Supplementary for Locally Regularized Sparse Graph by Fast Proximal Gradient Descent

Dongfang Sun, Yingzhen Yang¹

¹School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA, {dsun30, yingzhen.yang}@asu.edu

1 PROOFS AND MORE TECHNICAL RESULTS

Proposition 1.1. Define $C^+ = \{t: 1 \le t \le n, c_{ti} > 0\}$, and $C^- = \{t: 1 \le t \le n, c_{ti} < 0\}$. Let \mathbf{z}^* be a critical point of function \tilde{F} in eq.(7) of the main paper. Then for arbitrary small positive number $\varepsilon > 0$, $\tilde{\mathbf{z}}^{*,\epsilon} \in \mathbb{R}^n$ defined by

$$\tilde{\mathbf{z}}_{k}^{*,\epsilon} = \begin{cases} \mathbf{z}_{k}^{*} & \text{if } \mathbf{z}_{k}^{*} \neq 0 \text{ or } k \in \mathcal{C}^{+} \\ \varepsilon & \text{otherwise} \end{cases}$$
 (1)

Then there exists $\mathbf{u} \in \tilde{\partial} F(\tilde{\mathbf{z}}_k^{*,\epsilon})$ for F in eq.(6) of the main paper such that $\|\mathbf{u}\|_2 \leq L_f |\mathcal{C}| \varepsilon$ where $L_f \coloneqq 2\sigma_{\max}(\mathbf{X}^\top \mathbf{X})$.

Proof. Since the only different elements between $\tilde{\mathbf{z}}^{*,\epsilon}$ and \mathbf{z}^* are those with indices in $\mathcal{A} = \mathcal{C}^{-1} \bigcap \{k \colon \mathbf{z}_k^* = 0\}$, we have

$$\|\nabla f(\tilde{\mathbf{z}}^*) - \nabla f(\mathbf{z}^*)\|_2 \le L_f \|\tilde{\mathbf{z}}^* - \mathbf{z}^*\|_2 \le L_f |\mathcal{C}^{-1}|\varepsilon,$$

where $L_f = 2\sigma_{\max}(\mathbf{X}^{\top}\mathbf{X})$. Because \mathbf{z}^* be a critical point of function \tilde{F} , there exists $\mathbf{q} \in \tilde{\partial} h_{\gamma,c}$ such that $\mathbf{p} := \nabla f(\mathbf{z}^*) + \mathbf{q} = \mathbf{0}$. Define $\tilde{h}_{\gamma,c} = \gamma \sum_{k=1}^n c_{ki} \mathbb{I}_{\mathbf{Z}_k^i \neq 0}$. With the definition of $\tilde{\mathbf{z}}^{*,\epsilon}$, we have $\tilde{\mathbf{q}} \in \tilde{\partial} \tilde{h}_{\gamma,c}(\tilde{\mathbf{z}}^{*,\epsilon})$ such that $\tilde{\mathbf{q}}_k = 0$ for $k \in \mathcal{A}$ and $\tilde{\mathbf{q}}_k = \mathbf{q}_k$ otherwise. Moreover, $\mathbf{q}_k = 0$ for all $k \in \mathcal{A}$.

Therefore, let $\tilde{\mathbf{p}} \triangleq \nabla f(\tilde{\mathbf{z}}^{*,\epsilon}) + \tilde{\mathbf{q}} \in \partial F(\tilde{\mathbf{z}}^{*,\epsilon})$, we have

$$\|\tilde{\mathbf{p}}\|_2 = \|\tilde{\mathbf{p}} - \mathbf{p}\|_2 = \|\nabla f(\tilde{\mathbf{z}}^*) - \nabla f(\mathbf{z}^*)\|_2 \le L_f |\mathcal{C}^{-1}|\varepsilon.$$

The claim of this proposition follows with $\mathbf{u} = \tilde{\mathbf{p}}$.

