
A Proof421

A.1 Technical Lemma422

Before proving our theoretical results, we present two inequalities for supremum to clear the descrip-423

tion.424

1. sup
x∈X
|f(x) + g(x)| ≤ sup

x∈X
|f(x)|+ sup

x∈X
|g(x)|425

2.
∣∣∣sup
x∈X

f(x)− sup
x′∈X

g(x′)
∣∣∣ ≤ sup

x,x′∈X
|f(x)− g(x′)|426

Proof of 1. Since |f(x) + g(x)| ≤ |f(x)|+ |g(x)| holds for all x ∈ X ,427

sup
x∈X
|f(x) + g(x)| ≤ sup

x∈X
(|f(x)|+ |g(x)|)

≤ sup
x∈X
|f(x)|+ sup

x∈X
|g(x)|

■428

Proof of 2. Since
∣∣∣∥a∥ − ∥b∥∣∣∣ ≤ ∥a− b∥ for any norm ∥ · ∥ and for a large enough M ,429

sup
x,x′∈X

|f(x)− g(x′)| ≥ sup
x∈X
|f(x)− g(x)|

= sup
x∈X
|(f(x) +M)− (g(x) +M)|

≥
∣∣∣ sup
x∈X

(f(x) +M)− sup
x∈X

(g(x) +M)
∣∣∣

=
∣∣∣ sup
x∈X

f(x)− sup
x′∈X

g(x′)
∣∣∣

■430

A.2 Proof of Theorem A.3431

Theorem A.3. If ξt converges to 1 uniformly on Ω, then Eτ ξt also converges to Eτ uniformly on432

Z for all s ∈ S and a ∈ A.433

Proof. Recall that Z =
{
Z : S ×A →P(R)

∣∣ E[|Z(s, a)|] ≤ Vmax,∀(s, a)
}

. Then for any Z ∈ Z434

and ξ ∈ Ξ,435

E[|τ ξZ|] ≤ Rmax + γ
Rmax

1− γ
=

Rmax

1− γ
= Vmax.

which implies PDBOO is closed in Z , i.e. τ ξZ ∈ Z for all ξ ∈ Ξ. Hence, for any sequence ξt,436

Z(n) = τ ξn:1Z ∈ Z for any n ≥ 0.437

Since ξt converges to 1 uniformly on Ω, there exists T such that for any t > T ,438

sup
w∈Ω
|ξt(w)− 1| ≤ ϵ.

For any Z ∈ Z , s ∈ S, a ∈ A, and t > T , by using Hölder’s inequality,439

sup
Z∈Z

sup
s,a
|Eξt [Z(s, a)]− E[Z(s, a)]| = sup

Z∈Z
sup
s,a

∣∣∣∣∫
w∈Ω

(1− ξt(w))Z(s, a, w)P(w)dw
∣∣∣∣

≤ sup
w∈Ω
|ξt(w)− 1| sup

Z∈Z
sup
s,a

∣∣∣∣∫
w∈Ω

|Z(s, a, w)|P(w)dw
∣∣∣∣

≤ ϵVmax
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which implies that Eξt converges to E uniformly on Z for all s, a.440

By using A.1, we can get the desired result.441

sup
Z∈Z

sup
s,a
|E[τ ξtZ(s, a)]− E[τZ(s, a)]|

≤ sup
Z∈Z

sup
s,a
|E[τ ξtZ(s, a)]− Eξt [τ ξtZ(s, a)]|+ sup

Z∈Z
sup
s,a
|Eξt [τ ξtZ(s, a)]− E[τZ(s, a)]|

≤ ϵVmax + γ sup
Z∈Z

sup
s,a

Es′

[∣∣∣sup
a′

Eξt [Z(s′, a′)]− sup
a′′

E[Z(s′, a′′)]
∣∣∣]

≤ ϵVmax + γ sup
Z∈Z

sup
s′,a′

|Eξt [Z(s′, a′)]− E[Z(s′, a′)]|

≤ ϵVmax + γϵVmax

= (1 + γ)ϵVmax.

