning risk. Specifi-
cally, for a given (B,Λ) pair, we know from the theorem above that

riskΛR(β̂n)
P−→ E[

Σ̄

(1 + ξΣ̄)2
B̄2 +

κγ

(1 + (ξΣ̄)−1)2
] + σ2

R (B.11)

= E[
B2

(1 + ξΛ2)2
+

κγ

(1 + (ξΛ2)−1)2
] + σ2

R. (B.12)

Thus, the optimal weighting strategy (asymptotically) is given by the distribution

Λ∗ = arg min
Λ

E[
B2

(1 + ξΛ2)2
+

κγ

(1 + (ξΛ2)−1)2
],

where γ, ξ are strictly positive scalars that are also functions of Λ.

B.4 Non-asymptotic Analysis (for simpler insights)

We apply the discussion iin Sec. B.2 non-asymptotically in few-shot learning. Remember we define
X ∈ Rn2×R,y ∈ Rn2 , each row of X is independently drawn from N (0,ΣF ). We study the
following least norm solution of the least squares problem

β̂ = arg min
β′
‖β′‖, s.t.,Xβ′ = y. (B.13)
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Definition 6 (Non-asymptotic distribution characterization) Set κ = R/n2 > 1. Given σR > 0,
covariance ΣF and latent vector β and define the unique non-negative terms ξ, γ, z ∈ RR and
φ ∈ RR as follows:

ξ > 0 is the solution of κ−1 = R−1
R∑
i=1

(
1 + (ξΣF,i)

−1
)−1

,

γ =
σ2
R + 1

R

∑R
i=1

ΣF,iβ
2
i

(1+ξΣF )2

1− κ
R

∑R
i=1 (1 + (ξΣF,i)−1)−2

.

Let h ∼ N (0, I/R). The non-asymptotic distributional prediction is given by the following random
vector

β̂(ΣF ) =
1

1 + (ξΣF )−1
� β +

√
κγΣ

−1/2
F

1 + (ξΣF )−1
� h.

Note that, the above formulas can be slightly simplified to have a cleaner look by introducing an
additional variable z = 1

1+(ξΣF )−1 .

Also note that, the terms in the non-asymptotic distribution characterization and asymptotic distribu-
tion characterization have one to one correspondence. Non-asymptotic distribution characterization
is essentially a discretized version of asymptotic DC where instead of expectations (which is integral
over pdf) we have summations.

Now, we can use this distribution to predict the test risk by using Def. 6 in the risk expression.

Going back to representation question, without losing generality, assume ΣF = I and let us find
optimal ΛR. Then

β̂ = ΛR

[
1

1 + (ξΛ2
R)−1

�Λ−1
R β +

√
κγΛ−1

R

1 + (ξΛ2
R)−1

� h

]
.

The risk is given by (using h ∼ N (0, Ip))

riskΛR(β̂n)− σ2
R = E[(β̂ − β)>ΣF (β̂ − β)] (B.14)

=

R∑
i=1

ΣT,i

(1 + ξ(ΛR,i)2)2
+

R∑
i=1

κγ

(1 + (ξ(ΛR,i)2)−1)2
. (B.15)

Here, note that ξ is function of Λ∗ and γ is function of β,Λ∗. If we don’t know ΣT , we use the
estimation from representation learning Σ̂T instead.

To find the optimal representation, we will solve the following optimization problem that minimizes
the risk.

min
Λ∗

∑R
i=1

β2
i

(1 + ξ(ΛR,i)2)2
+
∑R
i=1

κγ

(1 + (ξ(ΛR,i)2)−1)2

s.t. κ−1 =
1

R

∑R
i=1(1 + (ξ(ΛR,i)

2)−1)−1

γ =
σ2
R +

∑R
i=1

β2
i

(1+ξ(ΛR,i)2)2

1− κ
R

∑R
i=1(1 + (ξ(ΛR,i)2)−1)−2

.

(B.16)

So we plug in the expression of γ and get

κγ =
σ2
R + 1

R

∑R
i=1

β2
i

(1+ξ(ΛR,i)2)2

κ−1 − 1
R

∑R
i=1(1 + (ξ(ΛR,i)2)−1)−2

=
Rσ2

R +
∑R
i=1

β2
i

(1+ξ(ΛR,i)2)2∑ ξ(ΛR,i)2

(1+ξ(ΛR,i)2)2

. (B.17)
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Let θi =
ξ(ΛR,i)

2

1+ξ(ΛR,i)2
, then the objective function becomes

R∑
i=1

ΣT,i(1−θi)2+(

R∑
i=1

θ2
i )
Rσ2

R +
∑

ΣT,i(1− θi)2∑R
i=1 θi(1− θi)

=
n2(
∑R
i=1 ΣT,i(1− θi)2) +Rσ2

R(
∑R
i=1 θ

2
i )

n2 −
∑R
i=1 θ

2
i

such that 0 ≤ θi < 1 and
∑R
i=1 θi = R

κ = n2. This quantity is same as the objective (B.16). We
divide this quantity by d to get the risk function, which is same as the definition of f in (3.3).

B.5 Solving the optimization problem.

