
A Environments

Our experiments utilize the MiniGrid [Chevalier-Boisvert et al., 2018] set of environments. These
environments are partially observable, procedurally generated, and provide a sparse reward upon
successful completion of the task.

The agent receives a 7 × 7 egocentric view of its surroundings, which is encoded in a 7 × 7 × 3
observation to describe the contents of the visible grid cells. The agent cannot see behind walls or
closed doors.

At every step, the agent has seven available actions: turn left, turn right, move forward, pick up, drop,
toggle (used to open doors), and done.

A new configuration of the environment is generated for each episode. Episodes finish when the
agent has interacted with the environment for the maximum number of steps permitted, or if the agent
successfully completes the task, in which case the agent also receives a non-zero reward depending
on the number of steps taken to complete the task.

MiniGrid-KeyCorridorS3R3-v0 The agent has to pick up a ball behind a locked door. To unlock
the door, the agent must first find the key, which is also hidden.

pick up the blue ball

Figure 5: The KeyCorridor-S3R3 environment

MiniGrid-ObstructedMaze-2Dl-v0 The goal of the agent is to pick up an object behind one of
the locked doors.

pick up the blue ball

Figure 6: The ObstructedMaze-2Dl environment

9



MiniGrid-MultiRoom-N10-S4-v0 and MiniGrid-MultiRoom-N7-S8-v0 The goal of the agent
is to reach the green goal state in the farthest room (see Figure 7). The notation N10-S4 signifies that
the environment consists of 10 rooms with a maximum size of 4. These environments are not available
in the default set of MiniGrid environments. We borrow the implementation of these environments
from the previous work of Raileanu and Rocktäschel [2020].

traverse the rooms to get to the goal

Figure 7: The MultiRoom-N7-S8 environment

B Implementation details

B.1 Base agent

We use the PPO implementation from the rl-starter-files [Willems, 2017] repository. We retain
the same architecture for the actor and critic as provided in their implementation.

The actor and the critic share three convolution layers with 16, 32 and 64 output channels, with 2× 2
kernels and a stride of 1. Each convolution layer is followed by a ReLU non-linearity. A 2 × 2
max-pooling is applied after the first convolution layer. The output from the convolution layers is
flattened and provided to an LSTM with a hidden dimension of 64. Separate multi-layer perceptron
(MLP) heads for the actor and critic operate on the output of the LSTM to output the action logits
and the value. Each MLP has 64 hidden units with a hyperbolic tangent (tanh) activation function.

B.2 Pseudo-reward generator

The pseudo-reward generator is implemented as a convolutional neural network whose output is
flattened to provide a vector of pseudo-rewards zt+1 ∈ Rd. It has a similar architecture to the
convolutional layers used in the base agent.

Concretely, this network consists of three convolution layers, with 16, 32, and d output channels
respectively, with 2× 2 kernels and a stride of 1. Here, d is the number of pseudo-rewards, which
we set as d = 128 for our experiments. ReLU non-linearity is applied after the first two convolution
layers. Additionally, a 2× 2 max-pooling is applied after the first convolution layer.

B.3 Predictor network

In the case of RND, the predictor network has the same architecture as the pseudo-reward generator.

For RC-GVF, the predictor is recurrent. Specifically, it consists of three convolution layers with 16,
32 and 64 output channels, with 2× 2 kernels and a stride of 1. Each convolution layer is followed
by a ReLU non-linearity. A 2× 2 max-pooling is applied after the first convolution layer. The output
from the convolution layers is flattened and provided to a fully connected layer which provides a 32
dimensional input to an LSTM (with a hidden dimension of 32). A final linear layer maps the output
of the LSTM to the pseudo-return predictions.

10



C Grid search and hyper-parameters

Table 1 provides the common hyperparameter settings used for the PPO base agent across all
environments.

Table 1: Hyperparameters for PPO.

Hyperparameter Value

Learning rate η 0.0002
Discount factor 0.99
PPO clip ε 0.2
Rollout length 128
Number of parallel environments 16
Number of epochs 4
Batch size 256
Generalized Advantage Estimation λ 0.95
Entropy coefficient 0
Value loss coefficient 0.5
Recurrence 4 (for truncated BPTT[])
Optimizer Adam [Kingma and Ba, 2015]
Optimizer epsilon 1e− 08

Utilizing an intrinsic reward based on RND/RC-GVF introduces additional hyperparameters. Two
of them are the intrinsic reward coefficient β and the predictor’s learning rate ηp. These parameters
were chosen separately for each environment and approach. The values considered for the intrinsic
coefficient were, β ∈ {0.0001, 0.0005, 0.001, 0.005, 0.1}. We considered two possible values for the
learning rate of the predictor ηp ∈ {η, 2.5η}, where η is the learning rate of the PPO base agent. The
definitive hyperparameters were selected based on a grid search over 3 seeds, and we report the final
results of a further 10 runs for the chosen setting. We provide the resulting hyperparameters for each
environment below

KeyCorridor-S3R3: RND (β = 0.005 and ηp = 2.5η) and RC-GVF (β = 0.0005 and ηp = 2.5η),
ObstructedMaze-2Dl: RND (β = 0.001 and ηp = η) and RC-GVF (β = 0.0001 and ηp = η),
MultiRoom-N10-S4: RND (β = 0.005 and ηp = 2.5η) and RC-GVF (β = 0.0001 and ηp = 2.5η),
MultiRoom-N7-S8: RND (β = 0.0005 and ηp = 2.5η) and RC-GVF (β = 0.0001 and ηp = 2.5η).

For all environments, we set the number of pseudo-rewards d = 128, the discount factor for the
RC-GVF pseudo-returns γz = 0.75 and the associated λ-return parameter λz = 0.95.

In the analysis of different discount factors for RC-GVF (see Figure 3), we report the best results from
a a grid search over the intrinsic reward coefficient β ∈ {0.0005, 0.001, 0.005} for each discount
factor γz ∈ {0, 0.007, 0.07, 0.25, 0.5, 0.7, 0.75}.
In the additional experiment with the entropy coefficient on the KeyCorridor-S3R3 environment
(see Figure 4), we utilize an entropy coefficient of 0.0001 and use the same grid search as the main
experiments to identify the best hyperparameters. For RND we select β = 0.001 and ηp = 2.5η, and
for RC-GVF we select β = 0.0001 and ηp = 2.5η.

11