We repeat critical equations in the main paper and define more notations before stating the proof of Theorem 3.2.

$$\mathrm{prox}_{sh_{\gamma,c}}(\mathbf{u}) \coloneqq \mathop{\arg\min}_{\mathbf{v} \in \mathbb{R}^n, \mathbf{v}_i = 0} \frac{1}{2s} \|\mathbf{v} - \mathbf{u}\|_2^2 + h_{\gamma,c}(\mathbf{z}) = T_{s,\gamma,c}(\mathbf{u}),$$

where s>0 is the step size, $T_{s,\gamma,c}$ is an element-wise hard thresholding operator. For $1\leq t\leq n$,

$$[T_{s,\gamma,c}(\mathbf{u})]_t = \begin{cases} 0 : |\mathbf{u}_t| \le \sqrt{2s\gamma c_{ti}} \text{ and } c_{ti} > 0, \text{ or } t = i\\ \mathbf{u}_t : \text{ otherwise} \end{cases}$$
 (2)

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

1.1 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. First of all, it can be verified that $\sup(\mathbf{z}_{\mathcal{C}}^{(k)}) \subseteq \sup(\mathbf{z}_{\mathcal{C}}^{(k-1)})$ for all $k \geq 1$ when $s < \frac{2\tau}{G^2}$. Therefore, there exists a finite $k' \geq 1$ such that $\{\mathbf{z}_{\mathcal{C}}^{(k)}\}_{k \geq k'}$ have the same support \mathcal{S} . We note that λ can be also be slightly adjusted so that $\sup(\mathbf{v}_{\mathcal{C}}^{(k)}) = \mathcal{S}$ for all $k \geq k_0$. Now we consider any k > k' in the sequel, and let $\mathbf{z} \in \mathbb{R}^n$ be a vector such that $\sup(\mathbf{z}_{\mathcal{C}}) = \mathcal{S}$.

Because f have L_f -Lipschitz continuous gradient, we have

$$f(\mathbf{z}^{(k)}) \le f(\mathbf{m}^{(k)}) + \langle \nabla f(\mathbf{m}^{(k)}), \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \rangle + \frac{L_f}{2} \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2. \tag{3}$$

Also,

$$f(\mathbf{m}^{(k)}) - (1 - \alpha_k) f(\mathbf{z}^{(k-1)}) - \alpha_k f(\mathbf{z})$$

$$= (1 - \alpha_k) \left(f(\mathbf{m}^{(k)}) - f(\mathbf{z}^{(k-1)}) \right) + \alpha_k \left(f(\mathbf{m}^{(k)}) - f(\mathbf{z}) \right)$$

$$\stackrel{\text{(1)}}{\leq} (1 - \alpha_k) \langle \nabla f(\mathbf{m}^{(k)}), \mathbf{m}^{(k)} - \mathbf{z}^{(k-1)} \rangle + \alpha_k \langle \nabla f(\mathbf{m}^{(k)}), \mathbf{m}^{(k)} - \mathbf{z} \rangle$$

$$\leq \langle \nabla f(\mathbf{m}^{(k)}), (1 - \alpha_k) (\mathbf{m}^{(k)} - \mathbf{z}^{(k-1)}) + \alpha_k (\mathbf{m}^{(k)} - \mathbf{z}) \rangle$$

$$= \langle \nabla f(\mathbf{m}^{(k)}), \mathbf{m}^{(k)} - (1 - \alpha_k) \mathbf{z}^{(k-1)} - \alpha_k \mathbf{z} \rangle, \tag{4}$$

where 1 is due to the convexity of f.

We have $\tilde{\mathbf{v}}^{(k)} = \mathbf{v}^{(k-1)} - \lambda_k \nabla f(\mathbf{m}^{(k)})$, and it follows that

$$\frac{1}{2\lambda_{k}} \left(\left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{v}^{(k)} - \mathbf{v}^{(k-1)} \right\|_{2}^{2} \right)
= \frac{1}{\lambda_{k}} \langle \mathbf{z} - \mathbf{v}^{(k)}, \mathbf{v}^{(k)} - \mathbf{v}^{(k-1)} \rangle
\stackrel{\text{\tiny }}{=} \frac{1}{\lambda_{k}} \langle \mathbf{z} - \mathbf{v}^{(k)}, \tilde{\mathbf{v}}^{(k)} - \mathbf{v}^{(k-1)} \rangle
= \langle \nabla f(\mathbf{m}^{(k)}), \mathbf{v}^{(k)} - \mathbf{z} \rangle,$$
(5)

and ① is due to the fact that $\operatorname{supp}(\mathbf{z}_{\mathcal{C}} - \mathbf{v}_{\mathcal{C}}^{(k)}) \subseteq \mathcal{S}$ because $\operatorname{supp}(\mathbf{z}_{\mathcal{C}}) = \mathcal{S}$, $\operatorname{supp}(\mathbf{v}_{\mathcal{C}}^{(k)}) \subseteq \mathcal{S}$.

