
A Appendix

A.1 Heuristic for Determining D0

In our experiments, we use the following heuristic for finding D0: first, the best distortion Dmax is
determined, which the respective model achieves when trained via (classical) amortised variational
inference; then the baseline for the desired reconstruction quality is defined as D0 = 0.9Dmax.
Experimental support for this heuristic can be found in App. A.7.1 (Fig. 9).

A.2 Learning the Initial Distribution

The VHP defines a (VAE-like) lower bound on the optimal empirical Bayes prior p∗(z1):

Ep∗(z1)

[
log pψ0

(z1)
]
= EpD(x,u) Eqφ(z1|x,u)

[
log pψ0

(z1)
]

(19)

= EpD(x1:T ,u1:T) Eqφ(z1:T |x1:T ,u1:T)

[
log pψ0

(z1)
]

(20)

≥ EpD(x1:T ,u1:T) Eqφ(z1:T |x1:T ,u1:T)

[
Eqφ0 (ζ| z1)

[
log

pψ0
(z1| ζ) p(ζ)
qφ0

(ζ| z1)

]
︸ ︷︷ ︸

=FVHP(ψ0,φ0;z1)

]
,

(21)

which introduces an upper bound on the rate:

R(ψ, φ, ψ0) = Eqφ(z1:T |x1:T ,u1:T)

[
log qφ(z1:T |x1:T ,u1:T)− log pψ0

(z1)−
T∑
t=2

log pψ(zt| zt−1,ut−1)

]
(22)

≤ Eqφ(z1:T |x1:T ,u1:T)

[
log qφ(z1:T |x1:T ,u1:T)−FVHP(ψ0, φ0; z1)−

T∑
t=2

log pψ(zt| zt−1,ut−1)

]
(23)

= R(ψ, φ, ψ0, φ0).

Note that R(ψ, φ, ψ0) =̂ R(ψ, φ), where ψ0 denotes the now learnable parameters of the prior.
Hence, Eq. (23) leads to the following Lagrangian:

L(θ, ψ, φ, ψ0, φ0;λ) = R(ψ, φ, ψ0, φ0) + λ (D(θ, φ)−D0) , (24)

with the corresponding constrained optimisation problem defined in Eq. (7).

13

A.3 Integrating the Deep Kalman Filter and Smoother With the Constrained Optimisation
Framework

In order to integrate DKF/DKS [17] with our proposed constrained optimisation framework, we
specify the distortion and rate that define the ELBO. This allows us to formulate the Lagrangian of
the constrained optimisation problem defined in Eq. (7).

A.3.1 Original Evidence Lower Bound (Smoother Version)

The objective function introduced by Krishnan et al. [17] for training deep Kalman smoothers (DKSs)
is

FDKS
ELBO(θ, ψ, φ) = −DDKS(θ, φ)−RDKS(ψ, φ). (25)

The distortion is defined as

DDKS(θ, φ) = −
T∑
t=1

Eqφ(zt|x1:T ,u1:T)

[
log pθ(xt| zt)

]
, (26)

and the rate is given by

RDKS(ψ, φ) = KL
(
qφ(z1|x1:T ,u1:T)‖ p(z1)

)
+

T∑
t=2

Eqφ(zt−1|x1:T ,u1:T)

[
KL
(
qφ(zt| zt−1,xt:T ,ut−1:T)‖ pψ(zt| zt−1,ut−1)

)]
,

(27)

where p(z1) is a standard normal distribution. See [17] for further implementation details. Note that
the filter version (DKF) is obtained by replacing qφ(zt|x1:T ,u1:T) with qφ(zt|x1:t,u1:t).

A.3.2 VHP-Based Evidence Lower Bound (Smoother Version)

In the following, we integrate the VHP with DKS:

FVHP-DKS
ELBO (θ, ψ, φ, ψ0, φ0) = −DDKS(θ, φ)−RVHP-DKS(ψ, φ, ψ0, φ0). (28)

The distortion remains identical to DKS (Eq. (26)). By replacing the prior p(z1) inRDKS(ψ, φ) with
the VHP defined in Eq. (6), we get:

RVHP-DKS(ψ, φ, ψ0, φ0) = Eqφ(z1|x1:T ,u1:T)

[
log qφ(z1|x1:T ,u1:T)−FVHP(ψ0, φ0; z1)

]
+

T∑
t=2

Eqφ(zt−1|x1:T ,u1:T)

[
KL
(
qφ(zt| zt−1,xt:T ,ut−1:T)‖ pψ(zt| zt−1,ut−1)

)]
.