■442

A.3 Proof of Theorem 3.3443

Theorem 3.3. Let ξn be sampled from Ū∆n
(Z(n−1)) for every iteration. If Assumption 3.2 holds,444

then the expectation of any composition of operators Eτ ξn:1
converges, i.e.445

Eτ ξn:1
[Z]→ E[Z∗]

Moreover, the following bound holds,446

sup
s,a

∣∣∣E[Z(n)(s, a)]− E[Z∗(s, a)]
∣∣∣ ≤ ∞∑

k=n

(
2γk−1Vmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

)
.

Proof. We denote a∗i (ξn) = argmax
a′

Eξn [Z
(n−1)
i (s′, a′)] as the greedy action of Z

(n−1)
i under447

perturbation ξn. Also, we denote sup
s,a
| · | which is the supremum norm over s and a as ∥ · ∥sa.448

Before we start from the term
∥∥E[Z(k+1)]− E[Z(k)]

∥∥
sa

, for a given (s, a),449 ∣∣∣E[Z(k+1)(s, a)]− E[Z(k)(s, a)]
∣∣∣

≤ γ sup
s′

∣∣∣E[Z(k)(s′, a∗(ξk+1))]− E[Z(k−1)(s′, a∗(ξk))]
∣∣∣

≤ γ sup
s′

( ∣∣∣E[Z(k)(s′, a∗(ξk+1)]−max
a′

E[Z(k)(s′, a′)]
∣∣∣+ ∣∣∣max

a′
E[Z(k)(s′, a′)]−max

a′
E[Z(k−1)(s′, a′)]

∣∣∣
+
∣∣∣max

a′
E[Z(k−1)(s′, a′)]− E[Z(k−1)(s′, a∗(ξk))]

∣∣∣ )

≤ γsup
s′,a′

∣∣∣E[Z(k)(s′, a′)]− E[Z(k−1)(s′, a′)]
∣∣∣+ γ

k∑
i=k−1

sup
s′

∣∣∣E[Z(i)(s′, a∗(ξi+1))]−max
a′

E[Z(i)(s′, a′)]
∣∣∣

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ γ

k∑
i=k−1

[
sup
s′

(∣∣∣E[Z(i)(s′, a∗(ξi+1))]− Eξi+1
[Z(i)(s′, a∗(ξi+1))]

∣∣∣
+
∣∣∣max

a′
Eξi+1

[Z(i)(s′, a′)]−max
a′′

E[Z(i)(s′, a′′))]
∣∣∣ )]

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ 2γ

k∑
i=k−1

sup
s′,a′

(∣∣∣E[Z(i)(s′, a′)]− Eξi+1 [Z
(i)(s′, a′)]

∣∣∣)

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ 2γ

k∑
i=k−1

∆i+1
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where we use A.1.1 in third and fifth line and A.1.2 in sixth line.450

Taking a supremum over s and a, then for all k > 0,451 ∥∥∥E[Z(k+1)]− E[Z(k)]
∥∥∥
sa

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ 2

k∑
i=k−1

γ∆i+1

≤ γ2
∥∥∥E[Z(k−1)]− E[Z(k−2)]

∥∥∥
sa

+ 2

k−1∑
i=k−2

γ2∆i+1 + 2

k∑
i=k−1

γ∆i+1

...

≤ γk
∥∥∥E[Z(1)]− E[Z]

∥∥∥
sa

+ 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

≤ 2γkVmax + 2
k∑

i=1

γi(∆k+2−i +∆k+1−i)

Since
∑∞

i=1 γ
i = γ

1−γ <∞ and
∑∞

i=1 ∆i <∞ by assumption, we have452

k∑
i=1

γi∆k+1−i → 0

which is resulted from the convergence of Cauchy product of two sequences {γi} and {∆i}. Hence,453

{E[Z(k)]} is a Cauchy sequence and therefore converges for every Z ∈ Z .454

Let E[Z∗] be the limit point of the sequence {E[Z(n)]}. Then,455 ∥∥∥E[Z∗]− E[Z(n)]
∥∥∥
sa

= lim
l→∞

∥∥∥E[Z(n+l)]− E[Z(n)]
∥∥∥
sa

≤
∞∑

k=n

∥∥∥E[Z(k+1)]− E[Z(k)]
∥∥∥
sa

=

∞∑
k=n

(
2γkVmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)
)
.