Because $\operatorname{supp}(\mathbf{v}_{\mathcal{C}}^{(k)}) \subseteq \operatorname{supp}(\mathbf{z}_{\mathcal{C}})$, we have

$$h_{\gamma,c}(\mathbf{v}^{(k)}) \le h_{\gamma,c}(\mathbf{z}).$$
 (6)

It follows by (5) and (6) that

$$\langle \nabla f(\mathbf{m}^{(k)}), \mathbf{v}^{(k)} - \mathbf{z} \rangle + h_{\gamma, c}(\mathbf{v}^{(k)})$$

$$\leq h_{\gamma, c}(\mathbf{z}) + \frac{1}{2\lambda_k} \left(\left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_2^2 - \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_2^2 - \left\| \mathbf{v}^{(k)} - \mathbf{v}^{(k-1)} \right\|_2^2 \right)$$
(7)

Similar to (5), we have

$$\frac{1}{2s} \left(\left\| \mathbf{m}^{(k)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{z}^{(k)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_{2}^{2} \right) = \frac{1}{s} \langle \mathbf{z} - \mathbf{z}^{(k)}, \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \rangle. \tag{8}$$

For any $\mathbf{q} \in \partial h_{\gamma,c}(\mathbf{z}^{(k)})$, due to the fact that $\operatorname{supp}(\mathbf{z}_{\mathcal{C}}) = \operatorname{supp}(\mathbf{z}_{\mathcal{C}}^{(k)})$,

$$\langle \mathbf{z} - \mathbf{z}^{(k)}, \mathbf{q} \rangle + h_{\gamma,c}(\mathbf{z}^{(k)}) = h_{\gamma,c}(\mathbf{z}).$$
 (9)

By (8) and (9),

$$\langle \mathbf{z} - \mathbf{z}^{(k)}, \frac{1}{s} (\mathbf{z}^{(k)} - \mathbf{m}^{(k)}) + \mathbf{q} \rangle + h_{\gamma,c}(\mathbf{z}^{(k)})$$

$$= h_{\gamma,c}(\mathbf{z}) + \frac{1}{2s} \left(\left\| \mathbf{m}^{(k)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{z}^{(k)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_{2}^{2} \right)$$

$$(10)$$

By the optimality condition of the proximal mapping in eq.(10) in Algorithm 1, we can choose $\mathbf{q} \in \partial h_{\gamma,c}(\mathbf{z}^{(k)})$ such that $\mathbf{z}^{(k)} = \mathbf{m}^{(k)} - s\left(\nabla f(\mathbf{m}^{(k)}) + \mathbf{q}\right)$. Plugging such \mathbf{q} in (10), we have

$$\langle \nabla f(\mathbf{m}^{(k)}), \mathbf{z}^{(k)} - \mathbf{z} \rangle + h_{\gamma, c}(\mathbf{z}^{(k)}) = h_{\gamma, c}(\mathbf{z}) + \frac{1}{2s} \left(\left\| \mathbf{m}^{(k)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{z}^{(k)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_{2}^{2} \right)$$
(11)

Setting $\mathbf{z} = (1 - \alpha_k)\mathbf{z}^{(k-1)} + \alpha_k\mathbf{v}^{(k)}$ in (11), we have

$$\langle \nabla f(\mathbf{m}^{(k)}), \mathbf{z}^{(k)} - (1 - \alpha_k) \mathbf{z}^{(k-1)} - \alpha_k \mathbf{v}^{(k)} \rangle + h_{\gamma,c}(\mathbf{z}^{(k)})
\leq h_{\gamma,c}((1 - \alpha_k) \mathbf{z}^{(k-1)} + \alpha_k \mathbf{v}^{(k)}) + \frac{1}{2s} \left(\left\| \mathbf{m}^{(k)} - (1 - \alpha_k) \mathbf{z}^{(k-1)} - \alpha_k \mathbf{v}^{(k)} \right\|_2^2 - \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2 \right)
\stackrel{\bigcirc}{\leq} (1 - \alpha_k) h_{\gamma,c}(\mathbf{z}^{(k-1)}) + \alpha_k h_{\gamma,c}(\mathbf{v}^{(k)})
+ \frac{1}{2s} \left(\left\| \mathbf{m}^{(k)} - (1 - \alpha_k) \mathbf{z}^{(k-1)} - \alpha_k \mathbf{v}^{(k)} \right\|_2^2 - \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2 \right)
\stackrel{\bigcirc}{\leq} (1 - \alpha_k) h_{\gamma,c}(\mathbf{z}^{(k-1)}) + \alpha_k h_{\gamma,c}(\mathbf{v}^{(k)}) + \frac{1}{2s} \left(\alpha_k^2 \left\| \mathbf{v}^{(k)} - \mathbf{v}^{(k-1)} \right\|_2^2 - \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2 \right), \tag{12}$$