Here, we propose the algorithm for minimizing f(θ). We explore the KKT condition for its optimality.

The objective function is

f(θ) =

R∑
i=1

ΣT,i(1− θi)2 + (

R∑
i=1

θ2
i )
Rσ2

R +
∑

ΣT,i(1− θi)2∑R
i=1 θi(1− θi)

. (B.18)

Lemma 1 Let C, S, V ∈ R. Define

φ(ΣT,i;C, V, S) :=
Cp(R− n2 − S)2

2n2(V +Rσ2
R + (R− n2 − S)ΣT,i

2)

and we find the root of the following equations:
R∑
i=1

φ(ΣT,i;C, V, S) = R− n2,

R∑
i=1

φ2(ΣT,i;C, V, S) = S − (2n2 −R),

R∑
i=1

ΣT,iφ
2(ΣT,i;C, V, S) = V.

Let θi = 1− φ(ΣT,i;C
∗, V ∗, S∗) where C∗, V ∗, S∗ are the roots, then

θ = arg min
θ′

f(θ′), s.t., 0 ≤ θ′ < 1,

R∑
i=1

θ′i = n2.

Proof Define s =
∑R
i=1 θ

2
i , φi = 1− θi. Define Q =

1

R

∑R
i=1 ΣT,iφ

2
i . Then

f(φ) =

R∑
i=1

ΣT,iφ
2
i +

s

n2 − s
(Rσ2

R +

R∑
i=1

ΣT,iφ
2
i )

= R(Q+
s

n2 − s
(σ2
R +Q))

=
Rn2

R− n2 −
∑R
i=1 φ

2
i

(Q+ σ2
R).

The last line uses

s =

R∑
i=1

(1− φ2) = R− 2

R∑
i=1

φi +

R∑
i=1

φ2
i = R− 2(R− n2) +

R∑
i=1

φ2
i = 2n2 −R+

R∑
i=1

φ2
i .

Now define
∑R
i=1 φ

2
i = S, and we compute the gradient of f , we have

df

Rφi
=

2n2(

R∑
j=1

ΣT jφ
2
j + (R− n2 − s)ΣT,i) + 2Rn2σ

2
R

φi.
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Suppose 0 < φi < 1, then we need df
Rφi

equal to each other for all i. Suppose df
Rφi

= C, and denote∑
ΣT jφ

2
j = V , we can solve for φi from df

Rφi
= C as

φi =
Cd(R− n2 − S)2

2n2(V +Rσ2
R + (R− n2 − S)ΣT,i

2)
:= φ(ΣT,i;C, V, S). (B.19)

We define the function φ(ΣT,i;C, V, S) as above, and use the fact that

R∑
i=1

φ(ΣT,i;C, V, S) = R− n2,

R∑
i=1

φ2(ΣT,i;C, V, S) = S − (2n2 −R),

R∑
i=1

ΣT,iφ
2(ΣT,i;C, V, S) = V.

We can solve9 C, V, S and retrieve φi by (B.19). θi = 1− φi.

C Analysis of MoM estimators

C.1 Covariance estimator

We will first present the estimation error of the feature covariance ΣF , which is not covered in the
main paper due to limitation of space. Note that if ΣF is fully aligned with ΣT , e.g., ΣF = ΣT , then
estimating ΣF is enough for getting optimal representation, and we will show it has lower sample
complexity and error compared to estimating canonical covariance Σ̃T . That is a naive case, if it
does not work, this intermediate result will help in our latter proof.

We will use the following Bernstein type concentration lemma, generalized from [37, Lemma 29]:

Lemma 2 Let Z ∈ Rn1×n2 . Choose T0, σ
2 such that

1. P (‖Z‖ ≥ C0T0 + t) ≤ exp(−c
√
t/T0).

2. ‖E(ZZ>)‖, ‖E(Z>Z)‖ ≤ σ2.

Then with probability at least 1− (nT0)−c, c > 10,

‖ 1

n

n∑
i=1

Zi −E(Zi)‖ . log(nT0)

(
T0 log(nT0)

n
+

σ√
n

)
.

Proof Define K = log2(CKnT0) for CK > 0, Z ′ = Z1(‖Z‖ ≤ KT0), then

‖E(Z −Z ′)‖ ≤
∫ ∞
KT0

exp(−c
√
t/T0)dt . (1 +

√
K) exp(−c

√
K)T0

. (1 + log(CKnT0))(nT0)−C .

We can choose CK large enough so that C > 10. We will use [37, Lemma 29]. Set R =

log2(CKnT0)T0 +C0T0, ∆ = (1 + log(CKnT0))(nT0)−C , t = Ct log(nT0)(T0 log(nT0)
n + σ√

n
) for

some Ct > 0, plugging in the last inequality of [37, Lemma 29], the LHS is smaller than (nT0)−c

for some c. We can also check P (‖Z‖ ≥ R) ≤ (nT0)−c for some c, thus we prove the lemma.

