
A Appendix

B General experimental setup

All experimental results presented in Section 5 were evaluated on an HTCondor cluster (see [64]) of
machines equipped with Intel Core i7-8700 3.20GHz and 16 GB RAM. Confidence intervals show
the first and third quartile of 20 independent runs with random seeds 2 [101, 102, . . . , 120]. If not
specifically indicated in Section C, all competing algorithms use default values for all hyperparameters.
To allow for a fair comparison, we give the same set of initial data points to all tested methods for
both constrained and unconstrained benchmark problems. A set of ten initial samples is used for the
Section 5.4 CIFAR-NAS example due to its high dimensionality. Five initial points are used for the
remaining benchmark problems.

C Algorithms

This section summarizes the different algorithms used for the Section 5 numerical studies. We give
implementation details and hyperparameter settings to reproduce the presented results.

C.1 LEAF-GP and LEAF-GP-RND

The LEAF-GP uses LightGBM [37] for training gradient-boosted tree ensembles. All runs use the
hyperparameter value min_data_in_leaf = 1 as the training dataset size needs to be at least twice the
minimum number of data points a leaf is based on. The min_data_in_leaf default value of LightGBM
is 20, which would cause run-time errors after initialization. We also set LightGBM hyperparameter
min_data_per_group = 1. For the high-dimensional benchmark problem CIFAR-NAS, we set
max_depth = 5 and num_boost_rounds = 100 for training the ensemble in LightGBM, referring to
maximum interaction depth per decision tree and total number of trees in the ensemble, respectively.
For all other benchmarks we use max_depth = 3 and num_boost_rounds = 50.

We implement the tree ensemble kernel as a non-stationary kernel in GPyTorch [24]. For deriving
the posterior distribution, we use a Gaussian likelihood and standardize the target values of the data
set. Section 3 introduces signal variance �0 and noise term �y as kernel hyperparameters which are
fitted by maximizing the marginal log likelihood over 200 epochs using the Adam solver [38]. The
hyperparameters are constrained by intervals according to �0 2 [5e�4, 0.2] and �y 2 [0.05, 20.0].

For LEAF-GP the Section 4 acquisition optimization formulation is encoded using gurobipy [28]
and solved using Gurobi 9. Runs are limited to 100 s if the solver finds a feasible solution and are
continued otherwise.

Moreover, we set heuristics = 0.2 and activate the non-convex hyperparameter for benchmark
problems with non-convex constraints. LEAF-GP-RND uses a sampling-based strategy that randomly
evaluates the acquisition function at 2000 locations and selects the maximimum value.

C.2 GA

We use the standard Genetic Algorithm implementation of the pymoo [7] toolbox for evolutionary
algorithms and change population_size = 10 given the small evaluation budget. Default values are
used for all other hyperparameters.

C.3 SKOPT-GBRT and SKOPT-RF

We use the default implementation of Scikit-Optimize [31] with random forest and gradient-boosted
trees base estimators for SKOPT-RF and SKOPT-GBRT, respectively. Default values are used for all
hyperparameters.

C.4 SMAC

For SMAC [34] we utilize the most recent Python implementation SMAC3 [44] using random forest
models. Moreover, we specify the hyperparameters run_obj = ‘quality’ and activate the deterministic

16

flag to allow for reproducibility. The Section 5.4 CIFAR-NAS and Section F VAE-NAS benchmark
problems exhibit hierarchical search space relationships, i.e., hyperparameters of a specific layer are
only relevant if the layer is active. We use SMAC’s InCondition function which allows for certain
child features to be considered only if some parent features have certain values, e.g., the stride of
layer n is only considered if number of layers is at least n. This allows SMAC to capture hierarchical
relationships explicitly and to avoid evaluating multiple equivalent configurations. Default values are
used for all other hyperparameters.

C.5 UCB-MATERN and EI-MATERN

The UCB-MATERN and EI-MATERN algorithms use the standard upper confidence bound and expected
improvement implementations of BoTorch [2]. Before fitting a GP, we normalize data features and
standardize data outputs. The upper confidence acquisition hyperparameter � is set to 1.96. We negate
the target values and define raw_samples = 200 for the acquisition function maximization. For
unconstrained cases, the acquisition optimizer uses 100 restarts. However, for constrained problems
we limit the optimizer to five restarts due to extensive run-times caused by finding feasible solutions.
Default values are used for all other hyperparameters.

