
Supplementary: Active Learning of
Convex Halfspaces on Graphs

Maximilian Thiessen
Research Unit of Machine Learning

TU Wien, Vienna, Austria
maximilian.thiessen@tuwien.ac.at

Thomas Gärtner
Research Unit of Machine Learning

TU Wien, Vienna, Austria
thomas.gaertner@tuwien.ac.at

1 Proof details

We state some facts that we will often use in the following proofs. For that let V+ = {x ∈ V (G) |
λ(x) = 1} and V− = {x ∈ V (G) | λ(x) = 0} be the labelled halfspaces.
Fact.

1. If S+ ⊆ V+ then I(S+) ⊆ σ(S+) ⊆ V+. Equivalently:
If S− ⊆ V− then I(S−) ⊆ σ(S−) ⊆ V−.

2. If S+ ⊆ V+ and S− ⊆ V− then S+/S− ⊆ V+ and S−/S+ ⊆ V−.

Proof.

1. Since S+ ⊆ V+, we have σ(S+) ⊆ σ(V+) = V+ by the monotonicity of σ(·). I(S+) ⊆
σ(S+) by definition. S− ⊆ V− follows analogously.

2. Assume there is an x ∈ (S+/S−)∩V−. By definition of S+/S− there is a y ∈ S+∩σ(S−∪
{x}). Using the previous Fact 1, we get σ(S− ∪ {x}) ⊆ V− but also S+ ⊆ V+, which
implies that y ∈ V+ ∩ V−, clearly a contradiction. S−/S+ ⊆ V− follows analogously.

Proposition 1. For any weighted graph G with minimum shortest path cover S∗ the query complexity
can be bounded as qc(G) ≤ |S∗|(2 + dlog d(G)e).

Proof. For each path in S∗ first query the endpoints. If they are the same, the whole path must have
this label by the halfspace assumption. Otherwise, it has exactly one cut edge, that is, an edge where
the labels change. We can find this edge with binary search using at most dlog d(G)e queries.

Proposition 2. For any `, s ∈ N, there exists a weighted graph G with diameter d(G) = ` and
minimum shortest path cover S∗ of size s such that qc(G) ≥ |S∗| log d(G).

Proof. Fix d, s ∈ N. Consider the unit vectors e1, . . . , es ∈ Rs+1 and shifted copies of them:
ej + i · es+1, for j ∈ {1, . . . , s} and i ∈ {1, . . . , d}. Construct the fully connected graph of these
s · d points with edge weights corresponding to the Euclidean distance. The minimum shortest path
cover will have size s and the diameter will be d. We can label each shortest path Pj of the form
(ej , ej + es+1, . . . , ej + d · es+1) with at most one cut edge at an arbitrary position, independently of
the other paths. The resulting labelling is halfspace separable, because the only shortest path between
two vertices on different paths Pj ,Pj′ is the edge connecting them. Hence, to deduce all labels we
will need at least log d(G) queries per path.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Algorithm 1: Halfspace querying
Input: graph G, oracle access to labels λ
Output: halfspaces corresponding to both classes

1 Compute a hull set H and query its vertices
2 if ∀h, h′ ∈ H : λ(h) = λ(h′) then
3 return (∅, V (G))

4 Choose h, h′ ∈ H such that λ(h) 6= λ(h′)
5 Perform binary search queries on any shortest h-h′-path to find a cut edge {a, b}
6 A := σ(a/b), B := σ(b/a)
7 while A ∪B 6= V (G) do
8 query any vertex v ∈ V (G) \ (A ∪B)
9 if λ(v) = λ(a) then

10 A := σ((A ∪ {v})/B), B := σ(B/(A ∪ {v}))
11 else
12 A := σ(A/(B ∪ {v})), B := σ((B ∪ {v})/A)

13 return (A,B)

Lemma 3. Let G be a weighted graph with halfspace separable labels. Using h(G) + dlog d(G)e
queries, we can either find a cut edge or determine that all vertices of the graph have the same label.

Proof. Let H be a hull set of size h(G). The convex hull of H is the whole graph. If all vertices
in H have the same label, the whole graph must have this label by Fact 1. Otherwise, we can take
two vertices in H with different labels and find one cut edge on a shortest path between them using
dlog d(G)e queries.

