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1 PROOFS AND MORE TECHNICAL RESULTS

Proposition 1.1. Define Ct={t:1<t<m,e,; >0}, andC™ = {t: 1 <t < mn,cy < 0}. Let z* be a critical point of
function F'in eq.(7) of the main paper. Then for arbitrary small positive number € > 0, z*¢ € R" defined by

ey

e {z; ifz; #0o0rk eCt
Zk, =

5 otherwise

Then there exists u € OF () for F in eq.(6) of the main paper such that ||u||, < L¢|C|e where L = 20max (X X).

Proof. Since the only different elements between z*€ and z* are those with indices in A = C~! ({k: z} = 0}, we have
IVF(2") = V@), < Lyllz* — 2", < LelC Ve,

where L = 20,0, (X X). Because z* be a critical point of function F', there exists q € dh., . such that p :== V f(z*)+q =
~ n ~~
0. Define h., . = v kz cki]Izi‘#O. With the definition of z*-°, we have q € 0h .(2*) such that q; = 0 for k € A and
=1
dr = qz otherwise. Moreover, q; = 0 for all & € A.
Therefore, let p £ V f(2*¢) + q € OF(z*¢), we have

Iplly = 1P = pll, = IVF(Z") = V(2")ll, < LsIC"|e.

The claim of this proposition follows with u = p.

We repeat critical equations in the main paper and define more notations before stating the proof of Theorem 3.2.

. 1
prox,, (W)= argmin o [[v —ull§ + hyo(z) = Topc(w),
o vERR v;=0 45

where s > 0 is the step size, T . . is an element-wise hard thresholding operator. For 1 <¢ < n,

_ 0 : Ju| <v2svy¢y and ¢ >0, ort =14
[Tee (W) _{ u; : otherwise 2
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1.1 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. First of all, it can be verified that supp(z¢*)) C supp(z¢*~) for all k > 1 when s <

2T

Gz-

Therefore, there exists a finite &’ > 1 such that {zc*) , have the same support S. We note that A can be also be slightly
k>k

adjusted so that supp(v,, (k )) S for all k > kq. Now we consider any k > k' in the sequel, and let z € R™ be a vector such

that supp(z¢) = S.

Because f have L -Lipschitz continuous gradient, we have

2
fz®) < fFm®) 4 (Vf(m®), 25 — m®)) 4 % z m(k)H .
2

Also,

fm®) = (1 = an)f (@) - awf (@)
= (1 - ) (Fm®) = (@) + o (F(m®) - f(2))
(1= (VS (m®),m® —257D) i (Vf (m®), m® — )

(VF(m®), (1 - ax)(m® —z257) + o (m™ — z))
(VA (m™), m®™ — (1 - a;)z*V — ayz),

IN

where (D is due to the convexity of f.

We have v(¥) = v(#=1) — ), v f(m(*®)), and it follows that

O o R O R
2)\k 2 2 2

Al (7 — v () (kD))

>~

|I®

S Sz — v ) (k=D
k
= (Vf(m®), v — z),

and @ is due to the fact that supp(z¢ — vé )) C S because supp(zc) = S, supp(vy (k )) cSs.

Because supp (v, (k )) C supp(zc), we have

h%C(V(k)) < hye(2).

It follows by (5) and (6) that

(Vf(m®),v® —z) +h,, c(v(’“))

< o) + 53 (H (k=) _

_ va _y

2 2
_ va _v<k—1>H )
2 2

Similar to (5), we have

2
8 (=l o ) < i,
25 2

For any q € Oh, (z®), due to the fact that supp(zc) = supp(z (k )),

<Z_Z( Q) + hy, C( )) = hyo(2).
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By (8) and (9),

1
(=21, (2" —m®) + q) + 5y o (21)

= hy ()+(Hm —z

2 2

z' —1Z

2
z\" —m(k)H > (10)
2

2 2

By the optimality condition of the proximal mapping in eq.(10) in Algorithm 1, we can choose q € 5‘h7,c(z(k)) such that
z®) =m®) — s (Vf(m(k)) + q). Plugging such q in (10), we have

N (I o e o T

Setting z = (1 — ay)z* =Y + ay,v(® in (11), we have
(VI (m®), 28 — (1 = a)a®D = v ®) + by o (29)

