
A Appendix

A.1 Theorems: Preliminaries

A.1.1 Transforming non-autonomous into autonomous discrete-time DS

Following [97], and based on similar reasoning as for continuous time (ODE-based) DS [3, 71], let
us consider the non-autonomous discrete-time DS

xt+1 = F (xt, t), x 2 Rn
. (18)

Defining zt = (xt, t)T and G(zt) = (F (xt, t), t + 1)T , system (18) can be rewritten as the
autonomous system

zt+1 = G(zt), z 2 Rn+1
. (19)

Hence, in all our theoretical treatment we can confine our attention to systems of the form (19).

A.1.2 RNN derivatives

Considering the loss function L =
P

T

t=1 Lt of an RNN F✓ 2 R parameterized by ✓, we have

@L

@✓
=

TX

t=1

@Lt

@✓
, (20)

where
@Lt

@✓
=

@Lt

@zt

@zt

@✓
. (21)

The tangent vector @zT
@✓

has the form

@zT

@✓
=

@
+
zT

@✓
+

T�2X

t=1

✓ t�1Y

r=0

JT�r

◆
@
+
zT�t

@✓
, (22)

where @
+ denotes the immediate partial derivative. Since for an RNN F✓ 2 R the activation function

is element-wise, with ✓ the m-th element of a parameter vector ✓ (or belonging to the m-th row of a
parameter matrix ✓), we have

@
+
zT

@✓
=
⇣
0 · · · 0 @

+
zm,T

@✓
0 · · · 0

⌘T
. (23)

For instance, let ✓ = W be a weight matrix, then

@L
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=

0

BBBBB@

@L

@w11
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· · ·
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@wM1
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· · ·

@L
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1

CCCCCA
. (24)

In this case, for the standard RNN we have
@
+
zT

@wmk

= (0 · · · 0 zk,T�1 ⇠mk(zT�1) 0 · · · 0)
T

= 1(m,k) ⇠mk(zT�1) zT�1, (25)

where ⇠mk(zT�1) = f
0
wm,k

�P
M

j=1 wmj zj,T�1 +
P

M

j=1 bmj sj,T + hm

�
, and f

0
wm,k

stands for
the derivative of f with respect to wm,k.

Therefore, for standard RNNs, (22) becomes

@zT

@wmk

= 1(m,k) ⇠mk(zT�1) zT�1 +
T�2X

t=1

✓ t�1Y

r=0

JT�r

◆
1(m,k) ⇠mk(zT�t�1) zT�t�1. (26)

17



A.1.3 Piecewise-linear RNN (PLRNN)

The PLRNN has the generic form [50, 80]
zt = F (zt�1) = Azt�1 + W�(zt�1) + Cst + h+ "t, (27)

where �(zt�1) = max(zt�1, 0) is the element-wise rectified linear unit (ReLU) function, zt 2 RM

is the neural state vector, A 2 RM⇥M is a diagonal matrix of auto-regression weights, W 2 RM⇥M

is a matrix of connection weights, h 2 RM is the bias vector, st 2 RK the external input weighted
by C 2 RM⇥K , and "t ⇠ N (0,⌃) a Gaussian noise term with diagonal covariance matrix ⌃.

Equation (27) can be rewritten as
zt = (A+WD⌦(t�1))zt�1 + Cst + h+ "t =: W⌦(t�1) zt�1 + Cst + h+ "t, (28)

where D⌦(t) := diag(d⌦(t)) is a diagonal matrix with d⌦(t) := (d1, d2, · · · , dM ) an indicator vector
such that dm(zm,t) =: dm = 1 whenever zm,t > 0, and zeros otherwise.

For the PLRNN (28) we have

Jt =
@zt

@zt�1
= W⌦(t�1), (29)

and
��W⌦(t�1)

��  kAk + kW k.

Furthermore, the derivatives (22) for the PLRNN (28) are

@zT

@wmk

= 1(m,k)D⌦(T�1) zT�1 +
T�1X

j=2

✓ j�1Y

i=1

W⌦(T�i)

◆
1(m,k)D⌦(T�j) zT�j . (30)

A.1.4 Long Short-Term Memory (LSTM)

The LSTM is defined by the equations
it = �

�
Wiist + Whiht�1 + bi

�

ft = �
�
Wifst + Whfht�1 + bf

�

gt = tanh
�
Wigst + Whght�1 + bg

�

ot = �
�
Wiost + Whoht�1 + bo

�

ct = ft � ct�1 + it � gt

ht = ot � tanh (ct) (31)
where {st} is the input sequence, W denotes weight matrices, b bias terms, it,ft, gt,ot demonstrate
the input, forget, cell, and output gates, ht and ct are the hidden and cell states at time t respectively,
� is the sigmoid activation function, and � represents the element-wise (Hadamard) product (see [29,
35, 90] for further information on LSTMs).