Lemma 4. Let G be a weighted graph with halfspace separable labels given by a halfspace C and
let A ⊆ C and B ⊆ V (G) \ C. It holds that σ(A/B) ⊆ C.

Proof. The claim directly follows by applying Fact 2 to A/B and then Fact 1 to σ(A/B).

Theorem 5. Let G be a weighted graph. For the query complexity it holds that:

qc(G) ≤ h(G) + dlog d(G)e+ max
{a,b}∈E(G)

|W ∗=ab| .

Proof. By Lemma 3, we can use h(G)+dlog d(G)e queries to find the first cut edge {a, b} or deduce
that the all vertices have the same label. Applying Lemma 4 to a/b and b/a, we only have to deduce
the labels of Ŵ=ab = V (G) \ (σ(a/b) ∪ σ(b/a)).

Algorithm 1 queries iteratively a vertex label in V \ (σ(A/B) ∪ σ(B/A)) ⊆ Ŵ=ab. We want to
bound the number of queries made by Algorithm 1 by the size of the set

W ∗=ab = {v ∈ Ŵ=ab | @w ∈ Ŵ=ab \ {v} such that v ∈ (w/a) ∩ (w/b)} .

For that we show that the algorithm deduces at least one new vertex label from W ∗=ab after each
update of A and B. If we query a vertex in W ∗=ab the claim holds, as we never query the same vertex
twice, because it is afterwards either in A or B.

If we query a vertex v ∈ Ŵ=ab \W ∗=ab, we know by the definition of W ∗=ab that there is a vertex
w ∈W ∗=ab with v ∈ (w/a)∩ (w/b), which means that w ∈ σ({a, v})∩σ({b, v}). By applying Fact
1 to one of the convex hulls σ({a, v}) or σ({b, v}), depending on the label of v, we get the label of
w. The vertex w will be hence correctly added to A or B in the following update where the convex
hulls σ((A ∪ {v})/B) ⊇ σ({a, v}) 3 w or σ((B ∪ {v})/A) ⊇ σ({b, v}) 3 w are used.

This shows that after at most |W ∗=ab| iterations, we will know the labels of W ∗=ab. It remains to show
that we will also have all missing labels in Ŵ=ab \W ∗=ab. For that, let v ∈ Ŵ=ab \W ∗=ab, which
implies that there is an already queried vertex w ∈W ∗=ab such that v ∈ (w/a) ∩ (w/b). Hence, v is
correctly added to A or B in the update where w was queried, because v ∈ w/a ⊆ σ(B ∪ {w}/A)
or v ∈ w/b ⊆ σ(A ∪ {w}/B).

2

...

· · ·

...
...

...
...

· · ·

· · ·

· · ·

...

Figure 1: Example graph Ps,` that is not S2 and has at most two proper halfspaces.

Corollary 6. Let G be an unweighted graph with treewidth tw(G). For the query complexity it holds
that qc(G) ≤ h(G) + dlog d(G)e+ 2 tw(G).

Proof. Let {a, b} be a cut edge. We claim that in an unweighted graph, the vertices a and b together
with W ∗=ab form a K2,|W∗=ab| minor of G. To show that, we first prove that any vertex v ∈ W ∗=ab

is adjacent to a/b and b/a, that is, there is an edge going from v to a/b and to b/a. Assume this
does not hold. Then, without loss of generality, v is not adjacent to a/b and there exists a w ∈W ∗=ab

such that w ∈ I(a, v). By the definition of Ŵ=ab ⊇W ∗=ab, the distance from a and b to any vertex
in Ŵ=ab is the same and hence d(b, v) = d(a, v) = d(a,w) + d(v, w) = d(b, w) + d(v, w). This
means w ∈ I(b, v), which implies that v ∈ (w/a) ∩ (w/b). This is a contradiction to v ∈W ∗=ab. It
follows, that v is adjacent to a/b and b/a.