D Benchmark problems

D.1 Unconstrained problems

Figure 3 shows the results for Hartmann (6D), Rastrigin (10D), Schwefel (10D) and Styblinski-
Tang (10D) benchmark functions implemented according to Surjanovic and Bingham [63]. Table 1
summarizes number of dimensions and domain evaluated for unconstrained benchmark problems.

Table 1: Benchmark functions for local vs. global acquisition-function optimization tests. Table
shows function name, number of dimensions (Dim.), and domain of input variables

Function Dim. Domain

Hartmann 6 x 2 [0.0, 1.0]6

Rastrigin 10 x 2 [�4.0, 5.0]10

Schwefel 10 x 2 [�500.0, 500.0]10

Styblinski-Tang 10 x 2 [�5.0, 5.0]10

D.2 Constrained problems

Fig. 8 presents results of benchmark problems with known constraints. Domain bounds without
decimals indicate integer-valued variable types. Benchmark examples G1, G3, G4, G6, G7 and
G10 are implemented according to Hedar [32]. The Alkylation benchmark [60] is adapted from an
open-source implementation [62]. To compare methods that do not support specific input constraints,
we penalize the black-box function output according to:

fpenalty = �
�
max(g(x), 0)2 + h(x)2

�
, (15)

where g(x)  0 and h(x) = 0 are inequality and equality constraints, respectively. Maximizing the
combined black-box output allows methods to find feasible solutions. Eq. (15) has the hyperparameter
� which weights the penalty, we test values � 2 {1, 10, 100} and only plot the best run for all methods
that rely on constraint penalization. In the tests conducted, LEAF-GP fully supports explicit input
constraints. UCB-MATERN and EI-MATERN support linear inequality and equality constraints only.
The evolutionary algorithm GA has built-in constraint consideration but does not guarantee feasible
solutions. LEAF-GP-RND, SKOPT-GBRT, SKOPT-RF and SMAC rely on the Eq. (15) penalty function.

D.3 CIFAR-NAS

Table 3 gives more details on the Section 5.4 CIFAR-NAS (29D) benchmark problem. CIFAR-
NAS (29D) has a total of 29 hyperparameters to tune, i.e., 1 continuous, 15 integer, 8 binary and

17

Table 2: Benchmark functions for constrained search space tests. Table shows function name and
number of: dimensions (D), equality constraints (EC), and inequality constraints (IC). Values in
brackets indicate the number of linear constraints which are natively supported by some of the
algorithms. Domain bounds without decimals indicate integer-valued variables.

Function D IC EC Domain

G1 13 9 (9) 0 (0) x{0,...,8,12} 2 [0.0, 1.0],
x{9,10,11} 2 [0.0, 100.0]

G3 5 0 (0) 1 (0) x 2 [0.0, 1.0]5

G4 5 6 (0) 0 (0) x0 2 [78.0, 102.0], x1 2 [33.0, 45.0],
x{2,3,4} 2 [27.0, 45.0]

G6 2 2 (0) 0 (0) x0 2 [13.0, 100.0], x1 2 [0.0, 100.0]

G7 10 8 (3) 0 (0) x 2 [�10.0, 10.0]10

G10 8 6 (3) 0 (0)
x0 2 [100.0, 10.0K],
x{1,2} 2 [1.0K, 10.0K],
x{3,...7} 2 [10.0, 1.0K]

Alkylation 7 14 (0) 0 (0)

x0 2 [0.0, 2.0K], x1 2 [0.0, 16.0K],
x2 2 [0.0, 120.0], x3 2 [0.0, 5.0K],
x4 2 [90.0, 95.0], x5 2 [0.01, 4.0],
x6 2 [145.0, 162.0]

Pressure Vessel 4 3 (2) 0 (0) x{0,1} 2 [1, 99], x{2,3} 2 [10.0, 200.]

5 categorical variables. The goal is to select hyperparameter values for a CNN trained in PyTorch
[55] on the CIFAR-10 dataset [40] that maximize test accuracy. The training and test scripts were
adapted from Trencseni [70]. Due to limited computing resources, we train the CNN on half of the
training data for 10 epochs using the Adam solver [38]. We score networks using the full test data set.
Only certain combinations of stride, padding and filter size for various layers result in feasible neural
architectures, e.g., the filter size of one layer may be too large given the output of the previous layer. In
such cases the CNN training fails, and the black-box returns the largest black-box value found so far,
helping algorithms learn to avoid infeasible neural architectures. To simplify the training, layer inputs
are parameterized based on outputs of the previous layer for convolutional and fully-connected layers,
as well as the intermediate connecting layer. The benchmark introduces categorical variables for
activation function selection. Methods that do not support categorical features use one-hot encoding.