9For the root of 3-dim problem, the worst case we can grid the space and search with time complexity
O(ε−3).
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Feature Covariance. We can directly estimate the covariance of features by

Σ̂F =
1

N

n1∑
j=1

T∑
i=1

xijx
>
ij , (C.1)

The mean of this estimator is ΣF and we can estimate the top r eigenvector of ΣF with Õ(r)
samples.

As we have defined in Phase 1, features xij are generated from N (0,ΣF ). We aim to estimate
the covariance ΣF . Although there are different kinds of algorithms, such as maximum likelihood
estimator [1], to be consistent with the algorithms in the latter sections, we study the sample covariance
matrix defined by (C.1).

Lemma 3 Suppose xi, i = 1, ..., N are generated independently fromN (0,ΣF ). We estimate (C.1),
then when N & rF , with probability 1−O((Ntr(ΣF ))−C),

‖Σ̂F −ΣF ‖ .
√
‖ΣF ‖tr(ΣF )

N
.

Denote the span of top sF eigenvectors of ΣF asW and the span of top sF eigenvectors of Σ̂F as
Ŵ . Let δλ = λsF (ΣF )− λsF+1(ΣF ). Then if N & ‖ΣF ‖tr(ΣF )

δ2λ
, we have

sin(∠W , Ŵ ) .

√
‖ΣF ‖tr(ΣF )

Nδ2
λ

Example 2 When ΣF = diag(IsF , 0), we have sin(∠W , Ŵ ) .
√

sF
N .

Lemma 3 gives the quality of the estimation of the covariance of features x. When the condition
number of the matrix ΣF is close to 1, we needN & d to get an estimation with errorO(1). However,
when the matrix ΣF is close to rank rF , the amount of samples to achieve the same error is smaller,
and we can use N & rF samples to get O(1) estimation error.

We will use Bernstein type concentration results to bound its error, and a similar technique will be
used for M̂ in the next sections.

Proof First we observe that, the features xij among different tasks are generated i.i.d. from
N (0,ΣF ). So we can rewrite (C.1) as

Σ̂F =
1

N

N∑
i=1

xix
>
i (C.2)

where xi ∼ N (0,ΣF ). The error of Σ̂F depends on N regardless of T and n1 respectively.

First, we know by concentration inequality

P (‖xx>‖ − tr(ΣF ) ≥ t) = P (‖x‖2 − tr(ΣF ) ≥ t) ≤ exp(−cmin{ t2

tr(Σ2
F )
,

t

‖ΣF ‖
}). (C.3)

We will use the fact
√

tr(Σ2
F ) ≤ tr(ΣF ). Define K = C0 log(Ntr(ΣF ))tr(ΣF ), Z = xx>,

Z ′ = Z · 1{‖Z‖ ≤ K} where 1 means indicator function (1(True) = 1,1(False) = 0), for some
positive number C0. Then

‖E(Z −Z ′)‖ ≤
∫ ∞
t=K

(exp(−c t2

tr2(ΣF )
) + exp(−c t

‖ΣF ‖
))dt

≤
∫ ∞
t=K

(exp(−c t

tr(ΣF )
) + exp(−c t

‖ΣF ‖
))dt

≤ 2
tr(ΣF )

c
exp(−c K

tr(ΣF )
)

≤
√
Ktr2(ΣF )

c
exp(− cK

tr(ΣF )
)

. (Ntr(ΣF ))−C
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where C ≥ C0 − 3/2. Then we compute (xx>)2 = ‖x‖2xx>. Let ΣF be diagonal (the proof is
invariant from the basis. In other words, if ΣF is not diagonal, then we can make the eigenvectors of
ΣF as basis and the proof applies). Then

E(‖x‖2xx>)ij =

{
ΣF ii(tr(ΣF ) + 2ΣF ii), i = j,

0, i 6= j.
(C.4)

So ‖E(‖x‖2xx>)‖ ≤ ‖ΣF ‖(tr(ΣF ) + 2‖ΣF ‖) ≈ ‖ΣF ‖tr(ΣF ). ≈ means & and ..

Using Lemma 2, with (C.3) and the inequality above, we get that with probability 1 −
O((Ntr(ΣF ))−C),

‖Σ̂F −ΣF ‖ . log(Ntr(ΣF ))

(
log(Ntr(ΣF ))tr(ΣF )

N
+

√
‖ΣF ‖tr(ΣF )

N

)
. (C.5)

If the number above is smaller than λr − λr+1, we have that

N &
‖ΣF ‖tr(ΣF )

(λr − λr+1)2
(C.6)

which is O(r) if condition number is 1.

The bound of the angle of top R eigenvector subspace is a direct application of the following lemma.

Lemma 4 [14] LetA be a square matrix. Let Ŵ ,W denote the span of top r singular vectors of Â
andA. Suppose ‖Â−A‖ ≤ ∆, and σr(A)− σr+1(A) ≥ ∆, then

sin(∠W , Ŵ ) ≤ ∆

σr(A)− σr+1(A)−∆
.

So that the error of principle subspace recovery of feature covariance is upper bounded by
‖Σ̂F−ΣF ‖

σr(ΣF )−σr+1(ΣF )−‖Σ̂F−ΣF ‖
, where ‖Σ̂F −ΣF ‖ is calculated in (C.5).