(29)

The filter version (VHP-DKF) is obtained, as with DKF, by replacing qφ(zt|x1:T ,u1:T) with
qφ(zt|x1:t,u1:t).

14

A.4 Integrating the Deep Variational Bayes Filter and Smoother With the Constrained
Optimisation Framework

In order to integrate DVBF/DVBS [13] with our proposed constrained optimisation framework, we
specify the distortion and rate that define the ELBO. This allows us to formulate the Lagrangian of
the constrained optimisation problem defined in Eq. (7).

A.4.1 Original Evidence Lower Bound (Smoother Version)

DVBF was originally introduced in [13]. In the following, we refer to the updated version presented
in [14]. The locally-linear transition model is described in Sec. 4.1. The corresponding objective
function for training deep variational Bayes smoothers (DVBSs) is

FDVBS
ELBO (θ, ψ, φ, ψ0, φ0) = −DDVBS(θ, φ, ψ0, φ0)−RDVBS(ψ, φ, ψ0, φ0). (30)

The distortion is defined as

DDVBS(θ, φ, ψ0, φ0) = −EpD(x1:T ,u1:T) Eqφ0 (ζ|x1:T ,u1:T) Eqφ(z2:T | fψ0
(ζ),x2:T ,u1:T)

[
log pθ(x1| fψ0

(ζ))

+

T∑
t=2

log pθ(xt| zt)

]
, (31)

where fψ0(ζ) =̂ z1 mimics an empirical Bayes prior that is learned from data, and the approximate
posterior distribution factorises as

qφ(z2:T | fψ0
(ζ),x2:T ,u1:T) = qφ(z2| fψ0

(ζ),x2:T ,u1:T)

T∏
t=3

qφ(zt| zt−1,xt:T ,ut−1:T). (32)

Therefore, the rate is given by

RDVBS(ψ, φ, ψ0, φ0) = Eqφ0 (ζ|x1:T ,u1:T) Eqφ(z2:T | fψ0
(ζ),x2:T ,u1:T)

[
KL
(
qφ0(ζ|x1:T ,u1:T)‖ p(ζ)

)
+KL

(
qφ(z2| fψ0

(ζ),x2:T ,u1:T)‖ pψ(z2| fψ0
(ζ),u1)

)
+

T∑
t=3

KL
(
qφ(zt| zt−1,xt:T ,ut−1:T)‖ pψ(zt| zt−1,ut−1)

)]
, (33)

where p(ζ) is a standard normal distribution. The conditional approximate posterior is implemented
as the product of two distributions [14]:

qφ(zt| zt−1,xt:T ,ut−1:T) ∝ pφ(zt| zt−1,ut−1)× qφ(zt|xt:T ,ut:T). (34)

Further implementation details can be found in [13] and [14]. Note that the filter version (DVBF) is
obtained by replacing qφ(zt|xt:T ,ut:T) in Eq. (34) with qφ(zt|xt).

15

A.4.2 VHP-Based Evidence Lower Bound (Smoother Version)

In the following, we integrate the VHP with DVBS:

FVHP-DVBS
ELBO (θ, ψ, φ, ψ0, φ0) = −DVHP-DVBS(θ, φ)−RVHP-DVBS(ψ, φ, ψ0, φ0) (35)

By replacing the deterministic transformation fψ0(ζ) with the VHP defined in Eq. (6), the marginal
approximate posterior simplifies to qφ(zt|xt:T ,ut:T) for all time steps including the initial time step.
As a result, the approximate posterior factorises as

qφ(z1:T |x1:T ,u1:T) = qφ(z1|x1:T ,u1:T)

T∏
t=2

qφ(zt| zt−1,xt:T ,ut−1:T). (36)

Thus, the distortion is given by

DVHP-DVBS(θ, φ) = −Eqφ(z1:T |x1:T ,u1:T)

[
T∑
t=1

log pθ(xt| zt)

]
, (37)

and the rate is defined as

RVHP-DVBS(ψ, φ, ψ0, φ0) = Eqφ(z1:T |x1:T ,u1:T)

[
log qφ(z1|x1:T ,u1:T)−FVHP(ψ0, φ0; z1)

−
T∑
t=2

KL
(
qφ(zt| zt−1,xt:T ,ut−1:T)‖ pψ(zt| zt−1,ut−1)

)]
. (38)

The conditional approximate posterior qφ(zt| zt−1,xt:T ,ut−1:T) is implemented as for DVBS
(Eq. (34)). The filter version (VHP-DVBF) is obtained, as with DVBF, by replacing qφ(zt|xt:T ,ut:T)
in Eq. (34) with qφ(zt|xt).

