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A Relation to other RNNs

In Sec. 3 we set out to create an RNN fθ that maintains piecewise constant latent states over time.
This led us to the conclusion, that a simple approach to implement this is by employing an internal
gating function Λ that controls the latent state update (e.g. as in Eq. 4). The gating function Λ can be
binarized using the Heaviside step function and a sparse gating can be incentivized using the loss
function outlined in Eq. 5.

GRUs [6] and LSTMs [5] both use internal gates with the sigmoid activation function σ to control
the update of their latent state ht. GRUs update ht with

ht = (1− σ(st))ht−1 + σ(st)h̃t, (11)

where st is a linear projection of input xt and previous latent state ht−1 and h̃t is a proposed new
latent state, also determined based on the input xt and previous latent state ht−1.

LSTMs use two gates, i.e. a forget and an input gate, with the sigmoid activation function σ to
determine whether to update their latent (cell) state ht with

ht = σ(s1,t)ht−1 + σ(s2,t)h̃t, (12)

where s1,t and s2,t are linear projections and h̃t a non-linear function of the input and previous
hidden state (RNN cell output).

Nonetheless, it is not straight forward to apply our approach, outlined in Sec. 3, to GRUs and LSTMs.
Our loss (see Eq. 5) punishes non-zero gate activation. The sigmoid activation function σ only
achieves an output of zero if its input converges to negative infinity, thus, never truly achieving zero
output. Thus, their gating function would need to be modified or replaced, e.g. by our ReTanh gate Λ.

However, even when replacing their gate activation function, the performance of LSTMs and GRUs
are negatively affected by piecewise constant latent states. For both networks, input information
essentially needs to pass through the latent state to affect the network output. For GRUs the network
output corresponds to the latent state ht. Thus, a GRU with constant latent states will produce
constant outputs. In LSTMs the network output is computed by multiplying the latent (cell) state
with an input-dependent output gate. Thus, in LSTMs a constant latent state will result in a constant
output that is scaled depending on the network input.

GateL0RD attempts to overcome the outlined downsides of using LSTMs and GRUs with our
proposed latent state regularization. Like GRUs, GateL0RD uses a single update gate to avoid
unnecessary parameters. Additionally, GateL0RD separates the latent state from the network output,
as done in LSTMs, which have both a cell state and a hidden state. Besides that, GateL0RD uses
more powerful functions for computing the network output such that input and latent state both have
an additive as well as multiplicative effects on the network output. Note that GateL0RD still has
approximately the same number of parameters as a GRU.

B Experimental Details

B.1 Predictive Models: General Training Principles and Hyperparameter Search

In the following, we will outline the general training principles that we used in all experiments,
when the RNNs were trained as predictive models. Training details for the reinforcement learning
experiments are found in Suppl. B.6. Suppl. B.2 - B.5 provide further details specific to each
simulation independent of the hyperparameter search (e.g. dataset size, batch size, etc.).

In our experiments, we train each network to predict the change in observations instead of the next
observation (i.e. residual connections) to avoid the trivial solution of achieving a high prediction
accuracy by simply outputting the input observation. However, since the change in observation can
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Table 1: Learning rate choices

Experiment GateL0RD LSTM GRU Elman RNN
Billiard Ball teacher forcing (Sec. 6.1) 0.001 0.001 0.001 0.00005
Billiard Ball scheduled sampling (Sec. 6.1) 0.0005 0.0005 0.0005 0.0005
Robot Remote Control (RRC) (Sec. 6.2) 0.005 0.005 0.005 0.005
RRC improved generalization (Suppl. D.3) 0.005 0.001 0.001 0.001
Shepherd (Sec. 6.3) 0.001 0.001 0.001 0.001
Fetch Pick&Place filtered data (Suppl. D.7) 0.005 0.005 0.005 0.005
Fetch Pick&Place full data (Suppl. D.8) 0.001 0.001 0.001 0.001

be quite small (typically ∆ot < 0.1) we use a constant c to scale the network output when used as
autoregressive input, i.e. ôt+1 = ot+c · ŷt. We set c = 0.1 in all our experiments, which corresponds
to scaling ∆ot by a factor of 10. For the task-based loss, i.e. Ltask in Eq. 2, we use the mean squared
error between predicted observations ôt and real observations ot.

We train the networks using Adam [46] with the hyperparameters β1 = 0.9, β2 = 0.999, and
ε = 0.0001. The learning rate α was determined via a grid search with α ∈ {0.005, 0.001, 0.0005,
0.0001, 0.00005} for each scenario. For this grid search, we examined two random seeds for each
parameter configuration and chose the setting resulting in the lowest mean squared prediction error
on a validation set after full training. The best learning rates for all experiments are listed in Table 1.

Besides determining the learning rate, we also use grid search to determine the number of RNN
layers for all scenarios with simulated physics, i.e. Billiard Ball and Fetch Pick&Place. For LSTMs,
GRUs, and Elman RNNs we compare the 1-layered RNNs to a stacked version in which up to three
RNN cells (fθ in Fig. 1d) are composed. For GateL0RD we instead considered 1- to 3-layered r
and g-networks (see Fig. 1a), since we found that this typically results in a stronger increase in
performance with fewer parameters compared to stacking GateL0RD cells. In Billiard Ball (Sec. 6.1)
and Fetch Pick&Place (full data, Suppl. D.8), all networks achieve a slightly better mean prediction
accuracy with the 3-layered versions, which is why we use the 3-layered versions to compare the
prediction accuracy. However, for GRUs and LSTMs the 3-layered versions have three times the
number of latent state dimensions, which negatively affects the interpretability of the latent states.
Thus, to make a fair comparison in terms of explainability, we additionally ran experiments with
1-layered LSTMs and GRUs to visualize the latent states (e.g. in Fig. 7b). For Fetch Pick&Place
with pre-selected reach-grasp-lift sequences (Suppl. D.7) there was no noticeable improvement when
increasing the number of layers, thus, we used one-layered versions of the networks.

RNNs can suffer from the exploding gradient problem when predicting long sequences. An effective
technique to deal with this is gradient norm clipping [56]. Here, the norm of a backpropagated gradient
is clipped when it exceeds a threshold. We apply gradient norm clipping in all our experiments with a
clipping threshold of 0.1.