■456

A.4 Proof of Theorem 3.4457

Theorem 3.4. If {∆n} follows the assumption in Theorem 3.3, then E[Z∗] is the unique solution of458

Bellman optimality equation.459

Proof. The proof follows by linearity of expectation. Denote the Q-value based operator as τ̄ . Note460

that ∆n converges to 0 with regularity of Z implies that ξn converges to 1 uniformly on Ω. By461

Theorem A.3, for a given ϵ > 0, there exists a constant K = max(K1,K2) such that for every462

k ≥ K1,463

sup
Z∈Z
∥τ̄ ξkE[Z]− τ̄E[Z]∥sa ≤

ϵ

2
.

Since τ̄ is continuous, for every k ≥ K2,464

∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa ≤
ϵ

2
.
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Thus, it holds that465

∥τ̄ ξk+1
E[Z(k)]− τ̄E[Z∗]∥sa ≤ ∥τ̄ ξk+1

E[Z(k)]− τ̄E[Z(k)]∥sa + ∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa
≤ sup

Z∈Z
∥τ̄ ξk+1

E[Z]− τ̄E[Z]∥sa + ∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa

≤ ϵ

2
+

ϵ

2
= ϵ.

Therefore, we have466

E[Z∗] = lim
k→∞

E[Z(k)] = lim
k→∞

E[Z(k+1)] = lim
k→∞

E[τ ξk+1
Z(k)] = lim

k→∞
τ̄ ξk+1

E[Z(k)] = τ̄E[Z∗]

Since the standard Bellman optimality operator has a unique solution, we derived the desired467

result. ■468

B Algorithm Pipeline and Illustrative Example469

Figure 6: Pipeline of PDBOO.

Figure 6 shows the pipeline of our algorithm. With the schedule of perturbation bound {∆n},470

the ambiguity set U∆n
(Zn−1) can be defined by previous Zn−1. For each step, (distributional)471

perturbation ξn is sampled from U∆n
(Zn−1) by the symmetric Dirichlet distribution and then472

PDBOO τ ξn can be performed.473

PQR replay buffer𝝐𝝐-greedy replay buffer DLTV replay buffer

: list of actions to be added to the buffer

Number of candidate actions

Figure 7: An illustrative example of proposed algorithm (PQR). Each distribution represents the
empirical PDF of return. PQR benefits from excluding inferior actions and promoting unbiased
selection with regards to high intrinsic uncertainty through randomized risk criterion.

C Implementation details474

Except for each own hyperparameter, our algorithms and DLTV shares the same hyperparameter and475

network architecture with QR-DQN [10] for a fair comparison. Also, we set up p-DLTV by only476

multiplying a gaussian noise N (0, 1) to the coefficient of DLTV. We do not combine any additional477

improvements of Rainbow such as double Q-learning, dueling network, prioritized replay, and n-step478

update. Experiments on LunarLander-v2 and Atari games were performed with 3 random seeds. The479

training process is 0-2% slower than QR-DQN due to the sampling ξ and reweighting procedures.480
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C.1 Hyperparameter Setting481

We report the hyperparameters for each environments we used in our experiments.482

• Batch size : 32 (Atari games), 64 (N-Chain), 128 (LunarLander-v2)483

• Number of quantiles N : 170 (LunarLander-v2), 200 (N-Chain, Atari games)484

• Step for n−step updates : 1485

• Network optimizer : Adam486

• β : Grid search[0.05, 0.1, 0.5, 1] ×1N487

• κ : 1488

• Memory size : 1× 105 (LunarLander-v2), 1× 106 (Atari games)489

• learning rate : 5× 10−5 (N-Chain, Atari games), 1.5× 10−3 (LunarLander-v2)490

• Gamma : 0.9 (N-Chain), 0.99 (Atari games), 0.995 (LunarLander-v2)491

• Update interval : 1 (N-Chain, LunarLander-v2), 4 (Atari games)492

• Target update interval : 1 (LunarLander-v2), 25 (N-Chain), 1× 104 (Atari games)493

• Start steps : 5× 102 (N-Chain), 1× 104 (LunarLander-v2), 5× 104 (Atari games)494

• ϵ (train)/(test) : LinearAnnealer(1→ 1× 10−2) / 1× 10−3495

• ϵ decay steps : 2.5× 103 (N-Chain), 1× 105 (LunarLander-v2), 2.5× 105 (Atari games)496

