ImageNet suffers from dichotomous data Dichotomous dstadificuly ina sl

L4 We have tested various factors related to the inductive bias—among other aspects, architecture,
d Ifﬁ C u lty optimiser, learning rate, and initialisation—and yet, on all models agree in the sense that
they all make largely similar errors. Even radically different state-of-the-art (SOTA) models make

surprisingly similar errors on the ImageNet validation set. To a certain degree, image difficulty appears
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ImageNet validation images are either “trivial” (in the sense that all models classify them correctly) or
“impossible” (all models make an error). For comparison, a binomial distribution of errors is shown: 40 45

this is the distribution of errors expected for completely independent models if all images were equally Epoch
difficult.

images and the distribution of their difficulties.
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Figure 2: Decisions on all 50K ImageNet validation images of all 13 ResNet-18 networks with

L]
I m age N et I S different inductive biases. Dark red indicates that the respective item was falsely classified by all

networks. Light red indicates that the image was correctly classified by all networks. Images are

° 10 . ordered according to the mean accuracy across networks in the last epoch.
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Decisions on all 50K ImageNet validation images of the ResNet-18 base condition over the epochs. Blue figure 3: Error §0nsi5tency on the original ImageNet test-set (left panels) and on in-between
indicates that the respective item was falsely classified during the specific epoch, while white indicates images only (right p_ane_ls) for the ResNet-variants (a) and the SOTA networks (b). Error
that it was correctly classified. The items from the ImageNet validation set are ordered according to the consistency around 0 |nd|cate§ mdependeng responses. A dlagon'f:l elemen@ qf1 represents ghat
mean accuracy the base network achieved on them over the course of the 90 epochs. Therefore, items pnly one_network for comparison was available. Clearly, removing the ll’l\{lal a_nd impossible
* o which were classified correctly from epoch 1 are on top and items which were classified incorrectly from images (right panels) shows that different network architectures are behaving differently from
of course, this depends on the accuracy of epoch 1are on the bottom. one another, i.e. their different processing strategies are not longer masked by DDD (left
® . anels)—thus allowing more insights to be gained.
the models. More details can be found here: panels) g g &
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