Defining zt := (ht, ct)T, the LSTM (31) can be represented as the first-order recursive map

zt = F✓(zt�1) =

✓
ot � tanh (ft � ct�1 + it � gt)

ft � ct�1 + it � gt

◆
. (32)

The term @Lt
@✓

in (20) for some LSTM parameter ✓ can be written as

@Lt

@✓
=

tX

r=1

@Lt

@ht

@ht

@zt

@zt

@zr

@zr

@✓
. (33)
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A necessary condition for LSTMs to have a chaotic orbit is given by:

Proposition 1. Let the LSTM given by (31) have a chaotic attractor �⇤
with B�⇤ as its basin of

attraction. Then for every z1 = (h1, c1)T 2 B�⇤

� := lim
T!1

T

vuuut

������

0

@
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@h1

@hT
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1
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������
> 1. (34)

Proof. The Jacobian matrix of (32) for t > 1 can be written in the block form
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= Jt =

0

@
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@ht�1
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@ct
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1

A . (35)

Further, due to the chain rule, we have
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1
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1

A , (36)

and by induction we obtain

@zt

@z1
= Jt Jt�1 Jt�2 · · · J2 =

0

@
@ht
@h1

@ht
@c1

@ct
@h1

@ct
@c1

1

A . (37)

Now assume that (32) has a chaotic orbit given by
�⇤ = {z

⇤

1 , z
⇤

2 , · · · , z
⇤

T
, · · · }. (38)

According to (37), the largest Lyapunov exponent of �⇤ is given by

��⇤ = lim
T!1

1

T
ln
��J⇤

T
J
⇤

T�1 · · · J
⇤

2

�� = lim
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1

T
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������
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@h⇤
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1
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1

@c⇤
T

@h⇤
1
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T
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1
,

1

A

������
.

Since �⇤ is chaotic, so ��⇤ > 0, which gives

lim
T!1

T

vuuut

������

0
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@h⇤

T
@h⇤

1

@h⇤
T
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1
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T
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1

A
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> 1. (39)

Based on Oseledec’s multiplicative ergodic Theorem, (39) holds for every z1 2 B�⇤ . This completes
the proof.

A.1.5 Gated Recurrent Unit (GRU)

A GRU network is defined by the equations

zt = �
�
Wz st + Uzht�1 + bz

�

rt = �
�
Wr st + Urht�1 + br

�

ht = (1 � zt) � tanh
�
Wh st + Uh(rt � ht�1) + bh

�
+ zt � ht�1, (40)

where rt represents the reset gate, zt the update gate, st and ht denote the inputs and the hidden state
respectively, Wz,Wr,Wh 2 RM⇥N and Uz,Ur,Uh 2 RM⇥M are weight matrices, bz, br, bh 2

RM are bias vectors, and � is the element-wise logistic sigmoid function (for more details about
GRUs see [10]).
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A.1.6 Unitary evolution RNN (uRNN)

The uRNN, proposed in [4], is defined as the nonlinear DS

zt = �b

�
Wzt�1 + V st

�
, (41)

for which W 2 U(M) is an unitary matrix, V 2 CM⇥N , b 2 RM is the bias parameter, st is the
real- or complex-valued input of dimension N , and

[�b(z)]i = [�modReLU(z)]i =

(�
|zi| + bi

�
zi
|zi|

if |zi| + bi � 0

0 if |zi| + bi < 0
. (42)

Proposition 2. The uRNN given by (41) cannot have any chaotic orbit.

Proof. For any arbitrary orbit Oz1 of (41) we have

kJT JT�1 · · · J2k =

�����

T�2Y

k=0

DT�k W
T

����� , (43)

where Dt = diag

⇣
�
0

b

�
Wzt�1 + V st

�⌘
. Since W is unitary and so a norm preserving matrix, it

is concluded that
�����

T�2Y

k=0

DT�k W
T

����� 

T�2Y

k=0

��DT�k W
T
�� =

T�2Y

k=0

kDT�kk = 1, (44)

which implies

�max = lim
T!1

1

T
ln kJT JT�1 · · · J2k  0. (45)

This rules out the existence of chaos (since �max > 0 is a necessary condition for Oz1 to be
chaotic).

Note that, more generally, any RNN which is constrained such as to exhibit global convergence
to a fixed point or cycle, by definition must have a maximum Lyapunov exponent �max  0 (in
accordance with Theorem 1), hence cannot exhibit chaotic behavior by definition.

A.2 Theorems: Proofs

A.2.1 Proof of theorem 1, parts (ii) & (iii)

Proof. (ii) If J is the Jordan normal form of
Q

k�1
s=0 Jt⇤k�s , then

Q
k�1
s=0 Jt⇤k�s = P J P

�1, where

J =

0

BBBB@

Jm1(�1) 0 0 · · · 0
0 Jm2(�2) 0 · · · 0
... . . .

. . . . . .
...

0 . . . 0 Jmp�1(�p�1) 0
0 . . . . . . 0 Jmp(�p)

1

CCCCA
, (46)

and mi is the algebraic multiplicity of each eigenvalue �i. Since ⇢
�Q

k�1
s=0 Jt⇤k�s

�
< 1, so the

eigenvalue �i associated with each Jordan block satisfies |�i| < 1 (i = 1, · · · , p). Moreover, every
mi ⇥ mi Jordan block has the form

Jmi(�i) =

0

BBBB@

�i 1 0 · · · 0
0 �i 1 · · · 0
...

...
. . . . . .