C.2 Method of moment

This section contains three parts. We first bound the norm of task vectors. Then we analyze the
second result of Thm. 2, where n1 is lower bounded by effective rank. Last we prove the first result
of Thm. 2 which is a generalization of [37].

C.2.1 Property of task vectors

We first study the property of the tasks β1, ...,βT . We know that, for any β ∼ N (0,ΣT ),

P (‖β‖2 − tr(ΣT ) ≥ t) ≤ exp(−cmin{ t2

tr(Σ2
T )
,

t

‖ΣT ‖
}).

So that with probability at least 1− δ, we have

‖βi‖2 . tr(ΣT ) +
√

(log(1/δ) + log(T ))tr(Σ2
T ) + (log(1/δ) + log(T ))‖ΣT ‖

. tr(ΣT ) + log(T/δ)
√

tr(Σ2
T ) . tr(ΣT ) log(T/δ), ∀i = 1, ..., T. (C.7)

With similar technique we know that with probability at least 1− δ,

‖ΣFβi‖2 . tr(ΣFΣTΣF ) + log(T/δ)
√

tr((ΣFΣTΣF )2), ∀i = 1, ..., T. (C.8)

‖Σ1/2
F βi‖2 . tr(Σ

1/2
F ΣTΣ

1/2
F ) + log(T/δ)

√
tr((Σ

1/2
F ΣTΣ

1/2
F )2), ∀i = 1, ..., T. (C.9)

We will use δ = T−c for some constant c so that log(T/δ) = (c+ 1) log(T ) ≈ log(T ). Later, we
will use the norm bounds of above quantities which happen with probability at least 1− T−c.
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C.2.2 Estimating with fewer samples when each task contains enough samples

In this part we will prove Theorem 6, which is the second case of Theorem 2. First we will give a
description of standard normal features, then prove the general version.

Theorem 5 (Standard normal feature, noiseless) Let data be generated as in Phase 1, let S =
max{‖ΣF ‖, ‖ΣT ‖} in this theorem and the following section10, r̃T = tr(ΣTΣF ), rF = tr(ΣF ),
rT = tr(ΣT ). Suppose σ = 0, ΣF = I , and suppose the rank of ΣT is sT . Define
β̂i = n−1

1

∑n1

j=1 yijxij , B = [β1, ...,βT ], and B̂ = [β̂1, ..., β̂T ]. Let n1 > c1rTλ
−1
sT (ΣT ), with

probability 1−O(T−C), where C is constant,

σmax(B̂ −B) .

√
TrT
n1

.

Denote the span of top sT singular column vectors of B̂ and ΣT as Ŵ ,W , then

sin(∠Ŵ ,W ) .
√

rT
n1λsT (ΣT )

.

For example, if ΣT = diag(IsT , 0), then sin(∠Ŵ ,W ) .
√
sT /n1.

Proof We first estimate βi with

β̂i =
1

n1

n1∑
j=1

yijxij .

Then we fix βi and compute the covariance of yijxij (its mean is βi).

Cov(yijxij − βi) = E(xijx
>
ijβiβ

>
i xijx

>
ij)− βiβ>i - ‖βi‖2I.

The first term is similar to (C.4), where the bound can is in [37, Lemma 5]. The vector β̂i is the
average of yijxij over all j. With concentration we know that

Cov(β̂i − βi) -
‖βi‖2

n1
I. (C.10)

Let B = [β1, ...,βT ], and B̂ = [β̂1, ..., β̂T ]. Then we know the covariance of each column of
B̂ −B is bounded by (C.10). Thus with a constant c and probability 1− exp(−cT 2),

σ2
max(B̂ −B) .

T‖βi‖2

n1
. (C.11)

We have proved in (C.7) that ‖βi‖2 ≤ log(T )tr(ΣT ) with probability 1− T−c. The columns ofB
is generated from N (0,ΣT ), so that

σmax(B̂ −B) .

√
T log(T )tr(ΣT )

n1
.

Now we study B. We know that E(BB>) = E(
∑T
i=1 βiβ

>
i ) = TΣT . B is a matrix with

independent columns. Thus let n1 > c1tr(ΣT )λ−1
sT (ΣT ), T > max{c2d, ‖ΣT ‖tr(ΣT )

λ2
sT

(ΣT ) }, then with

Lemma 3, for Gaussian matrix with independent columns [38], with probability at least 1−O(T−c3 +
(T tr(ΣT ))−c4 + exp(−c5T 2)) = 1−O(T−C), where ci are constants,

σsT (B) ≥
√
TλsT (ΣT )−O(

√
T‖ΣT ‖tr(ΣT )).

Denote the span of top sT singular vectors of B̂ and ΣT as Ŵ ,W , with Lemma 4,

sin(∠Ŵ ,W ) ≤

√
log(T )tr(ΣT )

n1λsT (ΣT )
.

10in the paper we assume S = 1 for simplicity.

23



Next, we will propose a theorem with general feature covariance and noisy data, which is a general-
ization of Theorem 5.