16

A.5 Extended Kalman Filtering and Smoothing With a Neural Linearisation of the
Dynamic Model Function

In the following, we provide an analysis of how Kalman filtering/smoothing is applied in combination
with the locally-linear transition model defined in Eq. (9) and the auxiliary-variable model defined in
Eq. (12). To this end, we first consider the prediction step that allows analytically computing

pψ(zt|a1:t−1,u1:t−1) = N (zt|m−t ,P−t), (39)

given the filtered distribution

pψ(zt−1|a1:t−1,u1:t−1) = N (zt−1|mt−1,Pt−1), (40)

where m refers to the mean and P to the covariance of a Gaussian distribution.

The nonlinear dynamic model is typically defined as

zt = f(zt−1,ut−1) + qt−1. (41)

In extended Kalman filtering/smoothing, the dynamic model function f(z,u) is locally linearised by
means of a first-order Taylor expansion, which allows applying the Kalman filter/smoother algorithm
as follows. The prediction step is defined by:

m−t = f(mt−1,ut−1) (42)

Ft−1 =
∂f(z,u)

∂z

∣∣∣∣
mt−1,ut−1

(43)

P−t = Ft−1Pt−1F
T
t−1 +Qt−1. (44)

In case of an unknown dynamic model function, we can approximate f(z,u) by a function that is
locally linear w.r.t. discrete time steps. This allows formulating the prediction step of the mean as

m−t =
∂f(z,u)

∂z

∣∣∣∣
mt−1,ut−1

·mt−1 +
∂f(z,u)

∂u

∣∣∣∣
mt−1,ut−1

· ut−1. (45)

In our proposed transition model (Eq. (9)), the above Jacobians are replaced by

∂f(z,u)

∂z

∣∣∣∣
mt−1,ut−1

→ Fψ(mt−1,ut−1), (46)

∂f(z,u)

∂u

∣∣∣∣
mt−1,ut−1

→ Bψ(mt−1,ut−1). (47)

Eq. (46) and (47) allow defining the prediction step as

m−t = Fψ(mt−1,ut−1) ·mt−1 +Bψ(mt−1,ut−1) · ut−1 (48)
Ft−1 = Fψ(mt−1,ut−1) (49)
Qt−1 = Qψ(mt−1,ut−1) (50)

P−t = Ft−1Pt−1F
T
t−1 +Qt−1. (51)

The update step corresponds to the classic Kalman filter/smoother due to the linear Gaussian
pψ(at| zt) (Eq. (12)). The backward recursion is defined by m−t , Ft−1, and P−t in Eqs. (48,
49, 51). Therefore, it is identical to the Kalman smoother.

17

A.6 Derivation of the Extended Kalman VAE

In the following, we derive FELBO of the EKVAE, i.e. the distortion D(θ, φ) and rateR(ψ, φ, ψ0, φ0)
in Eq. (15) and (17). To this end, we start with the generative model that defines p(x1:T |u1:T). Note
that the graphical model can be found in App. A.6.4.

A.6.1 Generative Model

In addition to the latent variables zt, we use the auxiliary variables at to facilitate extended Kalman
filtering/smoothing and ζ to model the empirical Bayes prior:

p(x1:T |u1:T)

=

∫∫∫
p(x1:T ,a1:T , z1:T , ζ|u1:T) da1:T dz1:T dζ (52)

=

∫∫∫
p(x1:T |a1:T ,��z1:T , ��ζ,����u1:T−1) p(a1:T | z1:T , ��ζ,���u1:T) p(z1:T | ζ,u1:T) p(ζ) da1:T dz1:T dζ

(53)

=

∫∫∫
p(x1:T |a1:T) p(a1:T | z1:T) p(z1:T | ζ,u1:T) p(ζ) da1:T dz1:T dζ (54)

=

∫∫∫ T∏
t=1

(
pθ(xt|at) pψ(at| zt)

) T∏
t=2

(
p(zt| zt−1,ut−1)

)
p(z1| ζ) p(ζ) da1:T dz1:T dζ.