...
0 0 . . . �i 1
0 0 . . . 0 �i

1

CCCCA
. (47)
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Accordingly
�����
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◆j
����� =

��P J
j
P
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��J j
�� , (48)

in which p = kP k
��P�1

��. Furthermore, for j 2 N, J j is a block diagonal matrix of the form

J
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0 . . . . . . 0 J
j

mp
(�p)

1
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in which every mi ⇥ mi Jordan block has the form
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j
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�
�
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i
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j
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. (50)

In addition, for every block J
j

mi
(�i), we have

��J j
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(�i)

�� 
p
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��J j
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(�i)

��
1

=
p
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miX

q=1

���
�
J

j
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(�i)

�
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���

=
p
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q=1

✓
j

q � 1

◆
|�i|

j�q+1 = |�i|
j
p
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✓
|�i|

1�mi

miX

q=1

✓
j

q � 1

◆
|�i|
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◆

 |�i|
j
j
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p
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✓
|�i|
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miX

q=1

|�i|
mi�q

◆
=: |�i|

j
j
mi N�i . (51)

Moreover, for any 1 < r̃i <
1

|�i|
, there exists some li such that j

mi < r̃
j

i
for j � li. This means for

j � li

��J j

mi
(�i)

��  N�i |r̃i �i|
j
, (52)

such that |r̃i �i| = r̃i|�i| < 1.

Besides, for J j = J
j

m1
(�1) � J

j

m2
(�2) � · · · � J

j

mp
(�p)

��J j
�� = max

1ip

��J j

mi
(�i)

�� =:
��J j

m
(�)
�� . (53)

Hence, from (48), (52) and (53), it is deduced that for j � l

�����

⇣ k�1Y

s=0

Jt⇤k�s

⌘j
�����  p N� |r̃ �|

j =: p̄ r
j
, (54)

in which r = |r̃ �| < 1.
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Furthermore, let for �k

max
T�1

n
kJ

⇤

T
k

o
= max

0sk�1

n
kJt⇤k�sk

o
= m̄,

max
T�1

n����
@
+
zT

@✓

����
o

= max
0sk�1

n����
@
+
zt⇤k�s

@✓

����
o

= ⇠,

max
T�1

n
kzT k

o
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0sk�1

n
kzt⇤k�sk

o
= q̄. (55)

Hence, defining z0 = 0, for this k-cycle
����

@zT

@✓

���� =

�����
@
+
zT

@✓
+

T�2X

t=1

✓ t�1Y

r=0

J
⇤

T�r
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+
zT�t

@✓

�����

=

�����
@
+
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@✓
+

T�1X

t=1

✓ t�1Y

r=0

J
⇤

T�r

◆
@
+
zT�t

@✓

�����

 q̄ ⇠

✓
1 +

T�1X

t=1

�����

t�1Y

r=0

J
⇤

T�r

�����

◆
. (56)

On the other hand, for T = kj , from (54) and (55) we have

T�1X

t=1

�����

t�1Y

r=0

J
⇤

T�r

����� =
kj�1X

t=1

�����
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r=0

J
⇤

kj�r

����� =
k�1X

t=1

�����

t�1Y

r=0

J
⇤
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����� +
2k�1X

t=k

�����
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r=0

J
⇤
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�����

+
3k�1X

t=2k

�����

t�1Y

r=0

J
⇤

kj�r

�����+ · · · +

(j�1)k�1X

t=(j�2)k

�����

t�1Y

r=0

J
⇤

kj�r

�����+
kj�1X

t=(j�1)k

�����

t�1Y

r=0

J
⇤

kj�r

�����

=
k�1X

t=1

�����

t�1Y

r=0

J
⇤

kj�r

����� +
jX

i=2

ik�1X

t=(i�1)k

�����

t�1Y

r=0

J
⇤

kj�r

�����


�
m̄ + m̄

2 + · · · + m̄
k�1
�
+

jX

i=2

p̄
�
1 + m̄ + m̄

2 + · · · + m̄
k�1
�
r
i�1

.

(57)

Thus, considering
�
m̄ + m̄

2 + · · · + m̄
k�1
�
= M, it is deduced that

lim
T!1

����
@zT

@✓

���� = lim
j!1

����
@zkj

@✓

����  q̄ ⇠
�
1 + M +

p̄ r(1 + M)

1 � r

�
= M̄ < 1, (58)

which, by (21), implies @LT
@✓

will be bounded for T ! 1.

(iii) Consider the PLRNN given by (27), where for simplicity we ignore the external inputs and
noise terms. Let {zt1 , zt2 , zt3 , . . .} be an orbit which converges to �k. Hence

lim
n!1

d(ztn ,�k) = 0, (59)

which implies there exists a neighborhood U of �k and k sub-sequences {ztkm}
1
m=1, {ztkm+1}

1
m=1,

· · · , {ztkm+(k�1)
}
1
m=1 of the sequence {ztn}

1
n=1 such that all these sub-sequences belong to U and

a) ztkm+s = F
k(ztk(m�1)+s

), s = 0, 1, 2, · · · , k � 1,
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b) lim
m!1

ztkm+s = zt⇤k�s, s = 0, 1, 2, · · · , k � 1,

c) for every ztn 2 U there is some s 2 {0, 1, 2, · · · , k � 1} such that ztn 2 {ztkm+s}
1
m=1.