• Coefficient c : Grid search[0.05 (LunarLander-v2), 0.5, 5, 50 (N-Chain, Atari games)]497

• ∆0 : 5× 102 (N-Chain), 5× 104 (LunarLander-v2), 1× 106 (Atari games)498

C.2 N-Chain499

We used c = 50 which was implemented in Mavrin et al. [17]. Although this c may not be optimal500

in a given environment, noted that its perturb variant, p-DLTV, learns successfully in the same501

settings. The ground truth of return distribution at state s0 and s4 are computed as γ2N (10, 0.12)502

and γ2( 12N (5, 0.12) + 1
2N (13, 0.12)), respectively.503

C.3 LunarLander-v2504

The hyperparameters of QR-DQN were followed by the settings reported in Raffin et al. [23] for505

a fair comparison. Our experiments used 2 layers of MLP with 256 hidden units. As a stochastic506

gradient optimizer, we adopt Adam with a learning rate 1.5× 10−3 with a linear decaying schedule.507

For the rest, the best value of c = 0.05 was chosen from [50, 5, 0.5, 0.05] where p-DLTV succeeded508

to learn while DLTV failed in all cases.509

C.4 Atari games510

For a fair comparison, our hyperparameter setting is aligned with Dabney et al. [10].511

C.5 Pseuodocode of p-DLTV and PQR512

Algorithm 1 Perturbed DLTV (p-DLTV)

Input: transition (s, a, r, s′), discount γ ∈ [0, 1)
Q(s′, a′) = 1

N

∑
j θj(s

′, a′)
# Randomize the coefficient
ct ∼ c N (0, ln t

t )

a∗ ← argmaxa′(Q(s′, a′) + ct

√
σ2
+(s

′, a′))

τ θj ← r + γθj(s
′, a∗), ∀j

Output:
∑N

i=1 Ej [ρ
κ
τ̂i
(τ θj − θi(s, a))]
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Algorithm 2 Perturbed QR-DQN (PQR)
Input: (s, a, r, s′), γ ∈ [0, 1), timestep t > 0, ϵ > 0, concentration β

Initialize ∆0 > 0.
∆t ← ∆0t

−(1+ϵ).
# Sample ξ ∼ Ū∆t

(Z(t))

ξ ← max
(

1N +∆t(Nx− 1N ), 0
)

where x ∼ Dir(β)
ξ ← Nξ/

∑
ξi

# Select greedy action with distorted expectation
a∗ ← argmaxa′ Eξ[Z(s′, a′)]
τ θj ← r + γθj(s

′, a∗), ∀j
t← t+ 1

Output:
∑N

i=1 Ej [ρ
κ
τ̂i
(τ θj − θi(s, a))]

D Further experimental results & Discussion513

D.1 N-Chain514

Total Count (8,10) (7,11) (6,12) (5,13) (4,14) (3,15) (2,16) (1,17)
QR-DQN 12293 11381 11827 12108 10041 11419 9696 11619

DLTV 9997 9172 9646 9251 7941 6964 7896 7257
p-DLTV 14344 14497 13769 15507 14469 14034 14068 13404

PQR 14546 15018 14693 15142 15361 13859 14602 14354

Table 2: Total counts of performing true optimal action with 4 seeds.

To explore the effect of intrinsic uncertainty, we run multiple experiments with various reward515

settings for the rightmost state as keeping their mean at 9. As the distance between two Gaussians516

was increased, the performance of DLTV decrease gradually, while other algorithms show consistent517

results. The result implies the interference of fixedness is proportional to the magnitude of the518

intrinsic uncertainty and the randomized criterion is effective in escaping from the issue.519

D.2 LunarLander-v2520

To verify the effectiveness of the proposed algorithm in the complex environment with high intrinsic521

uncertainty, we conduct the experiment on LunarLander-v2. We have focused on three main factors522

that increase the intrinsic uncertainty from the structural design of LunarLander environment:523

• Random initial force: The lander starts at the top center with an random initial force.524

• Action stochasticity: The noise of engines causes different transitions with same action.525