In Sec. 6.1 we showed that training the models using teacher forcing can be problematic. Thus, in all
of our other experiments, we train the networks using scheduled sampling [49], a curriculum learning
strategy that smoothly changes the training regime from teacher forcing to autoregressive predictions.
When applying scheduled sampling, a probability pi is used to stochastically determine whether the
real input is fed into the network (teacher forcing) or whether to use the previous network output.
This sampling probability pi decreases over training time i. Based on Bengio et al. [49], we use an
exponentially decreasing probability pi with

pi = max(ki, pmin) (13)
where i is the epoch number, k < 1 a constant, and pmin the minimum sampling probability. We set
k = 0.998 in all experiments. The minimum sampling probability pmin is chosen individually for
each scenario.

All experiments using predictive models were run with 20 different random seeds for each setting.

B.2 Billiard Ball

In the Billiard Ball scenario, a ball is shot on a pool table with low friction. We generated sequences
of 50 time steps by shooting the ball from a random starting position in a random direction with
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a randomly selected velocity. The sequences were generated using the Open Dynamics Engine
(ODE)5—an open-source physics simulator for simulating rigid-body dynamics. The sequences
contain only the observations ot ∈ [−1, 1]2, which are composed of the positions of the ball, and no
actions (A = ∅).
The networks were trained on a training set of 12.8k sequences and tested on a testing set of 3.2k
sequences. Hyperparameters were determined based on a validation set of 3.2k sequences. All
datasets were balanced to include different velocities and to guarantee that in at least 15% of the
sequences the ball drops into a pocket. We trained the networks using minibatches of size 128 for 5k
epochs. We applied scheduled sampling [49] by exponentially annealing the sampling probability pi
to 0.

We used an 8-dimensional latent state ht for all RNNs. The latent state h0 was initialized based on
the first two inputs using a 3-layered MLP finit (neurons per layer: 64→ 32→ 16). All RNNs used
a 3-layered MLP fpre (neurons per layer: 64→ 32→ 16) for preprocessing the inputs and a single
linear mapping as a readout layer fpost.

B.3 Robot Remote Control

In the Robot Remote Control scenario, an agent continuously moves through a room based on its
two-dimensional actions at ∈ [−1, 1]2. After the agent reaches a computer, it also controls the
position of a robot in another room through its actions. The goal during planning is to move the
robot to a goal area. The observation ot ∈ [−1, 1]4 is composed of the position of the agent and the
position of the robot. The robot and agent start from randomly sampled positions while the computer
and goal area are always at the same fixed positions. The robot is controlled as soon as the distance
between agent and computer is below a certain interaction threshold (0.1).

We generated datasets composed of 50 time step rollouts using two synthetic policies. The dataset
Dtime, containing spurious temporal dependencies, was generated by sampling uniformly distributed
random actions that were scaled by a factor that linearly increases with time from 0.0001 to 1.0. The
(generalization) dataset Drandom was generated by sampling uniformly distributed random actions
without further modifications. Both datasets were balanced in terms of robot control events, such that
in half of the sequences the robot was controlled by the agent. The datasets were split into equally
sized training, validation, and testing sets (6.4k sequences each). The validation sets were used to
determine hyperparameters. The networks were trained for 5k epochs using minibatches of size 128.
We trained the networks using scheduled sampling [49] by exponentially annealing the sampling
probability pi to a minimum value of pmin = 0.02.

In this scenario, the latent states ht of all RNNs were 8-dimensional and were initialized based on
the first input using a 2-layered MLP finit (neurons per layer: 16→ 8). All RNNs used a 3-layered
preprocessing fpre (neurons per layer: 32→ 16→ 8) and a linear mapping fpost from the RNN cell
output to the overall output.

During planning, the goal was to move the robot to the goal area (distance < 0.15) within 50 time
steps. For model-based planning, we used iCEM [51]. We left the default hyperparameters as outlined
in Pinneri et al. [51], but used the same planning horizon of 50 time steps as during training and
simulated 256 trajectories per optimization step. Additionally, we used colored noise with β = 3.
The cost was defined as the distance between robot and goal area. We found that iCEM, which was
previously used with the ground truth simulator as a model [51], was relatively sensitive towards
model errors, resulting in the agent often slightly missing the computer or stepping over it without
activating the robot. To avoid floor effects based on the planning method, we simplified the task
during planning by increasing the radius to interact with the computer by 50%.

B.4 Shepherd

In the Shepherd scenario, illustrated in Fig. 8, an agent’s goal is to catch a sheep using a portable
cage. The agent’s actions at ∈ [−1, 1]3 control the agent’s two-dimensional movement and whether
the cage is grasped and carried (a3t > 0) if it is in proximity. When the cage is carried, it moves with
the agent. In every sequence, a sheep starts at the upper side of the scene (blue line in Fig. 8). The

5ODE, available at http://www.ode.org/, is licensed under the GNU Lesser General Public License
version 2.1 as published by the Free Software Foundation.
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Figure 8: Shepherd scenario. Relevant positions are marked by a plus (+), with the lever in yellow,
the agent in pink, the sheep in cyan, its reapearrance position in white, and the cage in purple. The
orange bar visualized the wall height. The blue line and red line illustrate the sheep’s and agent’s
starting position, respectively. The green area illustrates the cost function used for model-based
planning. See text for more details.

sheep moves downwards with a randomly selected velocity, i.e. only changing its y-position (cyan
arrow in Fig. 8). Thereby, the horizontal x-position of the sheep remains the same. Once the sheep
reaches a wall, its position is occluded from the observation. The height of the wall (orange bar in
Fig. 8) varies between simulations. The agent can make the sheep reappear again by activating a lever
at a fixed position (yellow + in Fig. 8). The lever is activated once the distance of the agent to the
lever is below a certain interaction threshold. As a result, a gate in the wall opens, causing the sheep
to appear at the same horizontal position as before but at a lower vertical position (white + in Fig. 8).
After its reappearance, the sheep moves downwards with the same velocity as before. It stops moving
if it reaches the cage (distance below a certain threshold) or if it reaches the lower border of the scene.
Observation ot ∈ [−1, 1]7 contains the agent’s position (pink + in Fig. 8), the sheep’s position (cyan
+), the cage’s position (purple +), and the height of the wall (orange bar). When the sheep is occluded,
its position is masked by replacing it with a fixed value outside the normal range of coordinates.