In this case, for every ztn 2 U with ztn 2 {ztkm+s}
1
m=1 , there exists some ñ 2 N such that

ztn = ztkñ+s and lim
ñ!1

ztkñ+s = zt⇤k�s . Therefore, continuity of F results in

lim
ñ!1

F (ztkñ+s) = F (zt⇤k�s), (60)

and so by (28)

lim
ñ!1

�
W⌦(tkñ+s) ztkñ+s + h

�
= W⌦(t⇤k�s) zt⇤k�s + h, (61)

which implies

lim
ñ!1

W⌦(tkñ+s) ztkñ+s = W⌦(t⇤k�s) zt⇤k�s. (62)

Assuming lim
ñ!1

W⌦(tkñ+s) = L, since (62) holds for every zt⇤k�s, substituting zt⇤k�s = e
T
1 =

(1, 0, · · · , 0)T in (62), we can prove that the first column of L equals the first column of W⌦(t⇤k�s).
Performing the same procedure for zt⇤k�s = e

T
i
, i = 2, 3, · · · , M , yields

lim
ñ!1

W⌦(tkñ+s) = W⌦(t⇤k�s). (63)

According to (59), U contains an infinite number of terms of the sequence {ztn}
1
n=1, i.e.

9N 2 N s.t. n � N =) ztn 2 U. (64)

Suppose that ztn 2 U for some n � N . Thus, there exists some s 2 {0, 1, 2, · · · , k � 1} such that
ztn 2 {ztkm+s}

1
m=1. Without loss of generality let s = 0. Hence, there is some ñ 2 N such that

ztn = ztkñ and lim
ñ!1

ztkñ = zt⇤k . In this case, moving forward in time gives

ztn = ztkñ

�
ztn 2 {ztkm}

1

m=1

�
, lim

ñ!1

ztkñ = zt⇤k ,

ztn+1 = ztkñ+1

�
ztn+1 2 {ztkm+1}

1

m=1

�
, lim

ñ!1

ztkñ+1 = zt⇤k�1,

ztn+2 = ztkñ+2

�
ztn+2 2 {ztkm+2}

1

m=1

�
, lim

ñ!1

ztkñ+2 = zt⇤k�2,

...
ztn+k�1 = ztkñ+k�1

�
ztn+(k�1)

2 {ztkm+k�1}
1

m=1

�
, lim

ñ!1

ztkñ+k�1 = zt⇤k�(k�1),

ztn+k = ztk(ñ+1)

�
ztn+k 2 {ztkm}

1

m=1

�
, lim

ñ!1

ztk(ñ+1)
= zt⇤k ,

ztn+k+1 = ztk(ñ+1)+1

�
ztn+k+1 2 {ztkm+1}

1

m=1

�
, lim

ñ!1

ztk(ñ+1)+1
= zt⇤k�1,

...
ztn+2k�1 = ztk(ñ+1)+k�1

�
ztn+2k�1 2 {ztkm+k�1}

1

m=1

�
, lim

ñ!1

ztk(ñ+1)+k�1
= zt⇤k�(k�1),

ztn+2k = ztk(ñ+2)

�
ztn+2k 2 {ztkm}

1

m=1

�
, lim

ñ!1

ztk(ñ+2)
= zt⇤k ,

... (65)
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Consequently, for n � N and j 2 N, we can write
kj�1Y

i=0

W⌦(tn+kj�1�i)

=
⇣ kY

i=1

W⌦(tk(ñ+j)+k�i)

⌘⇣ kY

i=1

W⌦(tk(ñ+j�1)+k�i)

⌘
· · ·

⇣ kY

i=1

W⌦(tk(ñ)+k�i)

⌘

=
jY

l=0

kY

i=1

W⌦(tk(ñ+j�l)+k�i). (66)

On the other hand, in equation (28), there are different configurations for matrix D⌦(t�1) and hence
different forms for matrix W⌦(tkñ+s) . In this case, the phase space of the system is divided into
different sub-regions by some borders; see [63, 64] for more details. Also, since the system (28) is a
linear map in each sub-region, the k periodic points of �k must belong to different sub-regions (at
least two different sub-regions). Accordingly, based on (63) and (65), there exists some Ñ 2 N
such that for every ñ � Ñ both ztkñ+s and zt⇤k�s belong to the same sub-region and so the matrices
W⌦(tkñ+s) and W⌦(t⇤k�s) (s 2 {0, 1, 2, · · · , k � 1}) are identical. Hence, for n � N , ñ � Ñ and
j 2 N, equation (66) becomes

kj�1Y

i=0

W⌦(tn+kj�1�i) =
jY

l=0

kY

i=1

W⌦(tk(ñ+j�l)+k�i) =

✓ k�1Y

s=0

W⌦(t⇤k�s)

◆j

. (67)

Therefore, similar to the part (ii), we can prove for every z1 2 B�k , @zT
@✓

and @LT
@✓

will also remain
bounded.

A.2.2 Proof of theorem 2, part (ii)

Proof. (ii) Let for every T > 2

LT := J
⇤

T
J
⇤

T�1 · · · J
⇤

2 . (68)

{LT }T2N, T>2 is a sequence of matrices LT =
⇥
l
(T )
ij

⇤
1i,jM

and, due to (13),

limT!1 kLT k = 1. Hence, there is at least one sub-sequence {l
(Tn)
mk

}Tn2N, Tn>2 (for
some m, k 2 {1, 2, · · · , M}) such that limTn!1 l

(Tn)
mk

= 1.

On the other hand

@z
⇤

T

@✓
=

@
+
z
⇤

T

@✓
+

T�2X

t=1

✓ t�1Y

r=0

J
⇤

T�r

◆
@
+
z
⇤

T�t

@✓
. (69)

Moreover, there exists some N > 2 such that (for t = T � N + 1)
@
+
z
⇤

N�1

@✓
6= 0. (70)

For ✓ as the k-th element of a parameter vector ✓ (or belonging to the k-th row of a parameter matrix
✓), the term

✓ T�NY

r=0

J
⇤

T�r

◆
@
+
z
⇤

N�1

@✓
(71)

is a vector in which the i-th element is l
(T )
ik

@
+z⇤

k,N�1

@✓
.