For each v ∈ W ∗=ab, we can identify an edge ev = {va, v} with va ∈ a/b on a fixed shortest path
from a to v. The same holds for a fixed shortest path from b to v with an edge e′v = {vb, v} and
vb ∈ b/a. Contracting all edges on these shortest paths, but the ev and e′v for all v results in a
complete bipartite graph K2,|W∗=ab|, with the two vertices a and b as one partition and all v as the
other. This complete bipartite graph is a minor of G. The largest k such that K2,k is a minor of
G is bounded as k ≤ 2 tw(G) by the treewidth [Bodlaender et al., 1997], which in turn bounds
|W ∗=ab| ≤ k ≤ 2 tw(G).

Theorem 7. For a weighted graph G with extreme vertices Ext(G), it holds that qc(G) ≥ |Ext(G)|.

Proof. As any extreme vertex s is a halfspace, we have s /∈ σ(V (G) \ {s}). Thus, to decide between
the labelling according to the halfspaces ({s}, V (G) \ {s}) and the case where all vertices have the
same label, we have to query s.

The above result still holds, if we only allow proper halfspaces (neither empty nor V (G)) in general,
as can be seen by the clique graph where each vertex is extreme.
Proposition 8. For any `, s, k, e ∈ N, there exists an unweighted graph G with d(G) ≥ `, minimum
shortest path cover S∗ of size at least s, h(G) ≥ k, |Ext(G)| = e, and qc(G) ≤ max{2, e}.

Proof. Consider the graph Ps,` consisting of s interior vertex-disjoint paths of length ` with same
endpoints, see Figure 1. It follows that d(G) ≥ `, the minimum shortest path cover S∗ has size at
least s and there are no extreme vertices. We claim that if ` is even, the graph has only two non-proper
halfspaces V (Ps,`) and ∅ and if ` is odd additionally two halfspaces cutting each path in two halves
of same length.

To show that, we identify three of the paths with vertices (v1, . . . , v`+1),(w1, w2, . . . , w`, w`+1), and
(x1, x2, . . . , x`, x`+1). Without loss of generality we can assume that there is a cut edge vk, vk+1

with k < (` + 1)/2 and labels λ(vk) = 0, λ(vk+1) = 1. The ray vk+1/vk implies by Fact 2 that
λ(v`+1) = 1, and the opposite ray vk/vk+1 that λ(v1) = 0, λ(w`+1−k) = 0 and λ(x`+1−k) = 0.
Finally, v`+1 ∈ I(w`+1−k, x`+1−k), which is a contradiction. This implies that a cut edge {vk, vk+1)
can only be placed at k = (`+ 1)/2 for an odd `.

This also means that Ps,` is not S2.

To increase the minimum hull set size, without changing the number of extreme vertices and the
query complexity, we append k disjoint copies of K2,3 by associating a fixed vertex of K2,3 with

3

exactly on of the endpoints of Ps,`. It can be easily checked that K2,3 on its own has only the two
halfspaces V (K2,3) and ∅, thus as soon as we know the labels of the endpoints of Ps,` we also get the
labels of the K2,3. Each K2,3 copy has no extreme vertices but any minimum hull set must contain at
least one vertex of each of them, thus h(G) ≥ k.

Finally to increase the number of extreme vertices we can append e new vertices to either endpoints
of Ps,`. These new vertices will be extreme and thus qc(G) ≥ |Ext(G)| = e. For ` even we have
qc(G) = e.

Note that, the graph P2,3 is just the complete bipartite K2,3.

Theorem 11. For every weighted graph G the following holds for the query complexity qc(G):

• if G is S2, then qc(G) ≥ max{log d(G), |Ext(G)|},

• if G is S3, then qc(G) ≥ max{log d(G), h(G)}, and

• if G is S4, then qc(G) ≥ max{log d(G), h(G), r(G)− 1}.

Each bound is tight in the respective family and stronger axioms lead to tighter bounds.

Proof.

• Any two different vertices can be separated with a halfspace (S2):
The lower bound using extreme vertices Ext(G) holds for all graphs by Theorem 7 and
hence also for S2 graphs. We can place a cut edge anywhere on any fixed shortest path with
size of the diameter on any S2 graph, which requires log d(G) queries to be found in the
worst-case.