• Extreme reward system: If the lander crashes, it receives -100 points. If the lander comes526

to rest, it receives +100 points.527

Therefore, several returns with a fixed policy have a high variance. As previously discussed about the528

fixedness from N-Chain environment, we can demonstrate that randomized approaches, PQR and529

p-DLTV, outperform other baselines in LunarLander-v2.530

D.3 Atari games531

We test our algorithm under 30 no-op settings to align with previous works. We compare our baseline532

results with results from the DQN Zoo framework [22], which provides the full benchmark results on533

55 Atari games at 50M and 200M frames. We report the average of the best scores over 5 seeds for534

each baseline algorithms up to 50M frames.535

However, recent studies tried to follow the setting proposed by Machado et al. [16] for reproducibility,536

where they recommended using sticky actions. Hence, we provide all human normalized scores537
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results across 55 Atari games for 50M frames including previous report of Dopamine and DQN Zoo538

framework to help the follow-up researchers as a reference. We exclude Defender and Surround539

which is not reported on Yang et al. [30] because of relialbility issues in the Dopamine framework. In540

summary,541

• DQN Zoo framework corresponds to 30 no-op settings (version v4).542

• Dopamine framework corresponds to sticky actions protocol (version v0).543

For the expected concerns about the comparison with DLTV, we address some technical issues to544

correct misconceptions of their performance. Before we reproduce the empirical results of DLTV,545

Mavrin et al. [17] did not report each raw scores of Atari games, but only the relative performance546

with cumulative rewards comparing with QR-DQN. While DLTV was reported to have a cumulative547

reward 4.8 times greater than QR-DQN, such gain mainly comes from VENTURE which is evaluated548

as 22,700% from their metric (i.e., 463% performance gain solely). From their training curves,549

however, the approximate raw score of VENTURE was 900 which is lower than our score of 993.3.550

So, the report with cumulative rewards causes a misconception that can be overestimated where the551

human-normalized score is commonly used for evaluation metrics. Due to the absence of public552

results, DLTV were inevitably excluded from the comparison with human-normalized score for553

reliability.554

Mean Median
DQN-dopamine(50M) 401% 51%
DQN-zoo(50M) 314% 55%

QR-DQN-dopamine(50M) 562% 93%
QR-DQN-zoo(50M) 559% 118%

IQN*-dopamine(50M) 940% 124%
IQN-zoo(50M) 902% 131%

RAINBOW-dopamine(50M) 965% 123%
RAINBOW-zoo(50M) 1160% 154%
PQR(50M) 1121% 124%

Table 3: Mean and median of best scores across 55 Atari games on 50M frames, measured as
percentages of human baseline [2, 22, 30]. IQN* implemented in Dopamine framework is the
improved version of original IQN by applying n-step updates with n = 3. Figure 5 also uses the
data from IQN*.

Table 3 provides the mean and median human normalized scores across 55 Atari games. Due to the555

high computational cost, our algorithm was evaluated on 50M frames to provide results over as many556

environments as possible. It is observed that PQR shows better performance in terms of both mean557

and median metrics than QR-DQN. Since our method is based on QR-DQN, we expect that PDBOO558

can be combined with IQN [9] or techniques in Rainbow [14] as an efficient exploration method, and559