Since limTn!1 l
(Tn)
mk

= 1, due to (70) limTn!1 l
(Tn)
mk

@
+z⇤

k,N�1

@✓
= 1, which implies @z⇤

T
@✓

will
diverge as T ! 1. Similarly, by (21), we can prove @L

⇤
T

@✓
is divergent for T ! 1.

By Oseledec’s multiplicative ergodic Theorem, the results also hold for every z1 2 B�⇤ .
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A.2.3 Proof of theorem 3

Proof. Let � = {z1, z2, . . . zT , · · · } be a quasi-periodic attractor. Then, the largest Lyapunov
exponent of � is

� = lim
T!1

1

T
ln kJT JT�1 · · · J2k = lim

T!1

1

T
ln

����
@zT

@z1

���� = 0. (72)

We prove for every 0 < ✏ < 1

lim
T!1

(1 � ✏)T�1
< lim

T!1

����
@zT

@z1

���� < lim
T!1

(1 + ✏)T�1
. (73)

For this purpose, we show 8 0 < ✏ < 1

(I) limT!1(1 � ✏)T�1
< limT!1

���@zT
@z1

���, and

(II) limT!1

���@zT
@z1

��� < limT!1(1 + ✏)T�1.

Assume for the sake of contradiction that (I) does not hold. Then there exists some 0 < ✏ < 1 such
that

lim
T!1

(1 � ✏)T�1
� lim

T!1

����
@zT

@z1

���� . (74)

Therefore

9 T0 > 1 s.t. 8 T � T0 =) (1 � ✏)T�1
�

����
@zT

@z1

���� , (75)

and so

9 T0 > 1 s.t. 8 T � T0 =)
ln(1 � ✏)T�1

T � 1
�

ln
���@zT

@z1

���
T � 1

. (76)

Consequently, due to (72), for T ! 1 we have ln(1 � ✏) � 0. This implies ✏  0, which is a
contradiction.

Similarly if we assume (II) is not true, then there exists some 0 < ✏ < 1 such that

lim
T!1

����
@zT

@z1

���� � lim
T!1

(1 + ✏)T�1
. (77)

Thereby

9 T0 > 1 s.t. 8 T � T0 =)

����
@zT

@z1

���� � (1 + ✏)T�1
, (78)

and thus

9 T0 > 1 s.t. 8 T � T0 =)

ln
���@zT

@z1

���
T � 1

�
ln(1 + ✏)T�1

T � 1
. (79)

This means ln(1 + ✏)  0 as T ! 1, i.e. ✏  0, which is a contradiction.

Therefore (14) holds for � and also, according to Oseledec’s multiplicative ergodic Theorem, for
every z1 in the basin of attraction of �.

25



A.3 Additional results on relation between dynamics and gradients

A.3.1 Further results and remarks related to Theorem 2

Remark 4. The result of Theorem 2 also holds for unstable orbits {z1, z2, z3, · · · } with positive

largest Lyapunov exponent. Trivially, for such orbits that diverge to infinity (unbounded latent states)

gradients of the loss function will explode as T ! 1.

Remark 5. For RNNs with ReLU activation functions there are finite compartments in the phase

space each with a different functional form. In such a case, to define the largest Lyapunov exponent

of �⇤
, in the proof of Theorem 2 we assume that �⇤

never maps to the points of the borders.

Based on Theorem 2, we can also formulate the necessary conditions for chaos and diverging gradients
in standard RNNs with particular activation functions by considering the norms of their recurrence
matrix, for which the following Corollary provides the basis:
Corollary 1. Let for a standard RNN

��diag
�
f
0
�
Wzt�1 + Bst + h

����  � < 1. (80)

If the RNN is chaotic, then kW k � > 1 .

Proof. Assume for the sake of contradiction that kW k �  1 . From
������

Y

2<tT

W diag
�
f
0
�
Wzt�1 + Bst + h

��
������



Y

2<tT

��W diag
�
f
0
�
Wzt�1 + Bst + h

����

 (kW k �)T�2
, (81)

it is concluded that limT!1

���
Q

2<tT
W diag

�
f
0
�
Wzt�1 + Bst + h

����� < 1 , which con-
tradicts (13). This means kW k � > 1 is a necessary condition for the standard RNN to be
chaotic.

Remark 6. For RNN with the tanh and sigmoid activation functions � = 1 and � = 1
4 , respectively.

Thus, by Corollary 1, the necessary conditions for chaos in these two cases are kW k > 1 and

kW k > 4 , respectively.

A.3.2 Other connections between dynamics and gradients

There is a direct link between the norms of the Jacobians of the RNN along trajectories and the EVGP.
By observing this link, we can formulate some general conditions that will have implications for the
behavior of the gradients regardless of the limiting behavior of the RNN, as collected in the following
theorem:
Theorem 4. Let Oz1 = {z1, z2, . . . zT , · · · } be a sequence (orbit) generated by an RNN F✓ 2 R

parameterized by ✓, and PT := JT � I, T = 2, 3, · · · .

(i) Assume that Oz1 is an orbit for which

���@
+zT
@✓

���  ⇠ 8t. If
P

1

T=2 kJT k < 1, then the

Jacobian
@zT
@z1

, the tangent vector
@zT
@✓

and thus the gradient of the loss function,
@LT
@✓

, will

be bounded for T ! 1.