We generated a dataset of 100 time step sequences by using randomly sampled actions. In 75% of
the sequences up- and left-movements were sampled more frequently to get the agent to activate the
lever. The dataset was split into training data (12.8k sequences), testing data (12.8k sequences), and
validation data (6.4k sequences). To balance the datasets across possible events, we ensured that in
each dataset during 75% of the sequences the lever was activated and in 25% of the sequences the
sheep was caught in the cage. We trained the networks using minibatches of size 128 for 10k epochs.
We used scheduled sampling [49] as a training regime and exponentially decreased the sampling
probability pi to a minimum value of pmin = 0.05.

All RNNs used 8-dimensional latent states ht. The latent state h0 was initialized based on the first
two inputs using a 3-layered MLP finit (neurons per layer: 64 → 32 → 16). All RNNs used a
3-layered preprocessing fpre (neurons per layer: 64 → 32 → 16) and a linear mapping fpost as a
readout layer.

During planning, the agent started on the right side of the environment (red line in Fig. 8) holding
the cage. The agent had 60 time steps to place the cage, move to the lever to open the gate, and let
the sheep enter the previously placed cage. We chose a very short time of 60 time steps for this task
to eliminate time-consuming solutions that avoid predicting the occluded sheep’s future position,
e.g. by catching the slowly moving sheep after its reappearance by going back and replacing the
cage. For model-based planning, we used iCEM [51] with the same parameters as in Suppl. B.3 but
predicting for a longer planning horizon of 100 time steps as during training. The cost was defined as
the distance between the sheep and the cage, which was clipped to a large constant value when the
sheep was above the gate (i.e. outside of the green area in Fig. 8). As in Suppl. B.3, we increased the
interaction radius of the lever and the cage during planning by 50%.
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B.5 Fetch Pick&Place

Fetch Pick&Place is a benchmark reinforcement learning environment of OpenAI Gym6 [47]. In
Fetch Pick&Place a 7 DoF robotic arm with a two-fingered gripper is position-controlled through
its four-dimensional action. The state of the scenario st ∈ R25 is composed of the positions of
the endeffector and the object, the relative position between endeffector and object, the distance of
the fingers to the center of the gripper, the rotation of the object, and the positional and rotational
velocities of the endeffector, the object, and the fingers. To make the scenario partially observable,
we omitted positional and rotational velocities as well as the rotation of the object in the observation
ot ∈ R11. The four-dimensional actions at ∈ [−1, 1]4 control the three-dimensional position of the
endeffector and the closing or opening of the fingers. Internally, the position control of the endeffector
is realized by a PID-controller that runs at a higher frequency.

We generated our data consisting of sequences using APEX [57], a policy-guided model predictive
control method, which was trained to move the object to a random goal position. APEX was deployed
using the ground truth simulator as the internal model and hyperparameters as detailed in Pinneri
et al. [57].

APEX finds various, surprisingly creative ways to move the object to the goal position, including
pushing, sliding or flicking the object. For the experiments on policy generalization (Sec. D.7),
we only considered sequences in which the object was grasped and lifted. Thus, we excluded all
sequences in which the object moved while not being inside the gripper. For training and testing we
considered 3.84k sequences wit a length of 25 time steps, in which the hand graps the object after at
t = 5. A grasp was only considered if the relative x− and y− distance to the gripper was less than
0.0005 and the relative z−distance was below 0.15. Additionally, the object must not have changed
its position before t = 5 to exclude sequence in which the object was pushed before. We randomly
split this dataset into a training (3.2k) and testing set (640). For the generalization set we used 3.2k
randomly selected sequences in which the grasp occurs at a later time t with t ∈ [6, 10].

In an additional experiment outlined in Suppl. D.8 we train the networks on all kinds of sequences. For
that, we randomly split the collected dataset without further filtering into training (12.8k sequences),
validation (6.4k sequences) and testing (6.4k sequences) sets. Here we considered sequences that are
50 time steps long.

In both experiments we trained the networks using minibatches of size 128 for 5k epochs using
scheduled sampling [49], where we exponentially decreased the sampling probability pi to a minimum
value of pmin = 0.05. The latent state ht of all RNNs was 16-dimensional. The first latent state h0

was initialized based on the initial input (o1,a1) using a 2-layered MLP finit (neurons per layer:
32→ 16). All RNNs used a 3-layered preprocessing fpre (neurons per layer: 64→ 32→ 16) and
a linear mapping two-layered MLP fpost to the network output. In the experiment using simpler,
filtered data (Suppl. D.7) we used one-layered RNN cells. For the diverse data set (Suppl. D.8) we
use stacked RNN cells (3 layers) and GateL0RD with 3-layered g− and r−functions.

B.6 Reinforcement Learning: General Training Principles and Hyperparameter Search

For our reinforcement learning experiments in the Mini-Gridworld [48], we used an actor-critic
architecture as previously done by Chevalier-Boisvert et al. [52].7 The architecture is a modified
version of our general architecture (Fig. 1d), shown in Fig. 9. The image-like input is preprocessed
by a three-layered convolutional neural network fpre with 2× 2 convolution kernels and with max-
pooling after the first layer. The 64-dimensional image embdeding is processed by an LSTM with
64-dimensional latent state. The LSTM output is processed by two separate MLPs, akin to using two
fpost in Fig. 1d, that take the role of the actor and the critic. The actor MLP factor outputs the policy
πt, which determines the next action at. The critic MLP fcritic outputs a value estimate vt. Both
MLPs use two layers with 64 neurons on the intermediate layer. In our experiments with GateL0RD,
we only replace the LSTM cell and leave fpre, factor, and fcritic unmodified.