Theorem 6 Let data be generated as in Phase 1. Suppose b̂i = n−1
1

∑n1

j=1 yijxij , B =

ΣF [β1, ...,βT ], and B̂ = [b̂1, ..., b̂T ]. Let δλ = λsT (ΣFΣTΣF ) − λsT+1(ΣFΣTΣF )), suppose
ΣF is approximately rank sF ,

n1 & (tr(ΣTΣF ) + σ2)‖ΣF ‖,

T & max{sF ,
dλsF+1(ΣF )

‖ΣF ‖
},

then with probability 1−O(T−C), where C is constant,

σmax(B̂ −B) .

√
T (tr(ΣTΣF ) + σ2)‖ΣF ‖

n1
.

Denote the span of top sT singular vectors of B̂ and ΣFΣTΣF as Ŵ ,W , if further we assume
T & ‖ΣFΣTΣF ‖tr(ΣFΣTΣF )

δ2λ
, then

sin(∠Ŵ ,W ) .

√
(tr(ΣTΣF ) + σ2)‖ΣF ‖

n1δ2
λ

.

Example 3 Suppose ΣF = diag(IsF , ιId−sF ), and ΣT = diag(IsT , 0), σ = 0. Suppose ιd < sF .
Then with T & sF , n1 & sT so that N & sF sT ,

sin(∠Ŵ ,W ) .
√
sT /n.

Proof We let xij ∼ N (0,ΣF ). For the ith task, let

b̂i =
1

n1

n1∑
j=1

yijxij .

We fix βi and compute

E(yijxij) - E(xijx
>
ijβi) = ΣFβi, (C.12)

and

Cov(yijxij −ΣFβi) - (β>i ΣFβi)ΣF + σ2ΣF . (C.13)

To get the bound above, we can adopt the technique in [37, Lemma 5] such that, write xij = Σ
1/2
F z,

and reduce toE((z>Σ
1/2
F βi)

2Σ
1/2
F zz>Σ

1/2
F ). The proof of [37, Lemma 5] gives the explicit bound

of ‖E((z>α)2zz>)‖ for any α that equals above. The vector b̂i is the average of yijxij over all
j = 1, ..., n1. With concentration we know that

Cov(b̂i −ΣFβi) -
β>i ΣFβi + σ2

n1
ΣF . (C.14)

SupposeB = ΣF [β1, ...,βT ], and B̂ = [b1, ..., bT ]. B̂ −B is a matrix with independent columns.
Suppose X is approximately rank sF , Let VsF ∈ Rd×d be the projection onto the top-R sigular
vector space of ΣF and Vs⊥F ∈ Rd×d be the projection onto the sF + 1 to dth sigular vector space of
ΣF . With T columns and T ≥ sF , we know that

σmax(VsF (B̂ −B)) .
T (maxi β

>
i ΣFβi + σ2)‖ΣF ‖

n1

σmax(Vs⊥F (B̂ −B)) .
max{T, d}(maxi β

>
i ΣFβi + σ2)λsT+1(ΣF )

n1
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With similar argument as before, with probability 1− exp(−cT 2) for constant c,

σ2
max(B̂ −B) .

max{T‖ΣF ‖, dλsF+1(ΣF )}(maxi β
>
i ΣFβi + σ2)‖ΣF ‖

n1
. (C.15)

We know in (C.9) that ‖Σ1/2
F βi‖2 ≤ O(log(T )tr(ΣTΣF )) with probability 1− T−c for constant c.

So that

σmax(B̂ −B) .

√
max{T‖ΣF ‖, dλsF+1(ΣF )}(log(T )tr(ΣTΣF ) + σ2)‖ΣF ‖

n1
. (C.16)

Now we studyB. E(BB>) = E(ΣF (
∑T
i=1 βiβ

>
i )ΣF ) = TΣFΣTΣF .

Thus let

n1 > C1(log(T )tr(ΣTΣF ) + σ2)‖ΣF ‖.
Now apply the concentration of Gaussian matrix with independent columns [38]. With probability
1−O(T−C1 + (T tr(ΣFΣTΣF ))−C2 + exp(−C3T

2)), where Ci are constants (the probability can
be simplified as 1−O(T−C)),

σsT (B) ≥
√
T (λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))−O(

√
T‖ΣFΣTΣF ‖tr(ΣFΣTΣF )).

Denote the span of top sT singular vectors of B̂ and ΣFΣTΣF as Ŵ ,W , let

T & max{sF ,
dλsF+1(ΣF )

‖ΣF ‖
,

‖ΣFΣTΣF ‖tr(ΣFΣTΣF )

(λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))2
} (C.17)

we plug in (C.16) and Lemma 4,

sin(∠Ŵ ,W ) .

√
(
dλsF+1(ΣF )

T‖ΣF ‖
+ 1) · (tr(ΣTΣF ) + σ2)‖ΣF ‖

n1(λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))

≈

√
(tr(ΣTΣF ) + σ2)‖ΣF ‖

n1(λsT (ΣFΣTΣF )− λsT+1(ΣFΣTΣF ))
.

C.2.3 Method of moments with arbitrary n1

In this subsection we will analyze B̂ with any n1, and propose the error of MoM estimator.

First, suppose there are at least two samples per task, we can separate the samples into two halves,
and compute the following estimator.