(55)

A.6.2 Evidence Lower Bound (Smoother Version)

Starting from Eq. (55), in a first step, we marginalise a1:T via Monte Carlo integration based on
qφ(a1:T |x1:T). Furthermore, we use a chain factorisation based on Bayes’ theorem to split the
integral w.r.t. z1:T into double integrals:

log p(x1:T |u1:T)

≥ Eq(a1:T |x1:T)

[
log

p(x1:T |a1:T)
q(a1:T |x1:T)

+ log

∫∫ T∏
t=2

(
p(at| zt) p(zt| zt−1,ut−1)

)
p(a1| z1) p(z1| ζ) p(ζ) dz1:T dζ

]
(56)

= Eq(a1:T |x1:T)

[
log

p(x1:T |a1:T)
q(a1:T |x1:T)

+ log

∫∫
p(a1| z1) p(z1| ζ) p(ζ) dz1 dζ

+

T∑
t=2

log

∫∫
p(at| zt)︸ ︷︷ ︸
observation

transition︷ ︸︸ ︷
p(zt| zt−1,ut−1) p(zt−1|a1:t−1,u1:t−2)︸ ︷︷ ︸

filtered distribution

dzt dzt−1

]
(57)

= Eq(a1:T |x1:T)

[
log

p(x1:T |a1:T)
q(a1:T |x1:T)

+ log

∫∫
p(a1| z1) p(z1| ζ) p(ζ) dz1 dζ

+

T∑
t=2

log

∫ ∫
p(at| zt) p(zt| zt−1,ut−1) dzt︷ ︸︸ ︷
p(at| zt−1,ut−1) p(zt−1|a1:t−1,u1:t−2) dzt−1

]
(58)

18

As discussed in Sec. 4.3, we solve the integral in Eq. (58) only w.r.t. zt in closed form and
marginalise zt−1 in Eq. (59) via Monte Carlo integration based on the smoothed distributions
pψ(zt−1|a1:T ,u1:T−1). Furthermore, we marginalise ζ via Monte Carlo integration by using
FVHP(ψ0, φ0; z1) defined in Eq. (6):

(58) ≥ Eq(a1:T |x1:T)

[
log

p(x1:T |a1:T)
q(a1:T |x1:T)

+ Ep(z1| a1:T ,u1:T−1)

[
log p(a1| z1)− log p(z1|a1:T ,u1:T−1) +

FVHP(ψ0,φ0; z1) in Eq. (18)︷ ︸︸ ︷
Eq(ζ| z1)

[
log

p(z1| ζ) p(ζ)
q(ζ| z1)

]]

+

T∑
t=2

Ep(zt−1| a1:T ,u1:T−1)

[
log p(at| zt−1,ut−1) + log

filtered distribution︷ ︸︸ ︷
p(zt−1|a1:t−1,u1:t−2)

p(zt−1|a1:T ,u1:T−1)︸ ︷︷ ︸
smoothed distribution

]]
(59)

=

T∑
t=1

Eq(at|xt)
[
log p(xt|at)

]
︸ ︷︷ ︸

−D(θ,φ) in Eq. (15)

− Eq(a1:T |x1:T)

[
Ep(z1| a1:T ,u1:T−1) Eq(ζ| z1)

[
log

q(a1|x1)

p(a1| z1)
+ log

p(z1|a1:T ,u1:T−1)

p(z1| ζ)
+ log

q(ζ| z1)
p(ζ)

]
︸ ︷︷ ︸

Rinitial(ψ,φ,ψ0,φ0; a1:T ,z1) in Eq. (17)

+

T∑
t=2

Ep(zt−1| a1:T ,u1:T−1)

[
log

q(at|xt)
p(at| zt−1,ut−1)

+ log
p(zt−1|a1:T ,u1:T−1)

p(zt−1|a1:t−1,u1:t−2)

]]
(60)

≈ Ez1:T ,a1:T∼q(z1:T ,a1:T |x1:T ,u1:T) Eζ∼q(ζ| z1)

[
T∑
t=1

log p(xt|at)