As done by Chevalier-Boisvert et al. [52], we train the system using Proximal Policy Optimization
(PPO) [53] with parallel data processing. We performed 4 epochs of PPO with a batch size of 256. We

6OpenAI Gym is released under MIT license.
7We used an implementation by one of the authors available at https://github.com/lcswillems/

rl-starter-files. The code is licensed under MIT license.
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took the PPO hyperparameters from [52], setting γ = 0.99 and the generalized advantage estimation
to 0.99.

fθ

fpre

factor

πt

fcritic

vt

ot

ht

Figure 9: Reinforcement
learning architecture

We train the system using Adam [46] with β1 = 0.9, β2 = 0.999, and
ε = 0.0001. To determine the learning rate α we ran a grid search on
the vanilla system (LSTM) with α ∈ {0.005, 0.001, 0.0005, 0.0001} for
two random seeds and compared the mean rewards after training. In
five of the six environments α = 0.001 achieved the best results. Thus,
for consistency we ran the MiniGrid experiments with a learning rate
of α = 0.001. For the one environment (KeyCorridorS3R2) in which a
smaller learning rate (α = 0.0005) produced better results, we addition-
ally evaluated the system with the optimized learning rate and report the
results in Suppl. D.9. As before, we apply gradient norm clipping [56]
with a clipping threshold of 0.1. The loss was backpropagated for 32 time
steps.

When using GateL0RD, we simply replaced the LSTM cell and left all
hyperparameters unmodified. The PPO loss [53] was used as Ltask in
Eq. 2 and we set λ = 0.01 in all experiments. All reinforcement learning experiments were run with
10 random seeds per configuration.

B.7 MiniGrid

MiniGrid [48] is a library of partially-observable benchmark reinforcement learning problems.8 All
MiniGrid environments consist of a N ×M tiles. Each tile can be empty or contain one entity such
as keys, doors, or walls. The agent receives an image-like, egocentric view of the 7× 7 tiles in front
of the agent. For each tile the agent receives a 3-dimensional signal, describing what type of object is
in this tile, the color of the object, and its state (e.g. open, closed, or locked doors). The agent can’t
see through walls or closed doors. In every time step the agent can perform one of the following
actions: move forward, turn left, turn right, pick-up an object, drop-off an object, or interact with an
object (e.g. open doors). In all environments a sparse reward of 1 is given once the task is fulfilled.
In some environments the time to fulfill a task is used to discount the rewards. Figure 10 shows all
the problems we consider.

In DoorKey-8x8 (Fig. 10a) the agent needs to move to the green square behind a locked yellow door.
The agent needs to learn to pick up a yellow key to open the door. The environment is 8× 8 tiles big
but the size of the two rooms varies per simulation. DoorKey-16x16 (Fig. 10g) is the same problem
but in a larger 16× 16 environment. We use the larger version to test zero-shot generalization, by
training the system on the smaller environment and testing it on the larger one (see Sec. D.10).

In RedBlueDoors-8x8 (Fig. 10b) the agent is randomly placed in a room (8× 8 tiles) with a red and
a blue door. The agent has to first open the red door and afterwards open the blue door. Opening the
blue door first result in ending the simulation without any reward.

In SimpleCrossingS9N3 (Fig. 10c) the agent needs to navigate through a maze to a green square
in the bottom left corner. The maze is randomly constructed by three walls that run horizontally
or vertically through the room. Each wall has a single gap. LavaCrossingS9N2 (Fig. 10d) poses
the same problem, however, the walls of the maze are replaced by two lava rivers. Lava rivers do
not occlude the view but entering lava terminates the episode without rewards. Because of the early
terminations and sparse rewards, this environment is much more challenging to learn than the maze
with walls.

In KeyCorridorS3R2 (Fig. 10e) the agent needs to pick up a ball. The ball is locked behind a door
and the key is hidden in some other room. Thus, the agent needs to learn to explore the rooms, by
opening differently colored doors, to find the key. The agent can only pick up the ball if the agent is
not holding the key, so after unlocking the door leading to the ball, the agent needs to drop the key.

MemoryS13Random (Fig. 10f) is a memory task. Here the agent needs to memorize a green object
(key or ball) in one room, move through a corridor, and then either go left or right to the matching
object. The environment is 13× 13 tiles big. The length of the corridor is randomly generated per

8MiniGrid is available at https://github.com/maximecb/gym-minigrid. MiniGrid is licensed under
Apache License 2.0.
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(a) DoorKey-8x8 (b) RedBlueDoor-8x8 (c) SimpleCrossingS9N3

(d) LavaCrossingS9N2
(e) KeyCorridorS3R2

(f) MemoryS13-Random

(g) DoorKey-16x16 (h) MemoryS17-Random
Figure 10: All MiniGrid envrionments used in this work.

run. In MemoryS17Random (Fig. 10h) the same problem needs to solved, but the environment is
bigger ( 17× 17 tiles). We use this version to test zero-shot generalization, by training the system on
the smaller environment and testing it on the larger one (see Sec. D.10).

B.8 Code and Computation

The code to run our experiments can be found at https://github.com/martius-lab/GateL0RD
All experiments were run on an internal CPU cluster. Robot Remote Control experiment using
GateL0RD take between 3-4 hours run time. Billiard Ball and Fetch Pick&Place experiments, which
use larger datasets, take around 6-9 hours run time for GateL0RD. Shepherd simulations, which we
train for twice the number of epochs, take approximately 18-22 hours of run time. The MiniGrid
experiments vary largely in their training time and took between 2 and 30 hours to train. The baseline
RNNs are roughly a factor of 0.8 faster than GateL0RD. This is mainly due to their optimized
implementation in PyTorch.
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C Ablation studies

In this section, we investigate the importance of each of the components of our proposed architecture.

C.1 Ablation 1: Ablation of the type of gate function

1k 2k 3k 4k 5k

10−2

10−1

epochs

M
S
E

Testing prediction error

Heaviside, λ = 0

Heaviside, λ = 0.001

ReTanh, λ = 0

ReTanh, λ = .001

Sigmoid, λ = 0

Figure 11: Billiard Ball test-
ing error for GateL0RD with
different gate functions.