Theorem 7 Let data be generated as in Phase 1, and let n1 be a even number. Define b̂i,1 =

2n−1
1

∑n1/2
j=1 yijxij , b̂i,2 = 2n−1

1

∑n1

j=n1/2+1 yijxij . Define

M̂ = n−1
1

T∑
i=1

(bi,1b
>
i,2 + bi,2b

>
i,1),

M = ΣFΣTΣF .

Then there is a constant c > 10, with probability 1−N−c,

‖M̂ −M‖ . (r̃T + σ2)

√
rF
N

+

√
rT
T
.

Proof For simplicity of notation, we will define a random vector x with zero mean and covariance
ΣF , a random vector β with zero mean and covariance ΣT , a random variable ε with zero mean and
covariance σ, and they are subGaussian11. Let y = x>β + ε. We first estimate the mean of M̂ .

11We remove the subscripts when there is no confusion.
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Note that if we fix β, b̂i,1, b̂i,2 are i.i.d., so

Ex,ε(b̂i,1) = Ex,ε(yx) = Ex,ε((x
>β + ε)x) = ΣFβ,

Ex,ε(M̂) =
1

2
(Ex,ε(b̂i,1)Ex,ε(b̂i,2)> +Ex,ε(b̂i,2)Ex,ε(b̂i,1)>)

= Ex,ε(b̂i,1)Ex,ε(b̂i,1)> =
1

T
ΣF (

T∑
i=1

βiβ
>
i )ΣF .

We take expectation over βi and getM . We define the right hand side as M̄ for the proof below.

Next, we will bound ‖M̂ −M‖.
[37, Lemma 3] proposes that, with probability 1− δ,

‖xij‖2 . log(1/δ)tr(ΣF ),

(x>ijβi)
2 . log(1/δ)tr(ΣFΣT ),

ε2
ij . log(1/δ)σ2.

If we enumerate i = 1, ..., T and j = 1, ..., n1, there are in total Tn1 = N terms. So we set
δ = N−c+1 for a constant c > 1, then with probability 1−N−c, for all i, j we have

‖yijxij‖ = ‖(xijβi + εij)xij‖ . log3/2(N)
√

(tr(ΣFΣT ) + σ2)tr(ΣF ).

Define δi,l = b̂i,l −ΣFβi for l = 1, 2 (we will use l = 1 below, the result for l = 2 is the same).
Note that δi is zero mean. With [23, Prop. 5.1] we have with probability 1−N−c,

‖δi,1‖ . n
−1/2
1 log5/2(N)

√
(tr(ΣFΣT ) + σ2)tr(ΣF ) (C.18)

Define

Zi = b̂i,1b̂
>
i,2 −Ex,ε(b̂i,1b̂>i,2)

= (ΣFβi + δi,1)(ΣFβi + δi,2)> −Ex,ε(b̂i,1b̂>i,2)

= δi,1(ΣFβi)
> + ΣFβiδ

>
i,2 + δi,1δ

>
i,2 −Ex,ε(δi,1δ>i,2).

Then

‖EZiZ>i ‖ ≤ ‖E(ΣFβiδ
>
i,2 + δi,1(ΣFβi)

>)(ΣFβiδ
>
i,2 + δi,1(ΣFβi)

>)>‖
+ ‖Eδi,1δ>i,2δi,2δ>i,1‖. (C.19)

Then we can use (C.18) and (C.8) to bound the first term by

n−1
1 log6(N)(tr(ΣFΣT ) + σ)tr(ΣF )tr(Σ2

FΣT )‖ΣF ‖2.

And

Ex,εδi,1δ
>
i,2δi,2δ

>
i,1 = (Exδ

>
i,2δi,2)‖Exδi,1δ>i,1‖

. n−2
1 (Ex,ε(x

>β + ε)2x>x)‖Ex,ε(x>β + ε)2xx>‖
. n−2

1 (tr2(ΣFΣT ) + σ4)tr(ΣF )‖ΣF ‖.

The second line is due to the fact that δi,l is the difference of (x>β+ε)x and its mean, and covariance
is upper bounded by variance (not subtracting the mean). The n−2

1 factor comes from the average
over n1 terms. The reasoning of the last line is same as (C.13). Now we can go back to (C.19) and
get

‖EZiZ>i ‖ . n−1
1 log6(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF ‖2.

Next we need to bound the norm of Zi. We use (C.18) and (C.8), with probability 1−N−c,

‖Zi‖ ≤ n−1/2
1 log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF ‖
+ n−1

1 log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF ).
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Define the upper bound for ‖EZiZ>i ‖, ‖Zi‖ as Z1, Z2 (the right hand side of two above inequalities).
Now we apply Bernstein type inequality (Lemma 2), with probability 1−N−c,

‖M̂ − M̄‖

= ‖T−1
T∑
i=1

Zi −ExZi‖

. log(TZ2)
(
T−1/2 log(N)Z

1/2
1 + T−1Z2 log(TZ2)

)
. log(TZ2)

(√ log6(N)(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF ‖2

n1T

+
log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF ‖
n

1/2
1 T

+
log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF )

T

)
= log(TZ2) ·

(
log3(N)‖ΣF ‖(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N

+
log5(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF ‖
N1/2T 1/2

)
.