1 2 2
< hyo((1 = o)z 4 apv®) 4 %5 <Hm(k) — (1 — a)z* V) — v ®) H - Hz(k) —m® H >
s 2

(k>H2
2

1 2 2
(1- ak)h%c(z(kfl)) + akh%c(v(’“)) + % (Oé%HV(k) - V(’cfl)H2 - Hz(k) - m(k)H2) , (12)

NS)

(1- ak)h%c(z(k_l)) + O‘kh%c(v(k))
1 2
2 k) _ (1 — (k=1) _ <k>H _
+ s (Hm (1— o)z agv|
)
<

where (D is due to the fact that supp(v,, (k )) = supp(z(ck_l))) and h. . satisfies hy . (1 = T)u+7v) < (1 = 7)hy (1) +
Tha (V) for any two vectors u, v w1th supp(uc) = supp(ve) and any 7 € (0,1). @ is due to the fact that m*) — (1 —
)zt — v ) = ap (vE=D — v(®)) according to eq.(9) in Algorithm 1.

Computing o X (7) + (12), we have

(VFm®),2® — (1 - a2V — apz) + hy o (2V)

< (1—ak)h c(z(’“‘l))+akhw( )
() e
2s 2Ak

Sk (=1 _H (k) _

+ 2)\k <H z

@® 2 1 2

< (1= 0 o) o o) + 53 (V0 |~ v —*HZ(“—“‘(“H’ =
’ ’ 2Mj; 2 2 2s 2

20 _ (k)Hz
2

and @ is due to Ay, < s.

Combining (3), (4) and (13), and noting that F(z) = f(z) + h., .(z), we have

- - ~ 1 L 2
Fz®)<(1—ap)FE* D)+ apF(z)— (= - 2L m(k)H
2s 2 2
(o O
+ A (Hv Z , v Z e (14)
It follows by (14) that
F(z®) — F(z) < (1 - ay) (F* ) - F(2))
L Lef,m <k>H2 Uk H k=1 _,|I? H ® _
(L Ly . Pk = - . 15
(23 2)HZ m 2+2)\k M “y Y “Il, (15)




Define a sequence {7}, as 71 = 1, and Ty, = (1 — oy )Ti—1 for k > 2. Dividing both sides of (15) by T}, we have

F(z®) — F(z)

F(z*=1) — F(z) 1—Lsz H

<
Tk o Th—1 25T},
s (VL “”—H - 16
+ 2/\ka (H v z 2 ( )
Since we choose o, = ,%H it follows that T}, = k(k+1) for all £ > 1. Plugging the values of oy and T} in 5 T in (16),
we have
F(z®)) — F(z) < F(z®=1) - F(z) 1 Lys H H
Tk o Tk 1 25Ty,
ey (v ol v )
D F(z"~ 1’) F(z) 1 —LszZ(k> (k)H Lk H G
= 25Ty, 2k 2
k 1
. H s, a7
2
where D is due to the condition that A\; 41 > %)\k for k > 1.
Set kg = k' + 1. Summing the above inequality for k = ko, ..., m with m > kg, we have
~ m ~ ~ _ ~ ko— 2 m
F(z"™) - F(z) < F(z*o=1)) — [(z) koHv( 0—1) _ z||2 B Z 1— Lfs”z(k) B m(k)H2
T - Tkg—l 2/\k0 25Ty, 2
Kolko = 1) (P(20070) = F(z))  [[ytko=1) _ 2
< . 18
< 5 + o (18)
Since T,,, = m, it follows by (18) with z = z* that
P lam)) _ F L P g0y _ F v 27|
Fm—F*<7-kk—1(F 0~ —F*)—. 19
() = () < s ok = 1) (Pl ™) = Py ) + o (19
Changing m to k in (19) completes the proof.
O

2 ADDITIONAL ILLUSTRATION

Figure 1 illustrates the comparison between the weighed adjacency matrix of #'-graph and SRSG.
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Figure 1: The comparison between the weighed adjacency matrix W of the sparse graph produced by ¢!-graph (right) and
SRSG (left) on the Extended Yale Face Database B, where each white dot indicates an edge in the sparse graph.



	Proofs and More Technical Results
	Proof of Theorem 3.2

	Additional Illustration