−
(
KL
(
q(a1|x1)‖ p(a1| z1)

)
+KL

(
p(z1|a1:T ,u1:T−1)‖ p(z1| ζ)

)
+KL

(
q(ζ| z1)‖ p(ζ)

))
−

T∑
t=2

(
KL
(
q(at|xt)‖ p(at| zt−1,ut−1)

)
+KL

(
p(zt−1|a1:T ,u1:T−1)‖ p(zt−1|a1:t−1,u1:t−2)

))]
(61)

=: F EKVAE (smoother version)
ELBO

19

A.6.3 Evidence Lower Bound (Filter Version)

The filter version of the EKVAE corresponds to the smoother version with the difference of replacing
pψ(zt|a1:T ,u1:T−1) by pψ(zt|a1:t,u1:t−1). In contrast to a closed-form evaluation, this enables a
sample-based optimisation of the transition parameters ψ, as discussed in Sec. 4.3. As a result, we
obtain:

log p(x1:T |u1:T)

≥
T∑
t=1

Eq(at|xt)
[
log p(xt|at)

]
− Eq(a1:T |x1:T)

[
Ep(z1| a1) Eq(ζ| z1)

[
log

q(a1|x1)

p(a1| z1)
+ log

p(z1|a1)
p(z1| ζ)

+ log
q(ζ| z1)
p(ζ)

]

+

T∑
t=2

Ep(zt−1| a1:t−1,u1:t−2)

[
log

q(at|xt)
p(at| zt−1,ut−1)

]]
(62)

≈ Ez1:T ,a1:T∼q(z1:T ,a1:T |x1:T ,u1:T) Eζ∼q(ζ| z1)

[
T∑
t=1

log p(xt|at)

−
(
KL
(
q(a1|x1)‖ p(a1| z1)

)
+KL

(
p(z1|a1)‖ p(z1| ζ)

)
+KL

(
q(ζ| z1)‖ p(ζ)

))
−

T∑
t=2

KL
(
q(at|xt)‖ p(at| zt−1,ut−1)

)]
(63)

=: F EKVAE (filter version)
ELBO

A.6.4 Graphical Model

x1 x2 xT

a1 a2 aT

z1 z2 . . . zTζ

u1 u2

Figure 8: Graphical model of the EKVAE. Red arrows indicate the variational inference networks
used for the auxiliary variables at and the VHP variable ζ. Given samples a1:T , the states z1:T are
inferred through (closed-form) Bayesian filtering/smoothing using the locally-linear transition model
in Eq. (9) and the time-invariant auxiliary-variable model in Eq. (12).

20

A.7 Supplementary Experimental Results

A.7.1 Demonstrating the CO Framework on the Example of DKS

The robustness of the CO framework w.r.t. the hyperparameter D0 is demonstrated in Fig. 9. For
this purpose, we evaluate the correlation of the inferred with the ground-truth angular velocity as a
function of D0—all other hyperparamters are kept constant. The evaluations are based on 25 runs
each using a random seed.

Figure 9: Pendulum (image data). To evaluate the robustness of the CO framework w.r.t. D0, we
measure the correlation between inferred and ground-truth angular velocity by R2 (OLS regression).
Here, D∗0 corresponds to the value determined by our heuristic (see App. A.1). Note that the abrupt
drop at 1.15D∗0 is due to the fact that the constraint cannot be satisfied (cf. heuristic), leading to an
ill-posed constrained optimisation problem and thus to a poorly trained model.

A.7.2 The Influence of the Learned State-Space Representation on the Prediction Accuracy

The pendulum can do a full 360 degree turn; therefore, the models in Tab. 1a learn to represent the
rotation angle φ by a circle, resulting in a barrel-shaped state-space representation (cf. Fig. 1). To this
end, we perform three OLS regressions on the learned representations. In the first two, we use sin(φ)

and cos(φ) as ground truth [cf. 13], where R2 (ang. φ)
OLS reg. is the corresponding mean. R2 (vel. φ̇)

OLS reg. refers to
the third OLS regression with φ̇ as ground truth.

