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A Details of Datasets Used in Section 41

MNIST. [17] MNIST dataset contains a training set of 60,000 examples and a test set of 10,0002

examples. The images are grayscale handwritten digits with size 28× 28. We resize the images to3

32× 32 in setting SVHN⇒MNSIT.4

USPS. [1] USPS dataset is a digit dataset scanned from envelopes. It contains a total of 9,2985

16× 16 grayscale pixels. We resize them to 28× 28 in both MNIST⇒ USPS and USPS⇒MNIST6

setting.7

SVHN. [25] SVHN is a real-world color house-number dataset containing 73,257 images for8

training and 26,032 images for testing. We use the version where all digits have been resized to9

32× 32 pixels.10

CIFAR-10. [16] The CIFAR-10 is an image recognition dataset containing 60,000 32 × 32 3-11

channel images in 10 classes.12

STL-10. [7] The STL-10 dataset consists of 13,000 color images of size 96× 96 in 10 classes. We13

resize them to 32× 32 in the experiments.14

VISDA2017. [27] VISDA2017 dataset is designed for unsupervised domain adaptation challenge15

which contains more than 280K images across 12 object categories with large domain gap. The source16

domain are synthetic 2D images rendering of 3D models which the angles and lighting conditions are17

different. The target domain are photo-realistic or real-images. In the experiment, we resize all the18

images to 256× 256 and crop at the center obtaining images with size 224× 224. An example of19

synthetic-real image pair is shown in Figure 1.20

Figure 1: Example images in VISDA2017. The left is an image of source domain (synthetic) while
the right is an image of target domain (real).

B Details of Models and Baseline Algorithms in Section 421

SVM We use Linear Support Vector Classification (SVC) implemented by scikit-learn [26] with22

L2 penalty and regularization parameter C = 0.1. Others remain as default.23
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Logistic Regression We use Logistic Regression implemented by scikit-learn [26]. We set the24

maximum number of iterations to be 1000.25

Small CNN The small CNN model we used has two convolutional layers and two max pooling26

layers and three fully-connected layers. We use Adam optimizer with learning rate 10−3, ε = 10−7,27

batch size 32 for training the small CNN model.28

DeepSets Model A DeepSets model can be represented as fDS(S) = ρ(
∑

x∈S φ(x)) where both29

ρ and φ are neural networks. In our experiments, both ρ and φ contain 3 linear layer with ELU30

activation, and we set the number of neurons to be 256 in each hidden layer, the dimension of set31

features which is the output of φ network to be 256. For training DeepSets models, we use Adam32

optimizer with learning rate 10−5, batch size 32, β1 = 0.9, and β2 = 0.99.33

Baseline AL Techniques We use BADGE, FASS, and GLISTER implemented by DISTIL1. Specif-34

ically, we set batch size to be 32 for all of the three strategies, and learning rate to be 0.001 for35

glister.36

C Other Implementation Details37

Domain Adaptation We test our method with three state-of-the-art domain adaptation frameworks38

in this paper: CyCADA [13], UDA [37], AFN [43].39

For CyCADA2, we follow their official implementation where a source classifier is firstly trained40

using Adam optimizer with learning rate 10−4, batch size 128, β1 = 0.9, and β2 = 0.99. Then,41

weights of this source classifier are used as the initial weights of target classifier to perform domain42

adaptation. Same optimizer are used for training target classifier. We set the k in Line 10 of Algorithm43

2 to be 10.44

For UDA3, we use SGD optimizer with initial learning rate 0.1. We later decay the learning rate to45

0.001 after 10 epochs. And we set k to be 5.46

For AFN4, we use SGD optimizer with learning rate 0.001 and weight decay 5× 10−4 for training47

feature extractor, and SGD optimizer with learning rate 0.001, momentum 0.9 and weight decay48

5× 10−4 for training class predictor. We set k to be 5.49

When combined with all of the above three DA frameworks, the same Adam optimizer with learning50

rate 10−6, β1 = 0.9, and β2 = 0.99 is used for DeepSets Loss back propagation.51

Data Selection We apply stochastic greedy optimization [24] to solve Equation (4), and we set52

ε = 10−3.53
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