(ii) If
P

1

T=2 kPT k < 1, then the Jacobian
@zT
@z1

will neither vanish nor explode as T ! 1.

(iii) Let kJT k 6= 0, T � 2, and
P

1

T=2 ln kJT k diverge to �1, then the Jacobian
@zT
@z1

vanishes as T tends to infinity.

Part (i) of Theorem 4 relaxes some of the conditions required in Theorem 1 for bounded gradients
by imposing a Lipschitz condition on the immediate derivatives. Part (ii) generalizes conditions
satisfied, for instance, in orthogonal (unitary) RNNs [4, 32] or fully regularized PLRNNs [80].

Proof. Let k.k be any matrix norm satisfying kA1A2k  kA1k kA2k.
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(i) By boundedness of @
+zT
@✓

we have
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Moreover,
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�
· · ·
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. (83)

Since
P

1

T=2 kJT k converges, according to [94], the infinite products
Q

1

T=2

�
1 + kJT k

�
in (83)

converge to a finite number K̃ 6= 0. Consequently, by (82) and (83)

lim
T!1

����
@zT
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����  K̃ < 1, (84)

which implies @LT
@✓

will be bounded for T ! 1.

Furthermore
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which completes the proof.

(ii) Since
P

1

T=1 kPT k < 1, due to [94] the infinite product

1Y
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�
I + PT

�
=

1Y

T=2

JT := lim
T!1

JT JT�1 · · · J2, (86)

converges to a matrix K 6= O, which implies

0 < lim
T!1

����
@zT

@z1

���� = kKk < 1. (87)

(iii) For kJT k 6= 0, T � 2, we have

0 

����
@zT

@z1

����  kJT k kJT�1k · · · kJ2k

= e
ln kJT k

e
ln kJT�1k · · · e

ln kJ2k = e

PT
t=2 ln kJtk. (88)

Hence if
P

1

T=2 ln kJT k ! �1, then

lim
T!1

@zT

@z1
= O. (89)
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A.4 Empirical evaluation: Datasets

Lorenz attractor The Lorenz system [56] is a simplified model for atmospheric convection, given
by

dx

dt
= �(y � x),

dy

dt
= x(⇢ � z) � y, (90)

dz

dt
= xy � �z.

The system is of particular interest for its chaotic regime and was studied here for � = 16, ⇢ = 45.92
and � = 4. For these parameters the Lorenz system is known to have a maximal Lyapunov exponent
�max = 1.5 [72]. To generate a time series, the ODEs were integrated with a step size �t = 0.01
using scipy.integrate. Accordingly, the prediction time is ⌧pred = ln(2)

�t �max
= 46.2.

Duffing oscillator The Duffing oscillator [15] is an example of a periodically forced oscillator with
nonlinear elasticity

ẍ + �ẋ + �x + ↵x
3 = � cos(!t). (91)

Note that this system is non-autonomous, that is externally forced due to the r.h.s. of eqn. 91. The
following parameters were chosen to arrive at a chaotically forced oscillator: ↵ = 1.0, � = �1.0,
� = 0.1, � = 0.35, and ! = 1.4. For these parameters the Duffing oscillator has a maximum
Lyapunov exponent of �max = 0.0995. The dataset used here was created with the code from [24]
as a three dimensional embedding with step size �t = 0.17. The prediction time is ⌧pred = 39.28.

Rössler system Another prime textbook example for a chaotic system is the Rössler system [76]
given by:

dx

dt
= �y � z,

dy

dt
= x + ay, (92)

dz

dt
= b + z(x � c).

For the parameters a = 0.15, b = 0.2 and c = 10, the maximal Lyapunov exponent is �max = 0.09
[72]. To arrive at a time series, a step size of �t = 0.1 was chosen for integration. This gives us a
prediction time of ⌧pred = 77.0 for this system.

Mackey-Glass equation The Mackey-Glass equation [25] is a nonlinear time delay differential
equation

ẋ = �
x⇢

1 + xn
⇢

� �x with �, �, ⇢ > 0. (93)

Here x⇢ represents the value of the variable x at time t � ⇢ (note that strictly, mathematically, this
makes the system infinite-dimensional). Choosing the parameters to be � = 2, � = 1.0, n = 9.65,
and ⇢ = 2.0, leads to chaotic behavior with a maximum Lyapunov exponent of �max = 0.21. The
dataset was created as a 10-dimensional embedding with the code from [24] using �t = 0.04. This
yields a prediction time of ⌧pred = 82.2.

Empirical temperature time series This time series was recorded at the Weather Station at the
Max Planck Institute for Biogeochemistry in Jena, Germany, spanning the time period between 2009
and 2016, and reassembled by François Chollet for the book Deep Learning with Python. The data
set can be accessed at https://www.kaggle.com/pankrzysiu/weather-archive-jena.
To expose the underlying chaotic dynamics of the time series, trends and yearly cycles were removed,
and nonlinear noise-reduction was performed (using ghkss from TISEAN, see also [43]). Fig. 5 (a)
shows a snippet of the temperature data in comparison with the de-noised time-series. High-frequency
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noise was further reduced through Gaussian kernel smoothing (� = 200), and the resulting time
series was sub-sampled (every 5th data point was retained). Fig. 5 (b) clearly reveals a fractional
dimension of Deff = 2.8 for the de-noised and smoothed time-series. This strongly suggests that
the dynamics governing the time series are chaotic. We created a time delay embedding [42] with
m = 5 (estimated by the false nearest neighbor technique, see [44]) and delay �t = 500 (obtained
as the first minimum of the mutual information). The first three embedding dimensions are shown in
Fig. 5(c). The maximal Lyapunov exponent of this time series was determined with lyap_r from
TISEAN [30] to be �max = 0.016, see Fig. 4(a). This value is in close agreement with the literature
[62]. The predictability time of this system is estimated to be ⌧pred = 43.3.