We use the Billiard Ball scenario, trained using scheduled sampling
[49] as in Sec. 6.1, to analyze the effect of different gate activation
functions. In one ablated setting, we replace our ReTanh activation
Λ in Eq. 8 with a sigmoid activation function σ. Additionally, we
test using the Heaviside step function Θ as gate activation function
in Eq. 8. When using the Heaviside step function, we estimate the
gradients using the straight-through estimator [27], which treats
the step function as a linear function during the backward pass
(illustrated in Fig. 1c). We test the Heaviside gates both with our
L0 loss (λ = 0.001) and without latent state regularization (λ =
0). Because a gate output of 0 is practically not achieved for the
sigmoid function, we test the sigmoidal gates without latent state
regularization (λ = 0).

Figure 11 shows the autoregressive prediction errors of the ablated
versions of GateL0RD. The ablations with Heaviside gates perform worse than GateL0RD with the
non-binary gates. When using the Heaviside gate without any regularization, the mean prediction
error even increases over training time. GateL0RD with a sigmoid gate and our ReTanh gate reach
the same level of prediction accuracy.

We believe that the worse performance of the Heaviside gate is due to the network profiting from
multiplicative computations when computing the next latent state. For the Heaviside gate, interpola-
tions of old and new latent states are not possible. Here, the latent state is either completely replaced
or left unmodified. We conclude that our novel ReTanh gate is as suitable for gating as the classically
used sigmoid gate. Additionally, it has the practical advantage of achieving an output of exactly 0,
thus allowing the gate activation to be regularized as we do it with our L0 loss.

C.2 Ablation 2: Effect of gate stochasticity
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Figure 12: Billiard Ball task comparing effect of
gate noise on GateL0RD (λ = 0.01): prediction
error (a) and mean number of ate openings(b).
Shaded areas denote standard deviation.

To ablate the effect of the gate noise we compare
GateL0RD with different strengths of the gate
noise. For deterministic gates we set ε = 0 in
Eq. 10. Additionally we compare two values
for the noise variance σ of the diagonal covari-
ance matrix Σ in Eq. 10. We test the effects
of gate stochasticity for a fixed value of gate
regularization λ = 0.01 in the Billiard Ball task.

Figure 12a shows the prediction errors compar-
ing deterministic gates to stochastic gates with
different gate noise. There is no noticeable dif-
ference in prediction accuracy between the dif-
ferent settings. Thus, reasonable values of noise
on the gate input during training does not notice-
ably affect the prediction error during testing.
Figure 12b shows the average latent state changes per sequence, computed as Ei,t

[
Θ
(
Λ(sit)

)]
, for all

settings. Here, a larger value of gate noise results in fewer gate openings and thus, in fewer changes
in the latent state.

We conclude that using stochastic gates together with our L0 loss has a regularizing effect: GateL0RD
trained with stochastic gates seems to achieve the same level of prediction accuracy as when trained
with deterministic gates but changes its latent states more sparsely.
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C.3 Ablation 3: Ablation of the latent state initialization network finit
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Figure 13: Billiard Ball: effect of latent state initialization
with or without finit on prediction errors.

Next we ablate the effect of the context
network finit, which sets the latent state
based on a few initial inputs (see Fig. 1d).
We compare all RNNs against variants
without finit in the Billiard Ball scenario.
When omitting finit, we initialize the la-
tent state with h0 = 0.

Figure 13 shows the prediction errors for
all RNNs when using the context network
finit (solid lines) and when initializing
the latent state with zeros (dotted lines).
The prediction accuracy decreases for all
network types when trained without the
context network. However, how much their performance drops varies across the different RNN
types. GRUs seem to be much less affected by using them without finit than LSTMs and GateL0RD
(λ = 0.001).

C.4 Ablation 4: Ablation of the output function
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Figure 14: Robot Remote Con-
trol: GateL0RD with an out-
put function containing a mul-
tiplication (p� o) or not (p)

After updating its latent state ht, GateL0RD uses two one-layered
MLPs p and o to compute the network output as p(xt,ht)�o(xt,ht)
(see Eq. 9). With this output function we want to enable both additive
as well as multiplicative effects of the latent state ht and input xt
on the network output. Is this justified or would a simple MLP as
output function suffice?

We analyze the effect of our output function in the Robot Remote
Control Scenario (λ = 0.001, trained on random action rollouts
Drand). Here we compare GateL0RD using our standard output
function (p(xt,ht) � o(xt,ht)) to an ablated version using just a
one-layered MLP with tanh activation (p(xt,ht)).

Figure 14 shows the resulting prediction errors of GateL0RD using
its normal output function compared to the case without a multi-
plicative gate (p(xt,ht)). Clearly GateL0RD achieves a much better
prediction when using a multiplicative output gate instead of a sim-
ple MLP. Thus, a multiplicative branch for computing the network output seems to improve the
prediction accuracy. This may also explain the worse prediction accuracy of Elman RNNs in most
tasks since they lack the multiplicative gates that can be found in all other investigated RNNs.

C.5 Ablation 5: Comparison against L1/L2-versions
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Figure 15: Robot Remote Control: prediction error
on the test set (a) and on the generalization set (b)
for GateL0RD, L1-, and L2-variants.

Our hypothesis is that sparsely changing latent
states allows better generalization across spuri-
ous temporal dependencies in the training data.
GateL0RD enforces such a sparsity of latent up-
dates via an L0-regularization of the changes in
latent state. This is implemented using the novel
ReTanh gate, instead of the commonly used sig-
moid gates, and an auxiliary L0 loss term that
is made differentiable using the straight through
estimator. Is this necessary or would a simple
sigmoid gate in conjuction with an L1 or L2 loss
also improve generalization?

To analyze this, we compare GateL0RD against
ablated versions that use a sigmoid gate and
penalize the L1 or L2 norm of the gate activations. We compare the version in the Robot Remote
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Figure 16: Billiard Ball example trajectory. (a) & (c): Real positions are shown in white, the provided
inputs in blue, GateL0RD (λ = 0.01) position predictions in red (saturation increasing with time).
The inputs for which at least one gate opened are outlined in black. (b): The latent states ht for
different RNNs for the sequence shown in (a). (d): The latent states ht for GateL0RD with different
values of λ for the sequence shown in (c). Latent states are shown relative to the initial latent state
h0.

Control setting as in Sec. 6.2. Thus, we train the networks on random action rollouts with linearly
increasing action magnitude and test it either on data generated by the same process (testing)
or on uniformly sampled random actions (generalization). We chose a suitable regularization
hyperparameter λ = 0.001 for all variants.