• Any convex set and a vertex not in this set can be separated with a halfspace (S3):
On S3 graphs with minimum hull set H∗, we can separate any vertex h ∈ H∗ from the
ramaining hull set. This means that we have to query all vertices in H∗ in the worst-case.

• Any two disjoint convex sets can be separated with a halfspace (S4):
For any graph, there exists a set R of size r(G)−1 that has no Radon partition. In S4 graphs
we can thus extend any partition of R to halfspaces and thus have to query each vertex in R
in the worst-case.

Note that the bounds are increasingly stronger: By the definition of extreme vertices
Ext(G) ⊆ H for any hull set H . Also, there are S4 graphs with r(G) = k and h(G) = t
for any k, t ∈ N with k, t ≥ 4. For that start with a clique of size t− 2 and connect two new
vertices to each vertex in the clique. Thus h(G) = 2 and r(G) = t. By attaching k − 2 leaf
vertices to the graph, we can increase the number of extreme vertices such that h(G) = k
without changing the Radon number.

Regarding the tightness of the bounds: For some example graphs that are Si but not Si+1

for i ∈ {1, 2, 3} and an S4 graph, see Figure 2. For any choice of parameters (diameter,
minimum hull set size, Radon number) in the bounds of Table 1 there are graphs achieving
these in the respective graph family. That means that we have tight bounds for S3 graphs
(that are not S4) and S4 graphs. The lower bound of Theorem 11 matches asymptotically the
upper bound of Theorem 5. The same holds for S2 graphs that are not S3, which can be seen
by the graph family depicted in Figure 3. Each graph in this graph family is S2 (and not S3)
and by adjusting the length of the path in the middle and the number of leaves on top, we can
freely select the diameter and the number of extreme vertices. Again, the lower bound and
the upper bound on the query complexity asymptotically coincide, as h(G) = Ext(G) + 2
and |W ∗=ab| ≤ 1 for all edges {a, b}.

We shortly discuss the bounds in Table 1. It contains graph families often studied in metric graph
theory [Bandelt and Chepoi, 2008] and convexity theory, such as partial cubes, weakly median and
meshed graphs. Meshed graphs satisfy the following triangle condition [Bandelt and Chepoi, 2008]:
for any three vertices u, v, w with 1 = d(v, w) < d(u, v) = d(u,w) there exists a vertex x adjacent

4

Table 1: Tight bounds for specific unweighted graph families

graph family sep. axiom bound on qc(G) remark

trees S4 Θ(log d(G) + |Ext(G)|) Ext(G) are exactly the leaves
K2,3 minor-free S4 Θ(log d(G) + h(G)) including outerplanar graphs
partial cubes S3 Θ(log d(G) + h(G)) O(·) holds for bipartite graphs
weakly median S4 Θ(log d(G) + h(G) + r(G)) O(·) holds for meshed graphs

to v and w such that d(u, v) = d(u, x) + 1. For example, the triangle conditions holds for meshed
graphs, including weakly modular graphs. S4 weakly modular graphs are exactly the weakly median
graphs [Chepoi, 1994]. Bipartite graphs and their S3 variant partial cubes [Bandelt, 1989] are also a
classical topic in graph convexity theory. For bipartite graphs, S2 ⇐⇒ S3. Table 1 also contains
trees, and K2,3 minor-free graphs a superset of outerplanar graphs, studied by Seiffarth et al. [2019].

Trees The lower bound follows by Theorem 11, because trees are S4 and h(G) = |Ext(G)|. The
upper bound follows by Theorem 5 by the fact that for any edge {a, b}, we have that
Ŵ=ab = ∅.

K2,3 minor-free graphs Seiffarth et al. [2019] showed that K2,3 minor-free graphs are S4, which
gives the lower bound by Theorem 11. The upper bound follows by Corollary 6. In fact, if k
is a constant the upper bound also holds for any K2,k minor-free graph.

Partial cubes Partial cubes are exactly the S2 (equivalently S3) bipartite graphs, which gives the
lower bound by Theorem 11. The upper bound holds by Theorem 5 as in bipartite graphs
for any edge {a, b}, we have that Ŵ=ab = ∅. If there would be an x ∈ Ŵ=ab it would form
a cycle of odd length with a and b, which is not possible in bipartite graphs.