LEAF-GP has access to constraints capturing feasible neural architectures mainly concerned with
the convolutional layers. Algorithms can choose to activate at most three convolutional and two
fully-connected layers. To capture constraints for feasible CNNs, we introduce wout,i as the output of
convolutional layer i and Wout,i as the layer’s modified output in case max-pooling is applied:

wout,i 2 N0, 8i 2 {1, 2, 3} (16a)
Wout,i 2 N0, 8i 2 {1, 2, 3} (16b)

Convolutional layers use PyTorch’s Conv2D with inputs derived by the optimization algorithms.
PyTorch’s MaxPool2d implements the max-pooling with the commonly-used (2, 2) kernel size.

Win,1 = 32 (17a)

wout,1 =
Win,1 � F1 + 2P1

S1
+ 1 (17b)

Wout,1 = b
conv
1 bwout,1(1� 0.5bpool

1)c+ (1� b
conv
1)Win,1 (17c)

wout,2 =
Wout,1 � F2 + 2P2

S2
+ 1 (17d)

Wout,2 = b
conv
2 bwout,2(1� 0.5bpool

2)c+ (1� b
conv
1)Wout,1 (17e)

18

wout,3 =
Wout,2 � F3 + 2P3

S3
+ 1 (17f)

Wout,3 = b
conv
3 bwout,3(1� 0.5bpool

3)c+ (1� b
conv
3)Wout,2 (17g)

Wout,3 � 1 (17h)

1  b
conv
1 + b

conv
2 + b

conv
3 + b

fc
1 + b

fc
2 (17i)

The 32 ⇥ 32 image size of CIFAR-10 data defines the input to the full CNN (Win,1) in Eq. (17a).
Eq. (17b) combines filter size F1, padding P1 and stride S1 of the first convolutional layer to
compute its output size wout,1. Variable Wout,1 captures the final output of the convolutional layer
by considering if the layer is activated, i.e., bconv

1 = 1, and if max-pooling is applied, i.e., bpool
1 = 1.

Constraints (17c)–(17g) denote the same restrictions for subsequent layers, each using the output size
of the previous layer as its input size. Eq. (17h) ensures that the output of the last convolutional layer
Wout,3 is at least one. We also enforce that at least one layer be active, which is captured by Eq. (17i).

To break symmetries in the benchmark problems, we introduce Constraints (18a)–(18g):

b
conv
3  b

conv
2  b

conv
1 (18a)

¬bconv
i ! ¬bpool

i , 8i 2 {1, 2, 3} (18b)
¬bconv

i ! C
conv
i  4, 8i 2 {1, 2, 3} (18c)

¬bconv
i ! Fi  2, 8i 2 {1, 2, 3} (18d)

¬bconv
i ! Si  1, 8i 2 {1, 2, 3} (18e)

¬bconv
i ! Pi  0, 8i 2 {1, 2, 3} (18f)

¬bconv
i ! Act

conv
i = ReLU, 8i 2 {1, 2, 3} (18g)

Eq. (18a) activates layers in a particular order, and Eq. (18b) deactivates max-pooling when the
associated convolutional layer is inactive. Constraints (18c)–(18g) set layer-specific hyperparameters
to pre-defined default values when the associated layer is inactive. We select these defaults as the
lower bound for non-categorical variables and the first category for categorical variables.

Constraints (19) express the same restrictions for fully-connected layers:

b
fc
2  b

fc
1 (19a)

¬bfc
i ! N

fc
i  4, 8i 2 {1, 2} (19b)

¬bfc
i ! Act

fc
i = ReLU, 8i 2 {1, 2} (19c)

19

Table 3: Table shows all hyperparameter names, types and domains of the CIFAR-NAS benchmark.
The transformation column refers to post-processing computations before passing the hyperparameter
value to the neural network training.