where ① is due to the fact that $\operatorname{supp}(\mathbf{v}_{\mathcal{C}}^{(k)}) = \operatorname{supp}(\mathbf{z}_{\mathcal{C}}^{(k-1)})$ and $h_{\gamma,c}$ satisfies $h_{\gamma,c}\left((1-\tau)\mathbf{u}+\tau\mathbf{v}\right) \leq (1-\tau)h_{\gamma,c}(\mathbf{u}) + \tau h_{\gamma,c}(\mathbf{v})$ for any two vectors \mathbf{u} , \mathbf{v} with $\operatorname{supp}(\mathbf{u}_{\mathcal{C}}) = \operatorname{supp}(\mathbf{v}_{\mathcal{C}})$ and any $\tau \in (0,1)$. ② is due to the fact that $\mathbf{m}^{(k)} - (1-\alpha_k)\mathbf{v}^{(k-1)} - \alpha_k\mathbf{v}^{(k)} = \alpha_k(\mathbf{v}^{(k-1)} - \mathbf{v}^{(k)})$ according to eq.(9) in Algorithm 1.

Computing $\alpha_k \times (7) + (12)$, we have

$$\langle \nabla f(\mathbf{m}^{(k)}), \mathbf{z}^{(k)} - (1 - \alpha_k) \mathbf{z}^{(k-1)} - \alpha_k \mathbf{z} \rangle + h_{\gamma,c}(\mathbf{z}^{(k)}) \\
\leq (1 - \alpha_k) h_{\gamma,c}(\mathbf{z}^{(k-1)}) + \alpha_k h_{\gamma,c}(\mathbf{z}) \\
+ \frac{\alpha_k}{2\lambda_k} \left(\left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_2^2 - \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_2^2 \right) + \left(\frac{\alpha_k^2}{2s} - \frac{\alpha_k}{2\lambda_k} \right) \left\| \mathbf{v}^{(k)} - \mathbf{v}^{(k-1)} \right\|_2^2 - \frac{1}{2s} \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2 \\
\stackrel{\bigcirc}{\leq} (1 - \alpha_k) h_{\gamma,c}(\mathbf{z}^{(k-1)}) + \alpha_k h_{\gamma,c}(\mathbf{z}) + \frac{\alpha_k}{2\lambda_k} \left(\left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_2^2 - \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_2^2 \right) - \frac{1}{2s} \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2, \tag{13}$$

and ① is due to $\lambda_k \alpha_k \leq s$.

Combining (3), (4) and (13), and noting that $\tilde{F}(\mathbf{z}) = f(\mathbf{z}) + h_{\gamma,c}(\mathbf{z})$, we have

$$\tilde{F}(\mathbf{z}^{(k)}) \leq (1 - \alpha_k) \tilde{F}(\mathbf{z}^{(k-1)}) + \alpha_k \tilde{F}(\mathbf{z}) - \left(\frac{1}{2s} - \frac{L_f}{2}\right) \left\|\mathbf{z}^{(k)} - \mathbf{m}^{(k)}\right\|_2^2
+ \frac{\alpha_k}{2\lambda_k} \left(\left\|\mathbf{v}^{(k-1)} - \mathbf{z}\right\|_2^2 - \left\|\mathbf{v}^{(k)} - \mathbf{z}\right\|_2^2\right).$$
(14)

It follows by (14) that

$$\tilde{F}(\mathbf{z}^{(k)}) - \tilde{F}(\mathbf{z}) \leq (1 - \alpha_k) \left(\tilde{F}(\mathbf{z}^{(k-1)}) - \tilde{F}(\mathbf{z}) \right) \\
- \left(\frac{1}{2s} - \frac{L_f}{2} \right) \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2 + \frac{\alpha_k}{2\lambda_k} \left(\left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_2^2 - \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_2^2 \right).$$
(15)

Define a sequence $\{T_k\}_{k=1}^{\infty}$ as $T_1=1$, and $T_k=(1-\alpha_k)T_{k-1}$ for $k\geq 2$. Dividing both sides of (15) by T_k , we have

$$\frac{\tilde{F}(\mathbf{z}^{(k)}) - \tilde{F}(\mathbf{z})}{T_k} \le \frac{\tilde{F}(\mathbf{z}^{(k-1)}) - \tilde{F}(\mathbf{z})}{T_{k-1}} - \frac{1 - L_f s}{2s T_k} \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_2^2 + \frac{\alpha_k}{2\lambda_k T_k} \left(\left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_2^2 - \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_2^2 \right).$$
(16)