Weakly median graphs Weakly median graphs are S4 and hence by Theorem 11 we get the lower
bound. The upper bound holds for the much broader class of meshed graphs. In fact, we only
need the triangle condition to achieve that the number of main loop iterations of Algorithm 1
is ≤ r(G)− 1.
By the triangle condition, we have that for any v ∈W ∗=ab, there exists a common neighbour
w of a and b that is on the shortest path of a to v, respectively b to v. So if d(a, v) =
d(b, v) > 1, we would have v ∈ w/a ∪ w/b and thus v /∈W ∗=ab, which is not possible. So,
v = w and adjacent to a and b.
|W ∗=ab| ≤ r(G) does not hold in general and therefore we can not use the query bound of
Theorem 5. Instead, we will directly bound the size of the set of vertices Q ⊆W ∗=ab queried
by Algorithm 1. We claim that any two different vertices v, v′ ∈ Q are adjacent. If not,
there will be a shortest path from v to v′ through a and b respectively, because v and v′
are adjacent to a and b. This implies v ∈ a/v′ ∩ b/v′ and v′ ∈ a/v ∩ b/v. Without loss of
generality v is queried before v′. Therefore, after the update in Algorithm 1 with v, A or B
contains v′. That means, v′ will no be queried, a contradiction. Thus, all vertices in Q are
adjacent resulting in a clique. Any clique has no Radon partition, because any subset of a
clique is convex, and thus r(G) > |Q|.

Theorem 12. For a given weighted graph G, we can compute a O(log d(G))-approximation for the
minimum shortest path cover S∗ in time O(|V |4).

Proof. We first describe a procedure to compute a shortest path with a maximum number of vertices.
More generally, we will describe an iterative procedure covering the vertices of the graph. Each round
we will compute a shortest path with a maximum number of vertices that have not been covered yet.

We can assume that the graph is directed, because if it is undirected, we can transform the graph into
an equivalent directed graph by duplicating each edge {x, y} to (x, y) and (y, x) of same weight. For
that, we define new weights w∗ for each directed edge e = (a, b) in the graph as w∗(e) = (w(e), 0) if
b is already covered and (w(e),−1) otherwise. We note that w(e) > 0 for all edges e by assumption.
Let us define the lexicographic order ≺ on the w∗ tuples: (a, b) ≺ (c, d) if and only if (a < b) or
(a = b and c < d). Note that ≺ gives a total order on the w∗ tuples. The w∗ weight of a path is the
component-wise sum of its edges w∗ weight. This results in the following behaviour Two paths of

5

(a) Graph is S1 but not S2. There are no proper
halfspaces.

a b

c

(b) Graph is S2 but not S3. Vertices a and b are
not separable from vertex c.

c d

a b

(c) Graph is S3 but not S4. Vertices a and d are
not separable from vertices b and c.

(d) Graph is S4. Any two disjoint convex sets are
separable.

Figure 2: Examples for S1 to S4 graphs. Inspired by Bandelt [1989].

· · ·

...

Figure 3: Example of a S2 graph family that is not S3 with tight bounds.

the same w-weight, but with one path covering a larger number of not yet covered vertices, have
different weights according to w∗ and ≺. The path covering more vertices has a smaller w∗ weight.
We thus can apply the generalized Dijkstra’s algorithm of Sobrinho [2002] to compute a w∗-shortest
path, which gives us a w-shortest path that covers the maximum number of not yet covered vertices.

Iteratively computing such w∗-shortest paths results in a shortest path cover S. Our problem of
iteratively covering a graph using shortest path is an instance of the general set cover problem.
Our covering approach selecting the shortest path covering the maximum number of yet uncovered
vertices is an instance of the greedy algorithm for the general set cover problem [Chvatal, 1979].

6

Hence, we achieve at least the same approximation ratio as this more general algorithm, which gives
us |S| ≤ (1 + ln(d+ 1))|S∗|.

Proposition 13. For any graph G, it holds that r(G) ≤ 2 tw(G) + 2.