As in the pendulum experiments, we measure the correlation between inferred and ground-truth states
through R2 of an OLS regression. In case of angle data (Tab. 1b), we perform four OLS regressions
on the learned representations with (φ, ψ, φ̇, ψ̇) as ground truth. In case of image data (Tab. 1c),
we perform five OLS regressions on the learned representations because we use sin(φ) and cos(φ),
instead of φ, as ground truth, where R2 (ang. φ)

OLS reg. refers to the corresponding mean. Similar to the
pendulum, this is necessary for image data since the model learns to represent the first joint angle φ
of the reacher by a circle (cf. Fig. 3). This is because the first joint can do, in contrast to the second
one, a full 360 degree turn.

In the following, we provide: (i) a statistic evaluation of different annealing schedules compared
with CO, which is based on 25 runs each using a random seed (see Fig. 10); (ii) visualisations of the
state-space representations learned by the different models (see Figs. 11–19); (iii) further evaluations
including reconstructed, predicted, and generated sequences (see Figs. 11–21).

21

Figure 10: Pendulum (image data). Statistic evaluation of different annealing schedules. For this
purpose, we measure the correlation between inferred and ground-truth angular velocity by R2 (OLS
regression) and compare the best schedule with CO (right), cf. Tab. 1a in Sec. 6.2. The statistics
are based on 25 experimental runs each using a random seed and indicate that CO facilitates system
identification.

Figure 11: VHP-EKVAE (CO) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
In combination with the constrained optimisation framework, the EKVAE identifies the dynamical
system of the pendulum and learns to predict it accurately.

22

Figure 12: EKVAE (CO) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
Without the VHP, the EKVAE identifies the dynamical system of the pendulum but does not learn to
process samples from the prior, which results in a broken generative model.

Figure 13: EKVAE (annealing) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
Without the constrained optimisation framework, the EKVAE does not learn to accurately predict the
observed dynamical system.

23

Figure 14: VHP-DVBS (CO) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
In combination with the constrained optimisation framework, DVBS identifies the dynamical system
of the pendulum and learns to predict it accurately.

Figure 15: DVBS (CO) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2). The
original empirical Bayes prior proposed for DVBS leads to a poorer generative model than the VHP.

24

Figure 16: DVBS (annealing) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
Without the constrained optimisation framework, DVBS does not learn to accurately predict the
observed dynamical system.

Figure 17: VHP-DKS (CO) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
In combination with the constrained optimisation framework, DKS identifies the dynamical system
of the pendulum and learns to predict it accurately.

25

Figure 18: DKS (CO) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
Without the VHP, DKS identifies the dynamical system of the pendulum but does not learn to process
samples from the prior, which results in a broken generative model.

Figure 19: DKS (annealing) trained on pendulum image data (supplementary to Tab. 1a in Sec. 6.2).
Without the constrained optimisation framework, DKS does not learn to accurately predict the
observed dynamical system.

26

Figure 20: Summary of all models. Predicted sequences of a moving pendulum conditioned on
z1 ∼ q(z1|x1:5,u1:4) or, in case of the EKVAE, on z1 ∼ p(z1|a1:5,u1:4), where the auxiliary
variables are obtained through a1:5 ∼ q(a1:5|x1:5). The average prediction accuracy, measured by
the MSE, can be found in Tab. 1a (Sec. 6.2).

Figure 21: VHP-EKVAE (CO). Predicted sequence of a moving reacher conditioned on the smoothed
distribution z1 ∼ p(z1|a1:5,u1:4), where a1:5 ∼ q(a1:5|x1:5). The average prediction accuracy is
depicted in Tab. 1c (Sec. 6.2).

27

A.7.3 Limitations of RNN-Based Transition Models

As a consequence of the RNN-based transition model, the KVAE [8] and the RSSM [9] learn a
non-Markovian state space, i.e. not all information about the system’s state is encoded in zt, but
partially in the RNN. This is indicated in Tab. 2 (see Sec. 6.3) by the low correlation (R2) between
the inferred and ground-truth angular velocity, when trained on pendulum image data. The OLS
regressions are performed identically to Tab. 1a (see App. A.7.2).

In order to verify that the KVAE and the RSSM do not encode the angular velocity of the pendulum
in zt, we compare in Tab. 2 (see Sec. 6.3) the accuracy (MSE) of 500 predicted sequences x1:15

(15 time steps). In case of the KVAE, for example, these are either conditioned on the smoothed{
z
(n)
1 ∼ p(z1|a(n)1:5 ,u

(n)
1:4), h

(n)
1

}500
n=1

or the filtered
{
z
(n)
5 ∼ p(z5|a(n)1:5 ,u

(n)
1:4), h

(n)
5

}500
n=1

, denoted

by MSE (smoothed)
predict and MSE (filtered)

predict . This allows us to isolate the influence of the RNN on the model’s
prediction accuracy, as we show in Fig. 22 and Fig. 23.