The term

‖ΣF ‖(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N
is the dominant term as shown in the theorem.

The following method of moment estimator is used in [37], where n1 ≥ 1. In other words, if there is
one sample per task, one can use the following estimator.

Theorem 8 Let data be generated as in Phase 1. Define b̂i = n−1
1

∑n1

j=1 yijxij , B =

ΣF [β1, ...,βT ], and B̂ = [b̂1, ..., b̂T ]. Define

Ĝ = B̂B̂> = T−1
T∑
i=1

b̂ib̂
>
i ,

G = E(B̂B̂>) = ΣFΣTΣF + n−1
1 (ΣFΣTΣF + tr(ΣTΣF )ΣF + σ2ΣF ),

Σ̄T =

T∑
i=1

βiβ
>
i ,

Ḡ = ΣF Σ̄TΣF + n−1
1 (ΣF Σ̄TΣF + tr(Σ̄TΣF )ΣF + σ2ΣF )

With probability 1−N c,

‖Ĝ− Ḡ‖ . ‖ΣF ‖(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N
.

Proof First, we compute the expectation of Ĝ.

Ex,y,εĜ = Ex,y,εT
−1(

T∑
i=1

b̂ib̂
>
i ),

Ex,y,εb̂ib̂
>
i = Ex,y,ε

n−1
1

n1∑
j=1

(β>i xij + εij)xij

n−1
1

n1∑
j=1

(β>i xij + εij)xij

>

= n−1
1 σ2ΣF +Ex(n−1

1

n1∑
j=1

xijx
>
ijβi)(n

−1
1

n1∑
j=1

xijx
>
ijβi)

>. (C.20)
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Now we will study the second term. (C.12) states that Ex,y,ε(b̂i) = ΣFβi. And b̂i is an average of
n1 terms, we use the expression of the covariance of sample means to get

Cov(b̂i) = n−1
1 Cov(xx>βi), (C.21)

Ex,y,εb̂ib̂
>
i = Ex(n−1

1

n1∑
j=1

xijx
>
ijβi)(n

−1
1

n1∑
j=1

xijx
>
ijβi)

>

= ΣFβiβ
>
i ΣF + n−1

1 Cov(xx>βi) (C.22)

Now we study Cov(xx>βi).

Cov(xx>βi) = Ex(xx>βi −ΣFβi)(xx
>βi −ΣFβi)

>

= Ex(xx>βi)(xx
>βi)

> −ΣFβiβ
>
i ΣF

Let x =
√

ΣFz so that z ∼ N (0, I). Let two indices k, l ∈ [d]. When k 6= l,

Ex[(xx>βi)(xx
>βi)

>]kl = Ez(

d∑
j=1

βi,jσjzj)
2σkzkσlzl

= 2σ2
kσ

2
l βi,kβi,l

And

Ex[(xx>βi)(xx
>βi)

>]kk = Ez(

d∑
j=1

βi,jσjzj)
2σ2
kz

2
k

= tr(β>i ΣFβi)σ
2
k + 2σ4

kβ
2
i,k.

So that

Ex(xx>βi)(xx
>βi)

> = 2ΣFβiβ
>
i ΣF + tr(β>i ΣFβi),

Cov(xx>βi) = Ex(xx>βi)(xx
>βi)

> −ΣFβiβ
>
i ΣF

= ΣFβiβ
>
i ΣF + tr(β>i ΣFβi)ΣF .

We plug it back into (C.22) and (C.20) and get

Ex,y,εb̂ib̂
>
i = ΣFβiβ

>
i ΣF + n−1

1 (ΣFβiβ
>
i ΣF + tr(β>i ΣFβi)ΣF + σ2ΣF ).

Define Σ̄T = 1
T

∑T
j=1 βjβ

>
j . So that

Ex,y,εĜ = Ex,y,εT
−1(

T∑
i=1

b̂ib̂
>
i )

= ΣF Σ̄TΣF + n−1
1 (ΣF Σ̄TΣF + tr(Σ̄TΣF )ΣF + σ2ΣF ) := Ḡ.

EβĜ = G.

We fix all βi and study Ex,y,εĜ. Now we need to show how fast Ĝ converges to Ḡ.

Define

Zi = b̂ib̂
>
i −Ex(b̂ib̂

>
i )

= (ΣFβi + δi)(ΣFβi + δi)
> −Ex(ΣFβi + δi)(ΣFβi + δi)

>

= ΣFβiδ
>
i + δi(ΣFβi)

> + δiδ
>
i −Ex(ΣFβiδ

>
i + δi(ΣFβi)

> + δiδ
>
i ).

Then

‖EZ2
i ‖ ≤ ‖E(ΣFβiδ

>
i + δi(ΣFβi)

>)2‖+ ‖Eδiδ>i δiδ>i ‖.