the performance can be further improved.560

18



GAMES RANDOM HUMAN DQN(50M) QR-DQN(50M) IQN(50M) RAINBOW(50M) PQR(50M)
Alien 227.8 7127.7 1541.5 1645.7 1769.2 4356.9 2455.8
Amidar 5.8 1719.5 324.2 683.4 799.2 2549.2 938.4
Assault 222.4 742.0 2387.8 11684.2 15152.4 9737.0 10759.2
Asterix 210.0 8503.3 5249.5 18373.4 32598.2 33378.6 10490.5
Asteroids 719.1 47388.7 1106.3 1503.9 1972.6 1825.4 1662.0
Atlantis 12850.0 29028.1 283392.2 937275.0 865360.0 941740.0 897640.0
BankHeist 14.2 753.1 389.0 1223.9 1266.8 1081.7 1038.8
BattleZone 2360.0 37187.5 19092.4 26325.0 30253.9 35467.1 28470.5
BeamRider 363.9 16926.5 7133.1 12912.0 19251.4 15421.9 10224.9
Berzerk 123.7 2630.4 577.4 826.5 918.9 2061.6 *137873.1
Bowling 23.1 160.7 34.4 45.4 41.5 54.7 *86.9
Boxing 0.1 12.1 87.2 99.6 99.2 99.8 97.1
Breakout 1.7 30.5 316.8 426.5 468.0 335.3 380.3
Centipede 2090.9 12017.0 4935.7 7124.0 7008.3 5691.4 *7291.2
ChopperCommand 811.0 7387.8 974.2 1187.8 1549.0 5525.1 1300.0
CrazyClimber 10780.5 35829.4 96939.0 93499.1 127156.5 160757.7 84390.9
DemonAttack 152.1 1971.0 8325.6 106401.8 110773.1 85776.5 73794.0
DoubleDunk -18.6 -16.4 -15.7 -10.5 -12.1 -0.3 -7.5
Enduro 0.0 860.5 750.6 2105.7 2280.6 2318.3 *2341.2
FishingDerby -91.7 -38.7 8.2 25.7 23.4 35.5 31.7
Freeway 0.0 29.6 24.4 33.3 33.7 34.0 34.0
Frostbite 65.2 4334.7 408.2 3859.2 5650.8 9672.6 4148.2
Gopher 257.6 2412.5 3439.4 6561.9 26768.9 32081.3 *47054.5
Gravitar 173.0 3351.4 180.9 548.1 470.2 2236.8 635.8
Hero 1027.0 30826.4 9948.3 9909.8 12491.1 38017.9 12579.2
IceHockey -11.2 0.9 -11.4 -2.1 -4.2 1.9 -1.4
Jamesbond 29.0 302.8 486.4 1163.8 1058.0 14415.5 2121.8
Kangaroo 52.0 3035.0 6720.7 14558.2 14256.0 14383.6 *14617.1
Krull 1598.0 2665.5 7130.5 9612.5 9616.7 8328.5 *9746.1
KungFuMaster 258.5 22736.3 21330.9 27764.3 39450.1 30506.9 *43258.6
MontezumaRevenge 0.0 4753.3 0.3 0.0 0.2 80.0 0.0
MsPacman 307.3 6951.6 2362.9 2877.5 2737.4 3703.4 2928.9
NameThisGame 2292.3 8049.0 6328.0 11843.3 11582.2 11341.5 10298.2
Phoenix 761.4 7242.6 10153.6 35128.6 29138.9 49138.8 20453.8
Pitfall -229.4 6463.7 -9.5 0.0 0.0 0.0 0.0
Pong -20.7 14.6 18.7 20.9 20.9 21.0 21.0
PrivateEye 24.9 69571.3 266.6 100.0 100.0 160.0 *372.4
Qbert 163.9 13455.0 5567.9 12808.4 15101.8 24484.9 15267.4
Riverraid 1338.5 17118.0 6782.8 9721.9 13555.9 17522.9 11175.3
RoadRunner 11.5 7845.0 29137.5 54276.3 53850.9 52222.6 50854.7
Robotank 2.2 11.9 31.4 54.5 53.8 64.5 60.3
Seaquest 68.4 42054.7 2525.8 7608.2 17085.6 3048.9 *19652.5
Skiing -17098.1 -4336.9 -13930.8 -14589.7 -19191.1 -15232.3 *-9299.3
Solaris 1236.3 12326.7 2031.5 1857.3 1301.5 2522.6 *2640.0
SpaceInvaders 148.0 1668.7 1179.1 1753.2 2906.7 2715.3 1749.4
StarGunner 664.0 10250.0 24532.5 63717.3 78503.4 107177.8 62920.6
Tennis -23.8 -8.3 -0.9 0.0 0.0 0.0 -1.0
TimePilot 3568.0 5229.2 2091.8 6266.8 6379.1 12082.1 6506.4
Tutankham 11.4 167.6 138.7 210.2 204.4 194.3 *231.3
UpNDown 533.4 11693.2 6724.5 27311.3 35797.6 65174.2 36008.1
Venture 0.0 1187.5 53.3 12.5 17.4 1.1 *993.3
VideoPinball 16256.9 17667.9 140528.4 104405.8 341767.5 465636.5 465578.3
WizardOfWor 563.5 4756.5 3459.9 14370.2 10612.1 12056.1 6132.8
YarsRevenge 3092.9 54576.9 16433.7 21641.4 21645.0 67893.3 27674.4
Zaxxon 32.5 9173.3 3244.9 9172.1 8205.2 22045.8 10806.6