Proof. Let η(G) denote the Hadwiger number of the graph G, that is, the size of the largest clique
minor. It is known that η(G) ≤ tw(G) + 1. This can be seen by the fact that any clique C has
treewidth tw(C) = |C| − 1 and that any graph minor F of a graph G has treewidth tw(F) ≤ tw(G),
see for example Diestel [2017, Lemma 12.4.1]. Duchet and Meyniel [1983] showed r(G) ≤ 2η(G).
Together this implies r(G) ≤ 2η(G) ≤ 2 tw(G) + 2.

1.1 Passive learning halfspaces

Moran and Yehudayoff [2019] established that the VC dimension of halfspaces of any convexity
space is smaller than the Radon number of the space. We prove it here for completeness. Let (X, C)
be a convexity space and r(X, C) its Radon number. We only have to show we can not shatter a set
R ⊆ X of size r(X, C). By definition, R has a Radon partition R1, R2 with σ(R1) ∩ σ(R2) 6= ∅.
Assume there is a halfspace C separating R1 and R2, that is R1 ⊆ C and R2 ⊆ X \ C. Then by the
definition of halfspaces and the monotonicity of the convex hull we have that σ(R1) ⊆ σ(C) = C
and σ(R2) ⊆ σ(X \ C) = X \ C, contradicting that the two sets overlap.

Proposition 14. The VC dimension of the hypothesis class of halfspaces of an S4 convexity space is
exactly one less than the Radon number of the space.

Proof. It only remains to show that we can shatter a set F of size r(G)− 1 using halfspaces. Let F
be a vertex set of size r(G)− 1 that has no Radon partition. The convex hulls σ(F1), σ(F2) of any
partition F1,F2 of F do not overlap and hence they can be separated by halfspaces in an S4 space.
Thus, halfspaces shatter F .

Proposition 15. The VC dimension of halfspaces in a graph G is at most 2 tw(G) + 1.

Proof. Combining the fact of Moran and Yehudayoff [2019] with Proposition 13 it follows that the
VC dimension of halfspaces in G is < r(G) ≤ 2 tw(G) + 2.

2 Additions to the Euclidean convexity discussion

Graph and other finite convexity spaces are not equivalent to the Euclidean convexity in the sense
that it is not always possible to embed a graph into Rm or the other way around while preserving the
convex hull σ(·). As Euclidean convexity spaces are always S4 while graphs do not have to be, there
is no straightforward way to transform bounds on the query complexity from one setting to the other.
But even for S4 interval spaces, the convex hulls given by the interval mapping Id in a finite metric
space (X, d) with X ⊆ Rm do not always coincide with the classical convex hulls in (Rm, d).

To see that, take any tree graph with at least 3 leaves, which has the property that the convex hull of
any two leaves contains a non-leaf vertex but no additional leaf. However, if we try to reconstruct
this behaviour in Rm for arbitrary m, any three points, with at least one non-leaf vertex, must lie on
one straight line and hence all points lie on the same straight line. But this implies that either one
non-leaf vertex is not contained in the convex hull of one pair of leaves or the convex hull of two
leaves contain another leaf.

For the other direction, take the triangle in the Euclidean plane with points a, b, c and a point d in
its interior, which has the property that any two points are convex, and the convex hull σ({a, b, c})
contains d, see Fig. 1c) in the main paper. Reconstructing this with any finite metric convexity space,
including graphs, is not possible. If we assume convex edges, I({a, b, c}) = I(a, b) ∪ I(a, c) ∪
I(b, c) = {a, b, c}, the set {a, b, c} is convex and does not contain d.

We can phrase this in terms of halfspaces. In the Euclidean plane, a, b, c and d are not halfspace
separable, however in any finite metric convexity space that has convex edges they are. In general, if
two sets are linearly halfspace separable in Euclidean space, they will be separable by halfspaces in
the corresponding fully connected graph with Euclidean distances.

7

Margin-based bounds We shortly discuss here, why dens(V) ≥ 1 for the grid G = (V,E). For
a set A ⊆ V , letM(A, r) be the maximum cardinality of any subset A′ ⊆ A such that all distinct
a, b ∈ A′ satisfy d(a, b) > r. Let B(a, r) = {b ∈ V | d(a, b) ≤ r} denote the ball of radius r around
a. The density constant of a semimetric space is

µ(V) = min{µ ∈ N | (v ∈ V and r > 0)⇒M(B(v, r), r/2) ≤ µ}.