Then we can use (C.18) and (C.8) to bound the first term

‖EZ2
i ‖ . n−1

1 log6(N)(tr(ΣFΣT ) + σ)tr(ΣF )tr(Σ2
FΣT )‖ΣF ‖2 + ‖Eδiδ>i δiδ>i ‖ (C.23)
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So we need to bound ‖Eδiδ>i δiδ>i ‖. Note that δi is the average of xij(x>ijβi + εij) with respect to
index j = 1, ..., n1. So we just let x ∼ N (0,ΣF ) and study x(x>βi + εij). Denote it by ui.

‖Exuiu>i uiu>i ‖ = ‖Ex(x>βi + εij)
4xx>xx>‖

. ‖Ex((x>βi)
4 + σ4)xx>xx>‖

. (tr2(ΣFΣT ) + σ4)tr(ΣF )‖ΣF ‖.
So that

‖Eδiδ>i δiδ>i ‖ . n−2
1 (tr2(ΣFΣT ) + σ4)tr(ΣF )‖ΣF ‖.

Now we can go back to (C.23) and get

‖EZ2
i ‖ . n−1

1 log6(N)(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF ‖2.

Next we need to bound the norm of Zi. We use (C.18) and (C.8), with probability 1−N−c,

‖Zi‖ ≤ n−1/2
1 log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF ‖+ n−1
1 log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF ).

Define the upper bound for ‖EZ2
i ‖, ‖Zi‖ as Z1, Z2 (the right hand side of two above inequalities).

With Bernstein type inequality (Lemma 2),with probability 1−N−c,

‖Ĝ− Ḡ‖

= ‖T−1
T∑
i=1

Zi −ExZi‖

. log(TZ2)
(
T−1/2 log(N)Z

1/2
1 + T−1Z2 log(TZ2)

)
. log(TZ2)

(√ log6(N)(tr(Σ2
FΣT ) + tr(ΣFΣT ) + σ2)2tr(ΣF )‖ΣF ‖2

n1T

+
log3(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF ‖
n

1/2
1 T

+
log5(N)(tr(ΣFΣT ) + σ2)tr(ΣF )

T

)
= log(TZ2) ·

(
log3(N)‖ΣF ‖(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)

√
tr(ΣF )

N

+
log5(N)(tr(Σ2

FΣT ) + tr(ΣFΣT ) + σ2)
√

tr(ΣF )‖ΣF ‖
N1/2T 1/2

)
.

D Proof of Robustness of Optimal Representation

Theorem 3 Suppose the data is generated as Phase 2, Λ and θ are defined in Def. 1 and the
estimated task is obtained as (3). Let the upper bound of ‖M̂ −M‖ be E . The risk of meta-learning
algorithm satisfies

risk(Λθ(R),ΣT ,ΣF )− risk(Λ∗θ(R),ΣT ,ΣF ) .
n2

2 · E
d(R− n2)(2n2 −Rθ)θ

.

Proof In the proof below, we use Λ and Λ∗ to replace Λθ(R),Λ∗θ(R) for simplicity. We first
decompose the risk as

risk(Λ,ΣT ,ΣF )− risk(Λ∗,ΣT ,ΣF )

= risk(Λ, Σ̂T ,ΣF )− risk(Λ∗, Σ̂T ,ΣF )︸ ︷︷ ︸
≤0

+ [risk(Λ,ΣT ,ΣF )− risk(Λ, Σ̂T ,ΣF )] + [risk(Λ∗, Σ̂T ,ΣF )− risk(Λ∗,ΣT ,ΣF )].
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We know risk(Λ, Σ̂T ,ΣF )− risk(Λ∗, Σ̂T ,ΣF ) ≤ 0 due to the optimality of Λ with task covariance
Σ̂T . Now we will bound risk(Λ,ΣT ,ΣF )− risk(Λ, Σ̂T ,ΣF ) for arbitrary Λ, and it automatically
works for risk(Λ∗, Σ̂T ,ΣF )− risk(Λ∗,ΣT ,ΣF ). Note that in (3.3) we know that

risk(Λ′,Σ′T ) = f(θ; ΣT ,ΣF ) :=

R∑
i=1

n2(1− θi)2

R(n2 − ‖θ‖2)
Σ̃R
T,i +

n2

n2 − ‖θ‖2
σ2. (D.1)

This function is linear in ΣT thus we know that

|risk(Λ∗, Σ̂T ,ΣF )− risk(Λ∗,ΣT ,ΣF )| ≤ n2

d(n2 − ‖θ‖2)
E . (D.2)

Now we need to bound ‖θ‖2. With the constraint θ ≤ θ < 1 − R−n2

n2
θ and

∑
θi = n2, we know

that the maximum of ‖θ‖2 happens when (R− n2) among θi are θ and the others are 1− R−n2

n2
θ.

With this we have

‖θ‖2 ≤ (R− n2)θ2 + n2(1− R− n2

n2
θ)2

= (R− n2)θ2 + n2 − 2(R− n2)θ +
(R− n2)2

n2
θ2

= n2 − 2(R− n2)θ +
(R− n2)R

n2
θ2

Thus

n2 − ‖θ‖2 ≥ (R− n2)θ(2n2 −Rθ).

Plugging it into (D.2) and (D.1) leads to the theorem.
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