Figure 15a shows the prediction errors during testing for all variants. The L1- and L2-ablations
achieve a very low prediction error on the test set, even exceeding GateL0RD’s prediction in terms of
accuracy. However, when tested on the generalization set, shown in Fig. 4b, their prediction error
increases drastically.

We conclude that the L1/L2-variants behave similar to GRUs and LSTMs (compare Fig. 4b and
Fig. 15b). They achieve a low testing error but fail to generalize to data generated by a different
policy. This suggests that they also strongly overfit to spurious temporal dependencies, unlike our
L0-version.

However, it is noteworthy that on the test set the L2-variant manages to achieve the lowest mean
prediction error of all investigated RNNs. Krueger and Memisevic [35] previously suggested to
penalize the L2 norm of latent state changes in RNNs to prevent exploding or vanishing activations.
Our results suggest that applying L2-regularization on the latent state changes seems to be a promising
approach to increase the in-distribution performance of RNNs.

D Additional experiments and analysis

D.1 Billiard Ball: Analyzing the latent states and gate usage

In this section, we provide further exemplary latent states for RNNs when applied to the Billiard
Ball scenario. Figure 16 shows two exemplary ball trajectory and the corresponding latent states.
GateL0RD is able to make accurate autoregressive predictions (see red dots in Fig. 16a and Fig. 16c)
and tends to open its gates around wall collisions (black circles). Figure 16b shows the latent states
of GateL0RD (λ = 0.01) compared to the latent states of a GRU and a LSTM for the trajectory
shown in Fig. 16a. GateL0RD’s changes in latent states are easily interpretable: GateL0RD seems
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to encode x− and y− velocity in two dimensions of its latent state and changes the latent state at
these particular dimensions when the ball velocity changes upon collision. The LSTM and GRU also
tend to change their latent states more around points of collision but also change many latent state
dimensions throughout the trajectory, making them much harder to interpret.

Figure 16d shows the latent states of GateL0RD for the same sequence, shown in Fig. 16c, using
different values of the sparsity regularization hyperparameter λ. As before, GateL0RD with λ = 0.01
uses two dimensions of its latent state to encode the ball velocity and updates these two dimensions
upon collisions. In this example, GateL0RD with λ = 0.001 uses three dimensions to encode the
ball’s velocity. With every collision a different latent state dimension is updated, instead of using the
same dimension for changes in y−velocity, as done by GateL0RD with λ = 0.01. In this example,
GateL0RD with λ = 0 uses five dimensions to encode x− and y− velocities. At points of collision,
multiple latent dimensions change.
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Figure 17: Billiard Ball: latent
state dimension usage for dif-
ferent values of λ.

To further illustrate how the regularization hyperparameter λ affects
the latent state changes, we plot the number of latent state dimensions
that change on average while predicting a Billiard Ball sequence in
Fig. 17. As expected, a stronger regularization through λ results in
fewer dimensions of the latent state changing. Without regularization
(λ = 0) GateL0RD changes on average less than 6 dimensions of
the 8-dimensional latent state. For λ = 0.01, GateL0RD quickly
converges to on average using two latent states. For λ = 0.1, fewer
latent state dimensions change on average.

As shown in Fig. 3d, even without regularization (λ = 0) GateL0RD
continuously decreases the mean number of gate openings. After
5k epochs, GateL0RD on average opens a gate less than 50% of the
time. Similarly, it does not use all dimensions of its latent state, as
shown in Fig. 17. This effect emerges from the interplay of stochastic gradient descent and the ReTanh
having gradients of 0 for inputs sit ≤ 0. Over training time, gates will randomly close and kept shut
if they do not contribute to decreasing the loss. This effect is closely related to the "dying ReLU
problem” when using ReLU activation functions [58]. While dying ReLUs are considered a problem,
in our case this is advantageous whenever the gate regularization is beneficial. We believe that this
results in GateL0RD, even without regularization, being more robust to out-of-distribution shifts than
GRUs and LSTMs. For example, GateL0RD with λ = 0 achieves a smaller mean autoregressive
prediction error when trained using teacher forcing (Fig. 3a), compared to the baseline RNNs.

D.2 Robot Remote Control & Shepherd: Loss and scheduled sampling

In Fig. 18b we provide the loss curves for the Robot Remote Control scenario and Fig. 18c shows the
loss curves for the Shepherd task. For both tasks the loss decreases during the first couple of epochs,
increases again until roughly 2k epochs, and continuously decreases afterwards. This development is
caused by using scheduled sampling [49] as a training regime (detailed in Suppl. B.1). The probability
pi of applying teacher forcing exponentially decreases over the first 2k epochs, as shown in Fig. 18a
for the Robot Remote Control task. Thus, over the first 2k epochs the problems change from 1-step
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Figure 18: Scheduled sampling and loss curves: Probability pi of using the real input instead of the
predicted input (a). Loss curves in Robot Remote Control (b) and Shepherd (c). Shaded areas show
standard deviation.
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prediction problems to N -step prediction problems. This drastically increases the difficulty within
the first 2k epochs. However, this transition helps to learn autoregressive predictions [49] as also
demonstrated by our Billiard Ball experiments (Sec. 6.1).

D.3 Robot Remote Control: Improving RNN generalization
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Figure 19: Robot remote con-
trol generalization prediction
error with optimized learning
rates.

In Sec. 6.2 we showed that LSTMs and GRUs trained for the Robot
Remote Control environment using data in which action magnitude
was positively correlated with time (Dtime), failed to properly gener-
alize to testing data without this correlation (Drand). GateL0RD
showed less performance degeneration when tested on the gen-
eralization dataset. We hypothesized, that GateL0RD’s superior
generalization performance was based on its tendency to only en-
code unobservable information within the latent states, making it
less prone to overfit to observable spurious temporal dependencies
within the training data. However, an alternative explanation would
be that the overfitting of LSTMs and GRUs was caused by their learn-
ing rate. To investigate if the other RNNs’ generalization abilities
can be improved to the level of GateL0RD by choosing a different
learning rate, we ran a grid search over three learning rate values
({0.005, 0.001, 0.0005}) for LSTMs, GRUs, Elman RNNs with two
random initializations. We selected the learning rate that lead to the lowest mean squared prediction
error for the 50-timestep predictions on the validation dataset of Drand after 5k epochs. Seeing that a
learning rate of 0.001 yielded the best validation error for all RNNs, we reran the experiment with
this learning rate (10 random seeds).