The density dimension of a semimetric space is then defined as dens(V) = log2 µ(V).

For an unweighted graph B(v, 1) is simply the set of neighbours of v, including v. Thus,
M(B(v, 1), 1/2) is also again the set of all neighbours v, because any pair of vertices a, b has
distance d(a, b) ≥ 1 > 1/2. This means that µ(V) is larger than the maximum degree of the graph.
Concluding we have µ(V) ≥ 2 for any graph with at least one edge and thus dens(V) ≥ 1.

3 Experiments

We made all implementations and information on how to reproduce the experiments publicly avail-
able1. As described in the main text, we evaluated our two approaches greedy and selective sampling
against S2 [Dasarathy et al., 2015], active label propagation [Zhu et al., 2003] and random sampling.
We performed 10 independent runs on each dataset, where the first vertex query was the same for all
5 approaches. It was sampled uniformly at random from the same class in the dataset on each run, to
guarantee the same starting accuracy for each approach.

For each dataset, the average accuracy after each query is depicted in Figure 4 including error bars
representing the 10% and 90% quantile of the 10 runs. The same is visualised in Figure 5 with the
average number of found cut vertices after each query instead of the accuracy.

We find that our greedy approach identifies the correct halfspace using 5 to 6 queries most of the time
on all datasets. Only occasionally two more queries on the two moons and Iris dataset are required
The selective sampling based approach takes some more queries, usually requiring roughly 1.5 to 2
times as many queries as the greedy approach. We thus conclude that, at least on these benchmark
datasets the greedy maximisation significantly reduces the number of required queries.

Inspecting the other approaches, we find that they not only take substantially more queries to get close
to the correct prediction but also that all of them are unstable. This is meant in the sense that their
performance depends a lot on the first drawn vertex and the inherent randomness of the algorithms.
Sometimes this even leads to a significant accuracy decrease with more queries, as can be especially
be seen on the Iris dataset, see Figure 4b. Here, the accuracy of the predictions start to decrease
after the 8th query for S2 and after the 17th query for active label propagation. One reason might be
that label propagation favours small cuts (weighted by Gaussian similarity) and hence has problems
classifying the cut vertices correctly. Indeed, the Iris dataset has 38 cut edges while two moons only
six and here all three label propagation based methods perform well. For example, S2 identifies the
correct halfspace after 14 queries.

In terms of the found cut vertices per query, see Figure 5, our approaches use convex hulls and
extensions to deduce many labels after each single query. The other approaches do not rely on the
halfspace assumptions and hence can only identify at most one cut vertex per query. S2 performs well
still, identifying a cut vertex on almost every query after a few initial queries. This is not surprising
however, as S2 was designed with explicitly this goal in mind [Dasarathy et al., 2015]. The other two
approaches, active label propagation and random sampling, have difficulties finding cut vertices.

4 Extensions

Multi-class settings Our results for halfspaces can be generalised to the case where we have k
different labels and each corresponding vertex set is convex. Using shortest path covers we get the
query complexity upper bound O(|S∗|k log d(G)) in this case, as we have to binary search each path
at most k − 1 times to identify the at most k − 1 possible cut edges. Algorithm 1 can be adapted to
the multi-class setting but it is not clear how to generalise the max

{a,b}∈E(G)
|W ∗=ab| based upper bound.

1https://github.com/maxthiessen/active_graph_halfspaces

8

https://github.com/maxthiessen/active_graph_halfspaces

We are convinced that similar ideas to the ones of Bressan et al. [2021] can be used to achieve an

upper bound like O
(
h(G) + k2

(
log d(G) + max

{a,b}∈E(G)
|W ∗=ab|

))
.