Figure 5: (a) Snippet of the original temperature data and de-noised time series. (b) Blue lines show the local
slopes of the correlation sums for embedding dimensions m 2 {5, . . . , 10}. The convergence of these estimates
in m reveals a fractional dimension indicated by the plateau. (c) First three dimensions of the time-delay
embedding series as used for training.

All datasets used were standardized (i.e., centered with unit variance) prior to training.

A.5 Empirical evaluation: measures of reconstruction quality

Attractor overlap To asses the geometrical similarity of the chaotic attractor produced by the RNN
to the one underlying the observations, we calculate the Kullback-Leibler divergence of the ground
truth distribution ptrue(x) and the distribution pgen(x|z) generated by RNN simulation. To do so in
practice, we employ a binning approximation (see [50])

Dstsp (ptrue(x), pgen(x | z)) ⇡

KX

k=1

p̂
(k)
true(x) log

 
p̂
(k)
true(x)

p̂
(k)
gen(x | z)

!
,

where K is the total number of bins, and p̂
(k)
true (x) and p̂

(k)
gen (x | z) are estimates obtained as relative

frequencies through sampling trajectories from the observed time-series and the trained RNN,
respectively.

Hellinger distance between power spectra Since in DS reconstruction we mainly aim to cap-
ture invariant and time-independent properties of the underlying system, besides the geometrical
agreement, we compare the similarity in true and RNN-reconstructed power spectra. To do so, we
generate a time series of length 100, 000 from the RNN and calculate its dimension-wise power
spectra S(!) using the fast Fourier transform (scipy.fft). By standardizing all trajectories prior to
Fourier transforming them, we have

R
1

�1
S(!) = 1 due to the Plancherel theorem. This allows us to

compare two power spectra, S(!) and P (!), with the Hellinger distance

H(S(!), P (!)) =

s

1 �

Z
1

�1

p
S(!)P (!) d! 2 [0, 1]. (94)

To reduce the influence of noise we apply Gaussian kernel smoothing. The Hellinger distances
between observed and generated spectra for all dimensions are then averaged to give the reported
overall distance DH .
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A.6 Further empirical evaluations

A.6.1 Reconstruction: Rössler System

�pred 200 500
learning interval �

0

5

10

15
D

st
sp

�pred 200 500
learning interval �

0.0

0.5

1.0

D
H

Figure 6: Overlap in attractor geometry (Dstsp, lower = better) and dimension-wise comparison of power-
spectra (DH , lower = better) against learning interval ⌧ for the Rössler attractor. Continuous lines = sparsely
forced BPTT. Dashed lines = classical BPTT with gradient clipping. Prediction time indicated vertically in
black.

Figure 7: The Rössler attractor (blue) and reconstruction by a LSTM (orange) trained with a learning interval
(a) chosen too small (⌧ = 5), (b) chosen optimally (⌧ = 30), and (c) chosen too large (⌧ = 200).

A.6.2 Reconstruction: High-dimensional Mackey-Glass system
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Figure 8: Overlap in attractor geometry (Dstsp, lower = better) and dimension-wise comparison of power-
spectra (DH , lower = better) against learning interval ⌧ for the 10d Mackey-Glass system. Continuous lines =
sparsely forced BPTT. Prediction time indicated vertically in black.

A.6.3 Reconstruction: Partially observed Lorenz System

For this evaluation we trained models only on the variables {y, z} of the Lorenz system, eqn. 90.
In order to compute the attractor overlap (Dstsp) in the true state space, however, after training the
observation matrix B was recomputed by linearly regressing the first 10 latent states onto the first 10
observations from all three Lorenz variables in eqn. 90.
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Figure 9: Overlap in attractor geometry (Dstsp, lower = better) and dimension-wise comparison of power-
spectra (DH , lower = better) against learning interval ⌧ for the partially observed Lorenz system. Continuous
lines = sparsely forced BPTT. Prediction time indicated vertically in black.

A.6.4 Other initialization procedures: Truncated BPTT with zero resetting or
forward-iterated states

