
Active Learning for Multiple Target Models
(Supplementary Materials)

In the appendix, we will first prove of the theorems in the paper, then we introduce more details
and results of the experiments, which include more particular empirical settings, running time,
computational resources, the significance of the performance comparisons and extra experimental
results. The notations in the following contents are consistent with the paper.

A Proofs of the Theorems in the Paper

A.1 Proof of Theorem 2

The proof of Theorem 2 is based on the results of the RobustCAL method [2]. Thus we first introduce
the following results of the RobustCAL method for the single model.

Lemma i. [3, Theorem 5.4] Considering binary classification problem. Suppose the hypothesis
space C has VC dimension d. For any δ ∈ (0, 1), RobustCAL achieves a label complexity Λ such
that, for any DXY , for a and α as in Condition 1, ∀ε ∈ (0, 1),

Λ (ν + ε, δ,PXY ) . a2θ (aεα)

(
1

ε

)2−2α(
dLog (θ (aεα)) + Log

(
Log(a/ε)

δ

))
Log(1/ε) ,

and furthermore,

Λ (ν + ε, δ,PXY ) . θ(ν + ε)

(
ν2

ε2
+ Log

(
1

ε

))(
dLog(θ(ν + ε)) + Log

(
Log(1/ε)

δ

))
.

With the above techniques, we begin to prove Theorem 2.

Proof. The hyperparameter q = 1 in the DIAM-online method means querying the data falls into any
disagreement regions of target models. In other words, the data queried for a specific target model
must be queried by the DIAM-online algorithm. Denote the number of data queried for i-th target
model by ti such that it is sufficient to output an ε-good classifier with probability at least 1− δ for
Ci. By a union bound, we know that DIAM-online queries t ≥

∑
i ti examples sufficient to output

ε-good classifiers for each target model with probability at least 1 − δ. Recall that DIAM-online
method takes the same form of σi with the RobustCAL method (step 8 in the Algorithm 1 in the
paper), thus it is equivalent to applying RobustCAL on each target model. By incorporating Lemma i
and a union bound, we can get the conclusion.

A.2 Proof of Theorem 3

To compare the upper bound of the label complexity between DIAM and CAL under the multiple
target models setting, we first note that, if the ideal situation described in the Theorem 3 exists, then
DIAM-online will achieve the label complexity Λ̃ = maxi Λi. Because the queried data is useful for
all hypothesis spaces Ci,∀i = 1, . . . , k. Thus, if t > maxi Λi examples are labeled, DIAM-online
will output the desired classifiers for each Ci. Assume the m-th target model achieves the highest
label complexity, by Lemma i, we know that DIAM achieves the label complexity for multiple models
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with ε ∈ (0, 1/e) in binary classification problem, such that

Λ̃ ≤ θCmh∗
m

(νm + ε)

(
ν2m
ε2

+ ln

(
1

ε

))(
dm ln(θCmh∗

m
(νm + ε)) + ln

(
ln(1/ε)

δ

))
. (1)

For the CAL method, according to the Corollary 1 in the paper, we know that it achieves the label
complexity for multiple models in binary classification problems such that

Λ̃ ≤ θT̃h∗(ε/2) ln(2/ε)

(
d ln(θT̃h∗(ε/2)) + ln

(
ln(2/ε)

δ

))
. (2)

To compare the right side of Eq. (1) and (2), one challenge is to compare the disagreement coefficients
defined on different functions and hypothesis spaces, i.e., θCmh∗

m
and θT̃h∗ . To this end, we first introduce

the following properties of the disagreement coefficient θ(·), which are analyzed in [3].
Lemma ii. [3, Theorem 7.1] Given h ∈ C, θh(r) is nonincreasing w.r.t. r ∈ [0,+∞).
Lemma iii. [3, Theorem 7.8] Let C1 and C2 be sets of classifiers such that C = C1∪C2. For all ε > 0,
let θCh(ε), θC1h (ε), and θC2h (ε) denote the disagreement coefficients of arbitrary h (not necessarily in
C) with respect to C, C1, C2, respectively, under DX . Then ∀ε > 0,

max
{
θC1h (ε), θC2h (ε)

}
≤ θCh(ε) .