Directed graphs For directed graphs one has to adjust the definition of the interval mapping
I(x, y). The default way [Chartrand and Zhang, 2000, Pelayo, 2013] to fix the symmetry property,
I(x, y) = I(y, x), is by first defining a directed interval ID(x, y) = {z | d(x, z) + d(z, y)}, where
d is the directed shortest path distance which is not necessarily symmetric, and then simply taking
the union of both directions, I(x, y) := ID(x, y) ∪ ID(y, x). The remaining definitions follow as
before. Note that this implies that I(x, y) can contain vertices from shortest paths of different length,
as the shortest x-y-path can be shorter than its reversed counterpart.

Disconnected graphs If the graph G is connected all convex vertex sets will induce a connected
subgraph. Usually, for a vertex set to be convex in a disconnected graph it is additionally required
that the induced subgraph is connected [Pelayo, 2013]. This would correspond to defining I(x, y) =
V (G) for any two disconnected vertices x, y ∈ V (G). Our original query complexity bounds for
connected graphs remain valid in this case. If we want to allow halfspace separation in disconnected
graphs on multiple connected components, we can ignore this restriction. In this case, we can
define the interval I(x, y) = {x, y} if x and y are disconnected and keep the original definition
I(x, y) = {z ∈ V | d(x, y) = d(x, z) + d(z, y)} for connected vertices. Here, we have to query
each connected component in isolation, thus the terms of the bounds must be multiplied with the
number of connected components c, but the minimum hull set size, as it is already the sum of the
minimum hull set sizes of each connected component. For example, the bound of Theorem 5 becomes
O(h(G) + c(log d(G) + max{a,b}∈E(G) |W ∗=ab|)).

References
Hans-Jürgen Bandelt. Graphs with intrinsic s3 convexities. Journal of graph theory, 13(2):215–228,

1989.

Hans-Jürgen Bandelt and Victor Chepoi. Metric graph theory and geometry: a survey. Contemporary
Mathematics, 453:49–86, 2008.

Hans L. Bodlaender, Jan van Leeuwen, Richard Tan, and Dimitrios M. Thilikos. On interval routing
schemes and treewidth. Information and computation, 139(1):92–109, 1997.

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. Exact recovery of clusters
in finite metric spaces using oracle queries. In COLT, 2021.

Gary Chartrand and Ping Zhang. The geodetic number of an oriented graph. European Journal of
Combinatorics, 21(2):181–189, 2000.

Victor Chepoi. Separation of two convex sets in convexity structures. Journal of Geometry, 50(1-2):
30–51, 1994.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations research,
4(3):233–235, 1979.

Gautam Dasarathy, Robert Nowak, and Xiaojin Zhu. S2: An efficient graph based active learning
algorithm with application to nonparametric classification. In COLT, 2015.

Reinhard Diestel. Graph Theory. Springer, 5th edition, 2017.

Pierre Duchet and Henry Meyniel. Ensemble convexes dans les graphes i: Théorèmes de Helly et de
Radon pour graphes et surfaces. European Journal of Combinatorics, 4(2):127–132, 1983.

Shay Moran and Amir Yehudayoff. On weak epsilon-nets and the Radon number. In Symposium on
Computational Geometry, 2019.

Ignacio M. Pelayo. Geodesic convexity in graphs. Springer, 2013.

Florian Seiffarth, Tamás Horváth, and Stefan Wrobel. Maximal closed set and half-space separations
in finite closure systems. In ECMLPKDD, 2019.

9

J. L. Sobrinho. Algebra and algorithms for QoS path computation and hop-by-hop routing in the
internet. IEEE/ACM Transactions on Networking, 10(4):541–550, 2002.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and semi-supervised
learning using gaussian fields and harmonic functions. In ICML workshop on the continuum from
labeled to unlabeled data in machine learning and data mining, 2003.

10

(a) Two moons.

(b) Iris.

(c) 20× 20 grid.

(d) 210 hypercube.

Figure 4: Accuracy against number of queries on four benchmark datasets.

11

(a) Two moons.

(b) Iris.

(c) 20× 20 grid.

(d) 210 hypercube.

Figure 5: Number of found cut vertices against number of queries on four benchmark datasets.

12

	1 Proof details
	1.1 Passive learning halfspaces

	2 Additions to the Euclidean convexity discussion
	3 Experiments
	4 Extensions