Figure 19 shows the resulting prediction error when testing the RNNs on the generalization test set
of Drand. While the prediction error of GRUs and LSTMs on the generalization test set improved
compared to our previous experiment, GateL0RD still achieved a lower prediction error on the
generalization data than the other RNNs. Note that GateL0RD was not further optimized in this
experiment. Thus, we conclude that GateL0RD’s superior generalization performance in this setting
is not caused by the learning rate.

D.4 Robot Remote Control: Training on uniformly sampled random action rollouts
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Figure 20: Robot remote
control prediction error when
trained and tested on Drand.

We previously showed for the Robot Remote Control environment
that GateL0RD generalized better than the other RNNs to the data
generated from random action rollouts (Drand) when trained on a
dataset that contained spurious temporal correlations (Dtime) even
for different learning rates. Besides GateL0RD better capabilities
in generalization, another explanation could be that GateL0RD is
simply better at predicting sequences from the particular dataset
Drand. To rule out this alternative explanation this, we trained the
RNNs on a training set, generated from uniformly sampled random
action rollouts (Drand), and tested the network on data generated by
the same process.

Figure 20 shows the testing prediction error for predicting sequences
based on the first observation and a sequence of actions. After 5k
epochs of training, LSTMs and GRUs achieve a similar prediction
accuracy as GateL0RD (λ = 0.001). Thus, GateL0RD superior prediction accuracy on Drand in
previous experiments can indeed be attributed to its better generalization capabilities.

D.5 Robot Remote Control: Learned latent states

In this section, we provide further exemplary latent states of the RNNs trained in the Robot Remote
Control scenario as described in Sec. 6.2. Figure 21a shows one exemplary sequence in which
the robot was controlled by the agent and the corresponding latent states for two instantiations of
GateL0RD, GRU, and LSTM with different random seeds. GateL0RD seems to use one dimension
of its latent state to encode when the agent controls the robot with its actions. For GRUs and LSTMs

26



(a) example sequence with robot control

0
0.5
1 agent

x
y

−0.5
0

0.5 robot
x
y

GateL0RD: i

-2

2

GateL0RD: i

-2

2

GRU: i

-2

2

GRU: i

-2

2

LSTM: i

-2

2

1 20 40
t

LSTM: i

-2

2

hi
t − hi

0

(b) example sequence without robot control
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Figure 21: Latent state for two exemplary Robot Remote Control sequences in which the robot was
either controlled (a) or not (b). The latent states ht are shown relative to their initialization h0. We
provide the latent states for two GateL0RDs, GRUs, and LSTMs (different random seeds). One row
shows the same random seed.

the latent states also seem to strongly change around the point where the agent gains control over the
robot, however, their latent states are not as clearly interpretable. Figure 21b shows one exemplary
sequence, in which the robot was not controlled. Here, GateL0RD does not modify its latent states,
whereas LSTMs and GRUs continuously change their latent states over the course of the sequence.

Note that when the robot is not controlled, as in Fig. 21b, Robot Remote Control is fully observable.
Thus, it seems that GateL0RD able to learn to distinguish observable from unobservable information
and attempts to only update its latent state when the unobservable information changes. To quanti-
tavely evaluate this claim, we feed in all generalization sequences and classify the gate usage and
unobservable events of task. The inputs of the sequences were classified based on whether control of
the robot was triggered at this time step (control) or not (no control). Additionally we analyzed for
each input whether one of GateL0RD’s gates opened (gate open) or not (gate closed). The mean gate
openings for the two events are shown in Table 2 with ± denoting standard deviation. GateL0RD
seems to mostly open its gates when the robot is controlled and tends to keeps its gate shut at other
time steps. Thus, GateL0RD indeed seems to mostly update its latent state when the unobservable
state of the environment changes.

Table 2: Gating in Robot Remote Control

gate open gate closed
control 0.978± 0.016 (hits) 0.022± 0.016 (misses)
no control 0.089± 0.037 (false alarms) 0.911± 0.037 (correct rejections)
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Table 3: Robot Remote Control: final prediction errors

testing generalization
CRNN 0.00056± 0.00015 0.0331± 0.0128
Elman RNN 0.00064± 0.00036 0.0062± 0.0040
GRU 0.00030± 0.00036 0.0118± 0.0058
LSTM 0.00018± 0.00013 0.0173± 0.0058
GateL0RD 0.00015± 0.00010 0.0011± 0.0007

D.6 Robot Remote Control: Clockwork RNNs

In the tasks we considered, the latent states need to change at irregular times and are depending on the
state of the environment. Thus, we hypothesize that RNNs operating on predefined time scales, such
as Clockwork RNNs [33], are not well suited for these tasks. We evaluate this in the Robot Remote
Control task using Clockwork RNNs (CRNN, 3 clock modules, clock rates T1 = 1, T2 = 4, T3 = 8).
The learning rate (α = 0.001) was determined via a grid search with α ∈ {0.005, 0.001, 0.0005,
0.0001, 0.00005}. Unlike the other RNNs, the CRNN did not fully converge after 10k epochs, thus,
instead, we trained it for 20k epochs.

In Table 3 we list the mean prediction error after full training (20 random seeds, ± denotes standard
deviation) on the test and generalization set, compared to the other RNNs. CRNNs behave similarly
to the other RNN baselines in that they achieve a reasonable test prediction error. However, they
overfit even more drastically to the temporal correlations of the actions in the training set, resulting in
a high prediction error on the generalization set.