Lemma iv. [3, Corollary 7.2] Let ε ∈ (0,∞) and a ∈ (1,∞). Then θCh(ε/a) ≤ aθCh(ε) and
θCh(ε)/a ≤ θCh(aε).
Lemma v. ∀h ∈ C, given a hypothesis g (not necessarily in C), if d(h, g) ≤ γ, for any γ > 0. Then
∀ε > 0 we have

θCg (ε) ≤ ε+ γ

ε
θCh(ε+ γ) ≤ ε+ γ

ε
θCh(ε) (3)

Proof. (Lemma v) d(h, g) ≤ γ implies that ∀r > 0, BC(g, r + γ) ⊇ BC(h, r) and BC(h, r + γ) ⊇
BC(g, r). Then

θCg (ε) = 1 ∨ sup
r>ε

P (DIS (BC (g, r)))

r
≤ 1 ∨ sup

r>ε

P(DIS(BC(h, r + γ)))

r

≤ ε+ γ

ε

(
1 ∨ sup

r>ε

P(DIS(BC(h, r + γ)))

r + γ

)
=
ε+ γ

ε
θCh(ε+ γ) ≤ ε+ γ

ε
θCh(ε).

(4)

Lemma iii and Lemma v bridge the disagreement coefficients defined on different classifiers and
hypothesis spaces. With the above results, we can now begin to prove Theorem 3.

Proof. (Theorem 3)

To compare the right side of Eq. (1) and (2), we turn to compare each corresponding term, i.e.,
θCmh∗

m
(νm + ε) and θT̃h∗(ε/2); ν

2
m

ε2 + ln
(
1
ε

)
and ln

(
2
ε

)
.

For the first group of terms (i.e., disagreement coefficients), by Lemma v, we have

θCmh∗
m

(νm + ε) ≤ ε+ 2νm
ε+ νm

θCmh∗ (νm + ε) . (5)

Since νm ≤ ln 2
2 ε < 1

2ε, we can get

1 <
ε+ 2νm
ε+ νm

<
4

3
. (6)

According to Lemma iv, we can get
ε+ 2νm
ε+ νm

θCmh∗ (νm + ε) ≤ θCmh∗ (
3

2
νm +

3

4
ε) . (7)
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Combining Lemma ii and Lemma iii, we have

θCmh∗ (
3

2
νm +

3

4
ε) ≤ θCmh∗ (ε/2) ≤ θT̃h∗(ε/2) . (8)

For the second group of terms (i.e., ν
2
m

ε2 +ln
(
1
ε

)
and ln

(
2
ε

)
), according to the assumptions νm ≤ ln 2

2 ε,
we have

ν2m
ε2

+ ln

(
1

ε

)
≤ ln

(
2

ε

)
. (9)

To further compare dm ln(θCmh∗
m

(νm + ε)) and d ln(θT̃h∗(ε/2)), we know that Cm is a subset of T̃ , thus
dm ≤ d. By combining Eq. (8), we can directly have

dm ln(θCmh∗
m

(νm + ε)) ≤ d ln(θT̃h∗(ε/2)) , (10)

and

dm ln(θCmh∗
m

(νm + ε)) + ln

(
ln(1/ε)

δ

)
< d ln(θT̃h∗(ε/2)) + ln

(
ln(2/ε)

δ

)
. (11)

Combining the above results, we have the following deductions, which lead to the conclusion.
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# by Eq. (5)
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3

2
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4
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(
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+ ln

(
1

ε
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dm ln(θCmh∗ (

3

2
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3

4
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(
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δ

))
# by Eq. (7)

<θCmh∗ (ε/2) ln(2/ε)

(
d ln(θCmh∗ (ε/2)) + ln

(
ln(2/ε)

δ

))
# by Eq. (8)(9)(11)

≤θT̃h∗(ε/2) ln(2/ε)

(
d ln(θT̃h∗(ε/2)) + ln

(
ln(2/ε)

δ

))
# by Lemma iii

B Experimental Details and Additional Results

B.1 Empirical Settings

Specifications of Multiple Target Models We take the following 12 specifications from a recent
NAS work OFA [1] as our target models:

• s7edge_lat@88ms_top1@76.3_finetune@25
• s7edge_lat@58ms_top1@74.7_finetune@25
• s7edge_lat@41ms_top1@73.1_finetune@25
• s7edge_lat@29ms_top1@70.5_finetune@25
• note8_lat@65ms_top1@76.1_finetune@25
• note8_lat@49ms_top1@74.9_finetune@25
• note8_lat@31ms_top1@72.8_finetune@25
• note8_lat@22ms_top1@70.4_finetune@25
• note10_lat@22ms_top1@76.6_finetune@25
• note10_lat@16ms_top1@75.5_finetune@25
• note10_lat@11ms_top1@73.6_finetune@25
• note10_lat@8ms_top1@71.4_finetune@25

In the experiment with different number of target models (cf. Sec. 6.3), we empirically take the first
2, 4, 6, 8 specifications from the above model configuration list as the target models set.
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Table i: Win/Tie/Lose (W./T./L.) results of DIAM versus the other methods with varied numbers of
queried batch based on paired t-tests at 0.05 significance level. The comparisons are based on the
performances of 12 target models after each query.