Since we choose $\alpha_k = \frac{2}{k+1}$, it follows that $T_k = \frac{2}{k(k+1)}$ for all $k \ge 1$. Plugging the values of α_k and T_k in $\frac{\alpha_k}{2\lambda_k T_k}$ in (16), we have

$$\frac{\tilde{F}(\mathbf{z}^{(k)}) - \tilde{F}(\mathbf{z})}{T_{k}} \leq \frac{\tilde{F}(\mathbf{z}^{(k-1)}) - \tilde{F}(\mathbf{z})}{T_{k-1}} - \frac{1 - L_{f}s}{2sT_{k}} \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_{2}^{2}
+ \frac{k}{2\lambda_{k}} \left(\left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_{2}^{2} - \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_{2}^{2} \right)
\stackrel{\text{(1)}}{\leq} \frac{\tilde{F}(\mathbf{z}^{(k-1)}) - \tilde{F}(\mathbf{z})}{T_{k-1}} - \frac{1 - L_{f}s}{2sT_{k}} \left\| \mathbf{z}^{(k)} - \mathbf{m}^{(k)} \right\|_{2}^{2} + \frac{k}{2\lambda_{k}} \left\| \mathbf{v}^{(k-1)} - \mathbf{z} \right\|_{2}^{2}
- \frac{k+1}{2\lambda_{k+1}} \left\| \mathbf{v}^{(k)} - \mathbf{z} \right\|_{2}^{2},$$
(17)

where ① is due to the condition that $\lambda_{k+1} \geq \frac{k+1}{k} \lambda_k$ for $k \geq 1$.

Set $k_0 = k' + 1$. Summing the above inequality for $k = k_0, \dots, m$ with $m \ge k_0$, we have

$$\frac{\tilde{F}(\mathbf{z}^{(m)}) - \tilde{F}(\mathbf{z})}{T_{m}} \leq \frac{\tilde{F}(\mathbf{z}^{(k_{0}-1)}) - \tilde{F}(\mathbf{z})}{T_{k_{0}-1}} + \frac{k_{0} \|\mathbf{v}^{(k_{0}-1)} - \mathbf{z}\|_{2}^{2}}{2\lambda_{k_{0}}} - \sum_{k=k_{0}}^{m} \frac{1 - L_{f}s}{2sT_{k}} \|\mathbf{z}^{(k)} - \mathbf{m}^{(k)}\|_{2}^{2}$$

$$\leq \frac{k_{0}(k_{0}-1) \left(\tilde{F}(\mathbf{z}^{(k_{0}-1)}) - \tilde{F}(\mathbf{z})\right)}{2} + \frac{\|\mathbf{v}^{(k_{0}-1)} - \mathbf{z}\|_{2}^{2}}{2\eta}.$$
(18)

Since $T_m = \frac{2}{m(m+1)}$, it follows by (18) with $z = z^*$ that

$$\tilde{F}(\mathbf{z}^{(m)}) - \tilde{F}(\mathbf{z}^*) \le \frac{1}{m(m+1)} \cdot \left(k_0(k_0 - 1) \left(\tilde{F}(\mathbf{z}^{(k_0 - 1)}) - \tilde{F}(\mathbf{z}^*) \right) + \frac{\|\mathbf{v}^{(k_0 - 1)} - \mathbf{z}^*\|_2^2}{\eta} \right). \tag{19}$$

Changing m to k in (19) completes the proof.

2 ADDITIONAL ILLUSTRATION

Figure 1 illustrates the comparison between the weighed adjacency matrix of ℓ^1 -graph and SRSG.

References

- D.J. Newman A. Asuncion. UCI machine learning repository, 2007.
- D. Plummer and L. Lovász. Matching Theory. North-Holland Mathematics Studies. Elsevier Science, 1986.

Xin Zheng, Deng Cai, Xiaofei He, Wei-Ying Ma, and Xueyin Lin. Locality preserving clustering for image database. In *Proceedings of the 12th Annual ACM International Conference on Multimedia*, MULTIMEDIA '04, pages 885–891, New York, NY, USA, 2004. ACM.

Figure 1: The comparison between the weighed adjacency matrix W of the sparse graph produced by ℓ^1 -graph (right) and SRSG (left) on the Extended Yale Face Database B, where each white dot indicates an edge in the sparse graph.