A common procedure in training RNNs is partitioning the time series into chunks of length ⌧ (as
we did based on the Lyapunov spectrum), but then simply resetting the hidden states z1(k) at the
beginning of each chunk (window) k to 0, or forward-iterating them from the previous chunk k � 1,
i.e. z1(k) = F✓(z⌧(k�1)). Formally this would mean that we do not force the trajectory back on track
as in our approach, but instead may either kick it off track (zero resetting) or just let it freely evolve
whilst still truncating the gradients (forward-iterating). To illustrate this, here we trained an LSTM on
chunks (windows) with a length given by the optimal ⌧ (⌧opt = 30 for the Lorenz system), but then
initialized the hidden states to either 0 or to the forward-iterated last state at the beginning of each
window. The performance obtained with zero-resetting is indicated by the dashed line in Fig. 10a
below, while the performance with forward-iterated states is shown in Fig. 10c. As another control,
we also checked dependence on window length (without forcing) in Fig. 10b.
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Figure 10: (a) Overlap in attractor geometry (Dstsp, lower = better) and dimension-wise comparison of
power-spectra (DH , lower = better) against learning interval ⌧ for the Lorenz system. Continuous lines =
sparsely forced BPTT. Dashed-dotted lines = windowing without forcing (choosing windows according to the
optimal prediction time, but resetting hidden states to zero rather than its TF control value). Prediction time
indicated vertically in black. (b) Dependence of geometrical reconstruction quality on window length. Without
forcing, the window length hardly has any bearing on reconstruction quality. (c) Same as (b) but with initial
states of each window k forward-iterated from the previous window’s state, z1(k) = F✓(z⌧(k�1)), instead of
zero resetting.
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A.6.5 Electroencephalogram (EEG) data

We used EEG data recorded by Schalk et al. [79] and provided on PhysioNet [27], from which we
took the baseline recording of the first patient for our analysis. Preprocessing was performed as
outlined above for the temperature time-series, i.e. we applied nonlinear noise-reduction (see Fig.11
(a)) and Gaussian kernel smoothing (� = 5). Fig. 11 (b) indicates a fractional dimension Deff = 2.5
for the de-noised and smoothed times series. We created a time delay embedding with an embedding
dimension of m = 10 and a delay time of �t = 40. The maximal Lyapunov exponent for this time
series was determined to be �max = 0.017, see Fig. 12 (a). With this, we obtain a predictability time
⌧pred = 40.77.

20 30 40

time-steps [s]

�4

�2

0

2

E
E

G
am

pl
it

ud
e

[µ
V

]

raw

de-noised

(a)

2�5 2�2 21

log2 �

0

20

40

D
2(

�,
m

)

D2 = 2.5

(b)

�2
0

2 �2
0

2
�2

0

2

(c)

Figure 11: (a) Snippet of the original EEG data and de-noised time series. (b) Blue lines show the local slopes
of the correlation sums for embedding dimensions m 2 {5, . . . , 15}. The convergence of these estimates in m
reveals a fractional dimension indicated by the plateau. (c) First three dimensions of the time-delay embedding
series as used for training.
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Figure 12: (a) The maximal Lyapunov exponent was determined as the slope of the average log-divergence of
nearest neighbors in embedding space (m = embedding dimension). (b) Reconstruction quality assessed by
attractor overlap (lower = better) and dimension-wise comparison of power-spectra (DH , lower = better). Black
vertical lines = ⌧pred.

A.6.6 Miscellaneous additional results
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Figure 13: Dependence of geometrical reconstruction quality (Dstsp) on the Lorenz system for various clipping
thresholds in classical BPTT. (a) Gradient clipping by constraining the Euclidean norm to c. (b) Gradient
clipping by constraining the max (infinity) norm to c. For comparison, in both graphs the values obtained for
sparse teacher forcing with optimal forcing interval ⌧pred are shown as dashed lines.
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(a) learning interval ⌧ too small (b) learning interval ⌧ optimal (c) learning interval ⌧ too large

Figure 14: Same as Fig. 3 for vanilla RNNs. Although, as this graph confirms, with sparsely forced BPTT
training of vanilla RNNs on chaotic systems becomes feasible, generally they were somewhat harder to train
than the other RNN architectures (likely due to their known problems with long-range dependencies).
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Figure 15: Teacher forcing for LSTM with the learning interval ⌧ drawn uniformly random around the optimal
value (⌧opt = 30) with standard deviation std(⌧) (for std(⌧) > 8.66 the interval becomes asymmetric, however,
due to the lower bound at ⌧ = 1). As std(⌧) is increased, performance generally degrades. A little jittering
around the optimal interval ⌧pred may potentially help, however (as more commonly observed in various machine
learning procedures).

A.7 Sparsely forced BPTT

Loss truncation One implicit consequence of the teacher forcing, eqn. (16), is the interruption of
the hidden-to-hidden connections at these time points. More specifically, if the system is forced at
time t 2 T , then there is no connection between zt and zt+1, that is

Jt+1 =
@zt+1

@zt
=

@RNN(z̃t)

@zt
= 0. (95)

To see how these vanishing Jacobians truncate the loss gradients w.r.t to some parameter ✓, let us
focus on the loss gradients immediately after the forcing,

@Lt+1

@✓
=

@Lt+1

@zt+1

t+1X

k=1

@zt+1

@zk

@
+
zk

@✓

=
@Lt+1

@zt+1
(
@
+
zt+1

@✓
+

tX

k=1

@zt+1

@zk| {z }
=0 , because of (95)

@
+
zk

@✓
)

=
@Lt+1

@zt+1

@
+
zt+1

@✓
. (96)

Eqn. (96) shows that sparsely forced BPTT implicitly truncates the loss gradients because it interrupts
the hidden-to-hidden connection from zt to zt+1 for t 2 T . More generally, defining et := max{t

0
2
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T : t
0
 t}, the overall loss gradients are truncated to

@L

@✓
=

TX

t=1

@Lt

@zt

tX

k=1

@zt

@zk

@
+
zk

@✓

tr.
=

TX

t=1

@Lt

@zt

tX

k=et

@zt

@zk

@
+
zk

@✓
. (97)
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