Algorithms Number of queried batch (1, 500 examples per batch)
1 2 3 4 5 6 7 8 9 10 W./T./L.

MNIST
CAL Win Win Tie Win Win Win Win Tie Win Win 8/2/0
Entropy Tie Win Tie Win Win Win Win Tie Win Win 7/3/0
Margin Win Win Tie Win Win Win Win Tie Win Win 8/2/0
Least conf. Tie Win Win Win Win Win Win Tie Win Win 8/2/0
Coreset Win Win Win Win Win Win Win Tie Win Win 9/1/0
Random Win Win Tie Win Win Win Win Tie Win Win 8/2/0
W./T./L. 4/2/0 6/0/0 2/4/0 6/0/0 6/0/0 6/0/0 6/0/0 0/6/0 6/0/0 6/0/0 48/12/0

Kuzushiji-MNIST
CAL Win Win Win Win Win Win Win Win Win Win 10/0/0
Entropy Win Win Win Win Win Win Win Win Win Win 10/0/0
Margin Win Win Win Win Win Win Win Win Win Win 10/0/0
Least conf. Win Win Win Win Win Win Win Win Win Win 10/0/0
Coreset Win Win Win Win Win Win Win Win Win Win 10/0/0
Random Win Win Win Win Win Win Win Win Win Win 10/0/0
W./T./L. 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 60/0/0

B.2 Computational Resources and Running Time

We run our experiments on 3 cloud servers, each of them has 128GB memory and 4 RTX 2080
graphic cards. The CPU is Intel Xeon Silver 4110 @ 2.10GHz with 8 cores. Since we run each of
the compared method on one graphic card, respectively, we report the resource occupation of each
individual process. The minimum requirement to train and validate the model is 10GB memory and
11GB CUDA memory with 128 batch size, respectively. If running the coreset query method, 10GB
extra memory is needed to store the distance matrix.

For the running time, since there are multiple target models with varying complexities, they have
different training and inference speed. The real time (calculated by gettimeofday() function) of
sequentially training 12 target models on the initially labeled dataset, i.e., 3, 000 examples, is
00:26:42 (hh:mm:ss). For the data selection phase, i.e., select 1, 500 examples from 40, 000 unlabeled
data, the real time of different methods are reported as following: random takes 1.73 seconds, least
confidence takes 00:08:29 (need to evaluate the unlabeled data with each of the target model), margin
takes 00:08:26, entropy takes 00:08:11, coreset takes 00:09:37. For the proposed DIAM method and
CAL method, they need to evaluate the unlabeled data with the models trained with later epochs,
which roughly take the size of the well-performed hypotheses set times of that of the entropy method
to make the data selection.

B.3 Additional Experimental Results

Significance of Performance Comparison We further report the significance results of the per-
formance comparisons (cf. Figure 1 in the paper). Specifically, the win/tie/lose results of the
performances of 12 target models after each query based on paired t-test at 0.05 significance level are
reported in Table 1. The results show that our method can usually outperform the other compared
methods significantly, which demonstrate that DIAM can improve all the target models simultane-
ously, but not paying too much attention to the specific models. This property is essential to the
multiple target models applications. Because the target models are usually of equal importance, even
though they have different prediction accuracies.

Learning Curves of the Study on Different Numbers of Target Models We plot the entire
learning curves of the compared methods with different numbers of target models in Fig. i. It can
be observed that the proposed DIAM method can surpass the traditional active and passive learning
methods under different numbers of target models in most cases. These results reveal that our method
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is robust to the number of target models, i.e., the data in the joint disagreement region is beneficial to
all the target models.
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Figure i: Learning curves of the compared methods with different numbers of target models (2, 4, 6,
8 models). The error bars indicate the standard deviation of the performances of target models.
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