Table 4: Raw scores across all 55 games, starting with 30 no-op actions. We report the best scores
for DQN, QR-DQN, IQN and Rainbow on 50M frames, averaged by 5 seeds. Reference values
were provided by DQN Zoo framework [22]. Bold are wins against DQN, QR-DQN and IQN, and
*asterisk are wins over Rainbow.
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GAMES RANDOM HUMAN DQN(50M) QR-DQN(50M) IQN*(50M) RAINBOW(50M) PQR(50M)
Alien 227.8 7127.7 1688.1 2754.2 4016.3 2076.2 3173.9
Amidar 5.8 1719.5 888.2 841.6 1642.8 1669.6 *2814.7
Assault 222.4 742 1615.9 2233.1 4305.6 2535.9 *8456.5
Asteroids 719.1 47388.7 828.2 1333.4 1336.3 1345.1 904.6
BankHeist 14.2 753.1 720.2 964.1 1082.8 1104.9 501.1
BattleZone 2360.0 37187.5 15110.3 25845.6 29959.7 32862.1 *61494.4
BeamRider 343.9 16926.5 4771.3 7143.0 7113.7 6331.9 *12217.6
Berzerk 123.7 2630.4 529.2 603.2 627.3 697.8 *2707.2
Bowling 23.1 160.7 38.5 55.3 33.6 55.0 *174.1
Boxing 0.1 12.1 80.0 96.6 97.8 96.3 96.7
Breakout 1.7 30.5 113.5 40.7 164.4 69.8 41.7
Centipede 2090.9 12017.0 3403.7 3562.5 3746.1 5087.6 *31079.8
ChopperCommand 811 7387.8 1615.3 1600.3 6654.1 5982.0 4480.8
DemonAttack 152.1 1971.0 4396.7 3182.6 7715.5 6346.4 *19530.2
DoubleDunk -18.6 -16.4 -16.7 7.4 20.2 17.4 1.1
Enduro 0 860.5 799.5 2062.5 766.5 2255.6 2341.2
FishingDerby -91.7 -38.7 12.3 48.4 41.9 37.6 31.4
Freeway 0 29.6 25.8 33.5 33.5 33.2 32.8
Frostbite 65.2 4334.7 760.2 8022.8 7824.9 5697.2 *8401.5
Gopher 257.6 2412.5 3495.8 3917.1 11192.6 7102.1 *12252.9
Gravitar 173.0 3351.4 250.7 821.3 1083.5 926.2 703.5
Qbert 163.9 13455.0 8216.2 17228.0 15045.5 17121.4 15806.9
Robotank 2.2 11.9 25.8 53.6 65.9 63.6 48.7
Seaquest 68.4 42054.7 1585.9 4667.9 20081.3 3916.2 4791.5
Skiing -17098.1 -4336.9 -17038.2 -14401.6 -13755.6 -17960.1 *-9021.2
Solaris 1236.3 12326.7 2029.5 2361.7 2234.5 2922.2 *7145.3
SpaceInvaders 148.0 1668.7 1361.1 940.2 3115.0 1908.0 1602.4
Tennis -23.8 -9.3 -0.1 19.2 3.5 0.0 *15.4
TimePilot 3568.0 5229.2 3200.9 6622.8 9820.6 9324.4 5304.1
Tutankham 11.4 167.6 138.8 209.9 250.4 252.2 145.4
UpNDown 533.4 11693.2 10405.6 29890.1 44327.6 18790.7 32155.5
Venture 0 1187.5 50.8 1099.6 1134.5 1488.9 1000.0
YarsRevenge 3092.9 54576.9 20375.7 66055.9 57960.3 31864.4 *67545.8
Zaxxon 32.5 9173.3 1928.6 8177.2 12048.6 14117.5 7010.3

Table 5: Raw scores across 34 games. We report the best scores for DQN, QR-DQN, IQN*, and
Rainbow on 50M frames, averaged by 5 seeds. Reference values were provided by Dopamine
framework [2]. Bolds are wins against DQN, QR-DQN, and *asterisk are wins over IQN* and
Rainbow. Note that IQN* and Rainbow implemented in Dopamine framework applied n-step
updates with n = 3 which improves performance.
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