Figure 22: VHP-KVAE (CO). The predictions demonstrate that the KVAE encodes the angular
velocity of the pendulum in ht = LSTM(a1:t) and not in zt. This causes the poor smoothing-based
predictions, as h1 = LSTM(a1) does not have access to sequence data and therefore cannot infer the
angular velocity. See Tab. 2 in Sec. 6.3.

Figure 23: VHP-RSSM (CO). The predictions demonstrate that the RSSM encodes the angular
velocity of the pendulum in ht = LSTM(z1:t,u1:t) and not in zt. This causes the poor smoothing-
based predictions, as h1 = LSTM(z1,u1) does not have access to sequence data and therefore cannot
infer the angular velocity. See Tab. 2 in Sec. 6.3.

28

The KVAE uses the transition model p(zt+1| zt,ht,ut), where ht = LSTM(a1:t); the RSSM uses
the transition model p(zt+1|ht), where ht = LSTM(z1:t,u1:t). Fig. 22 and Fig. 23 show that the
predicted position of the pendulum in the initial time step is always identical to the observed position.
Thus, we can conclude that the low accuracies of the smoothing-based predictions are due to missing
information about the dynamics, i.e. the angular velocity of the pendulum. When smoothing back
to the initial time step, this information can only be provided by z1 since the LSTM does not have
access to sequential data and therefore cannot infer any dynamics. Consequently, we state that the
angular velocity is encoded in ht of the LSTM and can only be inferred for t ≥ 2, as shown in Fig. 22
and Fig. 23; and verified by the different accuracies of the smoothing- and filtering-based predictions
in Tab. 2 (see Sec. 6.3).

A.7.4 Encoding Rewards: Policy Learning With Disentangled State-Space Representations

In Sec. 6.4, Fig. 6 shows the visualisation of different policies that are learned based on the disentan-
gled (position–velocity) state-space representation of the pendulum (image data) in Fig. 5 (left). The
policies are tested on the original pendulum environment that was also used to generate the dataset.
The first example (top) demonstrates the pendulum swing-up, which is achieved by encoding the goal
position for rpos

t (zt,pg) and using an action interval of 7 ≥ a ≥ −7. The second and third example
(middle and bottom) demonstrate steady clockwise and counter-clockwise rotations of the pendulum
with different angular velocities, using an action interval of 30 ≥ a ≥ −30. This is achieved by
encoding the goal angular velocity for rvel

t (zt,vg): in Fig. 6 (middle), we use 50% of the maximum
speed defined by the dataset; and in Fig. 6 (bottom) 85% of the maximum speed defined by the dataset.
The experiments verify that the EKVAE has learned an accurate model of the pendulum. Further-
more, they demonstrate the variety of applications for disentangled (position–velocity) state-space
representations and the related policy learning approach.

Fig. 24 shows visualisations of policies that are learned based on the disentangled (position–velocity)
state-space representation of reacher (image data) in Fig. 3. To this end, the goal position, denoted
by the red dot, was encoded to use rpos

t (zt,pg) (cf. Sec. 6.4). The policies are tested using the
Deepmind-control-suite reacher environment. Our results show that the EKVAE has learned an
accurate model of the reacher environment that avoids self-collisions and ensures precise reaching of
a desired position.

Figure 24: VHP-EKVAE (CO). Visualisation of the policy learned based on the disentangled (position–
velocity) state-space representation in Fig. 3. For this purpose, the goal position (red dot) is encoded
in the latent space. The results show that the EKVAE has learned an accurate model of the observed
system. (see Sec. 6.4)

29

A.8 Model Architectures

Table 3: Model architectures of EKVAE. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)
1e-3 Time Steps 15

Actions 1
Auxiliary Variables 2
Latents 3
qφ(at|xt) FC 128, 128, 128. ReLU activation.
pθ(xt|at) FC 128, 128, 128. ReLU activation. Gaussian.
Number of Base Matrices M 16
α-Network FC 64. ReLU activation.
qφ0(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 10, τ2 = 0.01, ν = 300
Batch Size 500