D.7 Fetch Pick&Place: Generalization across grasp timings

In Sec. 6.2 we showed using the Robot Remote Control scenario that GateL0RD is better at general-
izing across spurious temporal dependencies in the training data than other RNNs. In a follow-up
experiment we want to investigate if similar effects can be found in a more complex environment,
using more natural training data. For that we use the Fetch Pick&Place environment and train the
networks to predict reach-grasp-and-lift sequences. The training sequences were generated by a
policy-guided model-predictive control method [57]. Importantly, we train the network only on
sequences where the gripper first touches the object exactly at time t = 5. We test the networks
on predicting sequences where gripper-object contact occurs as during training (testing set) or on
sequences where the object is grasped later (generalization set).
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Figure 22: Fetch Pick&Place results: prediction er-
ror on test set (a) and generalization set (b). Shaded
areas denote standard deviation.

Figure 22a shows the mean prediction errors
during testing. All networks achieve a very
low prediction error. The prediction accuracy
is similar for all RNNs, but LSTMs achieve a
slightly lower prediction error than GateL0RD
(λ = 0.0001). When the networks were tested
on sequences with different grasp timings, they
produce much higher prediction errors as shown
in Fig. 22b. GateL0RD prediction accuracy does
not drop as strongly as the accuracy of the other
networks. Thus, as in the Robot Remote Control
experiments, GateL0RD more robustly general-
izes across spurious temporal correlations.

Figure 23 shows the latent states of the differ-
ent RNNs when predicting two exemplary se-
quences. Here, GateL0RD (λ = 0.0001) uses either one or three dimension of ht that changes
around the time when GateL0RD predicts that the gripper grasps the object. During the predicted
transportation of an object, the latent state does not change anymore. This hints at GateL0RD
encoding the event of “transporting an object” in one dimension of its latent state. For the other
RNNs the latent state is not as easily interpretable.
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(b) Fetch Pick&Place example sequence 2
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Figure 23: Latent states of different RNNs for two exemplary sequences in the Fetch Pick&Place
environment. The latent states ht are shown relative to their initialization h0. We compare the latent
states for two random seeds each, where each row shows the same random seed.

D.8 Fetch Pick&Place: Training on diverse sequences

Previously, we only considered reach-grasp-lift sequences in the Fetch Pick&Place environment.
However, there are multiple other ways to move the object to a target position, such as pushing,
sliding or even flicking. Thus, in a next experiment we analyze the performance of the RNNs when
trained as a model on a diverse set of sequences generated by the policy-guided model-based control
method APEX [57].
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Figure 24: Fetch Pick&Place
testing prediction errors.

Figure 24 shows the prediction errors of the RNNs when predicting
testing sequences given the first observations and sequence of ac-
tions. In this scenario, all RNNs achieve a very similar prediction
accuracy. GateL0RD with λ = 0.001 produces a slightly higher
mean prediction error than the other RNNs, whereas GateL0RD with
λ = 0 achieves a slightly lower error. We believe that in this scenario
the small differences in prediction accuracy are a result of better
approximations of the endeffector velocities. In Fetch Pick&Place
the position control of the endeffector is realized by a PID-controller
running at a higher frequency, thus, in this scenario continuous la-
tent state updates are advantageous for predicting the endeffector
velocity. Hence, in this scenario λ regulates the trade-off between
prediction accuracy and latent state explainability and needs to be
chosen depending on priorities of the application.
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Figure 25: MiniGrid results: Mean rewards in solving various tasks when GateL0RD replaces an
LSTM (vanilla) in a PPO architecture. Shaded areas show standard deviation.

D.9 MiniGrid: Further analysis and experiments
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Figure 26: MiniGrid results: mean
success rate and reward for KeyCorri-
dorS3R3. The learning rate of the vanilla
system was optimized for this problem.

In Sec. 6.4 we showed that GateL0RD is more sample effi-
cient in achieving a high success rate in various MiniGrid
tasks than when it replaces an LSTM in a PPO architecture.
Some problems of MiniGrid discount the overall reward
based on the number of actions required to reach the goal.
Thus, another metric to judge success in MiniGrid is the
mean reward collected by the systems. Figure 25 shows
the mean rewards for the vanilla architecture and archi-
tecture containing GateL0RD over training experience.
For all problems the architecture containing GateL0RD is
more sample efficient and achieves high levels of reward
faster.

For consistency we used the same hyperparameters in all
MiniGrid experiments and only swapped the LSTM cell
for GateL0RD. However, as described in Suppl. B.6 a
grid search showed that for the KeyCorridorS3R3 problem a smaller learning rate (α = 0.0005)
resulted in higher mean rewards for the vanilla architecture. Thus, to exclude the possibility that
GateL0RD outperformed the LSTM in this problem based on the choice of learning rate, we ran
an additional experiment in the KeyCorridorS3R3 problem with the vanilla architecture using the
optimized learning rate. The resulting mean success rate and mean rewards are shown in Fig. 26a and
Fig. 26b, respectively. While the vanilla architecture now manages to reach a success rate of 100%
and a mean reward larger than 0.8, GateL0RD is still faster in reaching the same level of performance.

D.10 MiniGrid: Zero-shot policy transfer

We hypothesize that GateL0RD can memorize information precisely without information loss over
time. Thus, it should be able to generalize well across different memory durations. We investi-
gate this aspect in in the MiniGrid domain by training a PPO architecture containing an LSTM
(vanilla) and the same architecture containing GateL0RD on two problems that require memory, i.e.
DoorKey-8x8 (shown in Fig. 10a) and MemoryS13Random (shown in Fig. 10f). We evaluate the
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Figure 27: MiniGrid: zero-shot generalization for two environments when trained in a smaller
versions of same problem. (a) & (b) show the success rate and (c) & (d) show the mean reward.
Shaded areas show standard deviation.
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architectures on the same problems in larger environments, i.e. DoorKey16x16 (shown in Fig. 10g)
and MemoryS17Random (shown in Fig. 10h). Thus, one of the main challenges is that during transfer
information needs to be memorized for longer periods of time.

Figure 27 shows the zero-shot generalization performance for solving the more complex problems
after training only on the simpler variants. For both problems GateL0RD achieves a higher mean
success rate and mean reward than the vanilla baseline. The better performance cannot simply be
explained by GateL0RD being better at the considered task than the LSTM of the vanilla architecture.
When tested in the simple problems both architectures achieve approximately the same performance
(c.f., Fig. 25b). Instead the better performance is likely due to GateL0RD generalizing better from
short-term to long-term memorization.
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