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SUPPLEMENTARY MATERIALS

A RELATIONSHIP BETWEEN THE DISCRIMINATIVE GAUSSIAN AND LOGISTIC
REGRESSION

We show that a fully connected layer with the softmax function, or logistic regression, can be re-
garded as a discriminative model based on a Gaussian distribution by utilizing transformation of the
equations. Let us consider a case in which the class-conditional probability P(x|c) is a Gaussian
distribution. In this case, we can omit m from the equations (3)—(6).

If all classes share the same covariance matrix and the mixture weight 7,,, the terms 7., in (1),
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This is equivalent to a fully connected layer with the softmax function, or linear logistic regression.

B EVALUATION OF CHARACTERISTICS USING SYNTHETIC DATA

To evaluate the characteristics of the SDGM, we conducted classification experiments using syn-
thetic data. The dataset comprises two classes. The data were sampled from a Gaussian mixture
model with eight components for each class. The numbers of training data and test data were 320
and 1,600, respectively. The scatter plot of this dataset is shown in Figure 6.

In the evaluation, we calculated the error rates for the training data and the test data, the number of
components after training, the number of nonzero weights after training, and the weight reduction
ratio (the ratio of the number of the nonzero weights to the number of initial weights), by varying
the number of initial components as 2,4,8,...,20. We repeated evaluation for five times while
regenerating the training and test data and calculated the average value for each evaluation criterion.
We used the dual form of the SDGM in this experiment.

Figure 6 displays the changes in the learned class boundaries according to the number of initial
components. When the number of components is small, such as that shown in Figure 6(a), the
decision boundary is simple; therefore, the classification performance is insufficient. However,
according to the increase in the number of components, the decision boundary fits the actual class
boundaries. It is noteworthy that the SDGM learns the GMM as a discriminative model instead of a
generative model; an appropriate decision boundary was obtained even if the number of components
for the model is less than the actual number (e.g., 6(c)).

Figure 7 shows the evaluation results of the characteristics. Figures 7(a), (b), (c), and (d) show
the recognition error rate, number of components after training, number of nonzero weights after
training, and weight reduction ratio, respectively. The horizontal axis shows the number of initial
components in all the graphs.

In Figure 7(a), the recognition error rates for the training data and test data are almost the same
with the few numbers of components and decrease according to the increase in the number of initial
components while it is 2 to 6. This implied that the representation capability was insufficient when
the number of components was small, and that the network could not accurately separate the classes.
Meanwhile, changes in the training and test error rates were both flat when the number of initial
components exceeded eight, even though the test error rates were slightly higher than the training
error rate. In general, the training error decreases and the test error increases when the complexity of
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Figure 6: Changes in learned class boundaries according to number of initial components. The blue
and green markers represent the samples from class 1 and class 2, respectively. Samples in red
circles represent relevant vectors. The black lines are class boundaries where P(c | ) = 0.5.
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Figure 7: Evaluation results using synthetic data. (a) recognition error rate, (b) the number of
components after training, (c) the number of nonzero weights after training, and (d) weight reduction
ratio. The error bars indicate standard deviation for five trials.

the classifier is increased. However, the SDGM suppresses the increase in complexity using sparse
Bayesian learning, thereby preventing overfitting.

In Figure 7(b), the number of components after training corresponds to the number of initial com-
ponents until the number of initial components is eight. When the number of initial components
exceeds ten, the number of components after training tends to be reduced. In particular, eight com-
ponents are reduced when the number of initial components is 20. The results above indicate the
SDGM can reduce unnecessary components.

From the results in Figure 7(c), we confirm that the number of nonzero weights after training in-
creases according to the increase in the number of initial components. This implies that the com-
plexity of the trained model depends on the number of initial components, and that the minimum
number of components is not always obtained.

Meanwhile, in Figure 7(d), the weight reduction ratio increases according to the increase in the
number of initial components. This result suggests that the larger the number of initial weights, the
more weights were reduced. Moreover, the weight reduction ratio is greater than 99 % in any case.
The results above indicate that the SDGM can prevent overfitting by obtaining high sparsity and can
reduce unnecessary components.
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