Reacher (angle data) Adam Observations 2
1e-3 Time Steps 30

Actions 2
Auxiliary Variables 2
Latents 4
qφ(at|xt) FC 128. ReLU activation.
pθ(xt|at) FC 128. ReLU activation. Gaussian.
Number of Base Matrices M 8
α-Network FC 64, 64. ReLU activation.
qφ0

(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 1, τ2 = 0.001, ν = 10
Batch Size 128

Reacher (image data) Adam Observations 64×64×3
5e-3 Time Steps 30

Actions 2
Auxiliary Variables 3
Latents 5
qφ(at|xt) Conv 32×5×5 (stride 2), 64×5×5 (stride 2),

128×5×5 (stride 2). FC 256. ReLU activation.
pθ(xt|at) Deconv reverse of encoder. ReLU activation. Gaussian.
Number of Base Matrices M 8
α-Network FC 64, 64. ReLU activation.
qφ0

(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 10, τ2 = 0.01, ν = 30
Batch Size 64

30

Table 4: Model architectures of DKS. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)
1e-3 Time Steps 15

Actions 1
Latents 3
qφ(zt|x1:T ,u1:T) BiLSTM 128. sigmoid activation. FC 64. ReLU activation.
pθ(xt|zt) FC 128, 128, 128. ReLU activation. Gaussian.
pθ(zt|zt−1,ut−1) FC 128, 128, 128. ReLU activation.
qφ0

(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 10, τ2 = 0.01, ν = 300
Batch Size 500

Reacher (angle data) Adam Observations 2
1e-3 Time Steps 30

Actions 2
Latents 4
qφ(zt|x1:T ,u1:T) BiLSTM 128. sigmoid activation. FC 64. ReLU activation.
pθ(xt|zt) FC 128. ReLU activation. Gaussian.
pθ(zt|zt−1,ut−1) FC 128, 128, 128. ReLU activation.
qφ0(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 1, τ2 = 0.001, ν = 10
Batch Size 128

Table 5: Model architectures of DVBS. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)
1e-3 Time Steps 15

Actions 1
Latents 3
qφ(zt|xt:T ,ut:T) LSTM 128. sigmoid activation. FC 64. ReLU activation.
pθ(xt|zt) FC 128, 128, 128. ReLU activation. Gaussian.
Number of Base Matrices M 16
α-Network FC 64. ReLU activation.
qφ0

(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 10, τ2 = 0.01, ν = 300
Batch Size 500

Reacher (angle data) Adam Observations 2
1e-3 Time Steps 30

Actions 2
Latents 4
qφ(zt|xt:T ,ut:T) LSTM 128. sigmoid activation. FC 64. ReLU activation.
pθ(xt|zt) FC 128. ReLU activation. Gaussian.
Number of Base Matrices M 8
α-Network FC 64, 64. ReLU activation.
qφ0

(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 1, τ2 = 0.001, ν = 10
Batch Size 128

31

Table 6: Model architectures of KVAE. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)
1e-3 Time Steps 15

Actions 1
Auxiliary Variables 2
Latents 3
qφ(at|xt) FC 128, 128, 128. ReLU activation.
pθ(xt|at) FC 128, 128, 128. ReLU activation. Gaussian.
Number of Base Matrices M 16
α-Network FC 64. ReLU activation.
Dynamics Parameter Network LSTM 64. sigmoid activation.
qφ0

(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 10, τ2 = 0.01, ν = 300
Batch Size 500

Table 7: Model architectures of RSSM. FC refers to fully-connected layers.

Dataset Optimiser Implementation Details

Pendulum Adam Observations 256 (flattened 16×16)
1e-3 Time Steps 15

Actions 1
Latents 3
qφ(zt|ht−1,xt:T ,ut:T) LSTM 128. sigmoid activation. FC 64. ReLU activation.
pθ(xt|zt) FC 128, 128, 128. ReLU activation. Gaussian.
pθ(zt|ht−1) FC 128, 128, 128. ReLU activation.
Deterministic State Model LSTM 64. sigmoid activation.
qφ0

(ζ|z1) FC 64, 64. ReLU activation.
pψ0

(z1|ζ) FC 64, 64. ReLU activation.
Others τ1 = 10, τ2 = 0.01, ν = 300
Batch Size 500

32