Name Type Domain Transformation

0 Batch size integer [2, 4] Nbatch = 2x0

1 Learning rate conti. [�5.0,�1.0] ↵ = 10x1

Convolutional layer 1
2 Layer is active binary {0, 1} b

conv
1 = x2

3 Number of channels integer [2, 4] C
conv
1 = 2x3

4 Max pooling is active binary {0, 1} b
pool
1 = x4

5 Filter size integer [2, 5] F1 = x5

6 Stride integer [1, 3] S1 = x6

7 Padding integer [0, 3] P1 = x7

8 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
conv
1 = x8

Convolutional layer 2
9 Layer is active binary {0, 1} b

conv
2 = x9

10 Number of channels integer [2, 4] C
conv
2 = 2x10

11 Max pooling is active binary {0, 1} b
pool
2 = x11

12 Filter size integer [2, 5] F2 = x12

13 Stride integer [1, 3] S2 = x13

14 Padding integer [0, 3] P2 = x14

15 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
conv
2 = x15

Convolutional layer 3
16 Layer is active binary {0, 1} b

conv
3 = x16

17 Number of channels integer [2, 4] C
conv
3 = 2x17

18 Max pooling is active binary {0, 1} b
pool
3 = x18

19 Filter size integer [2, 5] F3 = x19

20 Stride integer [1, 3] S3 = x20

21 Padding integer [0, 3] P3 = x21

22 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
conv
3 = x22

Fully-connected layer 1
23 Layer is active binary {0, 1} b

fc
1 = x23

24 Number of nodes integer [2, 7] N
fc
1 = 2x24

25 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
fc
1 = x25

Fully-connected layer 2
26 Layer is active binary {0, 1} b

fc
2 = x26

27 Number of nodes integer [2, 7] N
fc
2 = 2x27

28 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
fc
2 = x28

20

E Additional Results

This section presents additional results supporting the numerical evaluation in Section 5.

(a) Relative Model Error, Rastrigin (10D) (b) Prediction Mean, Rastrigin (10D)

(c) Relative Model Error, Schwefel (10D) (d) Prediction Mean, Schwefel (10D)

Figure 6: The relative prediction error (Eq. 13) and model prediction mean over the maximum tree
agreement ratio R for benchmark problem Schwefel (10D). Changing R is equivalent to changing
the maximum kernel covariance. Plot shows the median line and confidence intervals (first and third
quartile) from 20 random seeds. Section 5.1 provides more details.

21

(a) Hartmann (6D) (b) Rastrigin (10D)

(c) Schwefel (10D) (d) Styblinski-Tang (10D)

Figure 7: Black-box optimization progress of LEAF-GP vs. baseline. Plot shows the median line and
confidence intervals (first and third quartile) from 20 random seeds. Section 5.2 provides more details

22

(a) G1 (13D, 9IC) (b) G3 (5D, 1EC)

(c) G4 (10D, 6IC) (d) G6 (2D, 2IC)

(e) G7 (10D, 8IC) (f) G10 (8D, 6IC)

(g) Alkylation (7D, 14IC) (h) Pressure Vessel (4D, 3IC)

Figure 8: Feasible black-box optimization progress of LEAF-GP vs. baseline. Plot shows the median
line and confidence intervals (first and third quartile) from 20 random seeds. Confidence intervals are
neglected for methods that cannot improve the initial training data. Figure subtitles give the function
name and number of: dimensions (D), equality constraints (EC), and inequality constraints (IC).
Section 5.3 provides more details.

23

F VAE-NAS

Figure 9: Feasible black-box optimization comparing LEAF-GP vs. baseline. Plot shows median line
and confidence intervals (first and third quartiles) from 20 random seeds. Figure subtitles give the
number of dimensions (D) and inequality constraints (IC). Section 5.4 provides details.

Table 4 gives more details on the Section 5.4 Variational Autoencoder Neural Architecture Search
(VAE-NAS) benchmark problem, which was adapted from Daxberger et al. [16]. As their exact
implementation is not publicly available, we created a benchmark problem based on the paper
description and training scripts by Rath [58]. VAE-NAS (32D) has a total of 32 hyperparameters to
tune, i.e., 1 continuous, 20 integer, and 11 categorical variables. The goal is to select hyperparameter
values for a variational autoencoder (VAE) [39] trained in PyTorch [55] on the MNIST dataset [17]
that minimize test loss, i.e., the average loss of when encoding and decoding images from the test set.
We train each tested VAE for 32 epochs using the Adam solver [38] and a fixed batch size of 128.
Only certain combinations of stride, padding, and filter size for various layers result in feasible neural
architectures. The convolutional layer output size W

e
out is computed as:

W
e
out =

W
e
in � F

e + 2P e

Se + 1 2 N, (20)

Decoder constraints are more complicated given that the size of the VAE output must match the
original MNIST image size. The output of deconvolutional layers is computed according to:

W
d
out = S

d(W d
in � 1) + F

d � 2P d +O
d (21)

Matching the output and input sizes of the VAE is non-trivial, as hyperparameters of the convolutional
and deconvolutional layers are themselves set by the optimization algorithms. To simplify the
training, layer inputs are parameterized based on outputs of the previous layer for convolutional,
deconvolutional, and fully-connected layers. Specifically, fully-connected layers FC2 and FC3 have
2⇥N

lat nodes. According to Daxberger et al. [16], we parameterize the size of the last fully-connected
layer—which can be FC3, FC4, or the latent space layer depending on which layers are active—as
C

d
1 ⇥ 7⇥ 7. This allows methods not supporting explicit input constraints to still easily find a feasible

neural architecture by deactivating all deconvolutional layers and computing an output 16⇥ 7⇥ 7 =
784 with C

d
1 = 16 (the original MNIST image size is 1⇥ 28⇥ 28 = 784). This rule supersedes other

layer size definitions for fully-connected layers. Moreover, we extend the benchmark by introducing
the nonlinear activation function of each layer as a categorical optimization hyperparameter. Methods
that do not support categorical features use one-hot encoding. The activation function of the last
layer is fixed as the sigmoid function, superseding other activation function hyperparameters. The
VAE is trained using the sum of binary cross-entropy loss (reconstruction error) and KL divergence.
We use the same loss function to evaluate the VAE’s performance on the test dataset, giving the
black-box objective in Fig. 9. To allow for a fair comparison, the same 10 randomly sampled feasible
architectures initialize all methods.

LEAF-GP has access to constraints describing feasible neural architectures. We begin by defining
auxiliary variables similar to the benchmark in Section D.3:
W

e
in,i 2 N0, 8i 2 [1, 2] , (22a)

24

w
e
out,i 2 N0, 8i 2 [1, 2] , (22b)

W
e
out,i 2 N0, 8i 2 [1, 2] , (22c)

b
e
covn,i 2 {0, 1}, 8i 2 [1, 2] , (22d)
N

e
conv = b

e
conv,1 + b

e
conv,2, (22e)

b
e
conv,1 � b

e
conv,2 (22f)

where W
e
in,i and W

e
out,i denote, respectively, the input and output sizes of convolutional layer i in

the encoder. We also define an auxiliary variable w
e
out,i to track the output size for inactive layers,

as well as binary variables be
conv,i corresponding to the active/inactive state of each layer. Eq. (22e)

and Eq. (22f) link binary variables be
conv,i to the number of active convolutional layers in the encoder.

Using these auxiliary variables, the following relations can be expressed:

W
e
in,1 = 28, (23a)

W
e
in,2 = W

e
out,1, (23b)

w
e
out,i =

W
e
in,i � F

e
i + 2P e

i

Se
i

+ 1, 8i 2 [1, 2] , (23c)

W
e
out,i = b

e
conv,iw

e
out,i + (1� b

e
conv,i)W

e
in,i, 8i 2 [1, 2] , (23d)

W
e
out,2 � 1 (23e)

Eq. (23a) and Eq. (23b) define the input sizes as the MNIST image input size W e
in,1 = 28 for the first

layer and the output size of the previous convolution for ensuing layers. Eq. (23c) defines the layer
i output we

out,i given the filter size F
e
i , padding P

e
i , and stride S

e
i . Eq. (23d) ensures that the actual

convolutional layer output W e
out,i only takes the value of we

out,i if the layer is active. Finally, Eq. (23e)
enforces the output size of the encoder to be at least one.

We add similar auxiliary variables and constraints for the deconvolutional layers:

W
d
in,i 2 N0, 8i 2 [1, 2] , (24a)

w
d
out,i 2 N0, 8i 2 [1, 2] , (24b)

W
d
out,i 2 N0, 8i 2 [1, 2] , (24c)

b
d
dec,i 2 {0, 1}, 8i 2 [1, 2] , (24d)

N
d
dec = b

e
dec,1 + b

e
dec,2, (24e)

b
d
dec,1 � b

e
dec,2, (24f)

b
d
dec,1 ! W

d
out,2 = 28, (24g)

¬bd
dec,1 ! C

d
1 = 16 (24h)

The Eq. (24g) indicator constraint restricts the decoder output to be the original image size
W

d
out,2 = 28 if deconvolutional layers are active. Another indicator constraint Eq. (24h) handles

the aforementioned case where no deconvolutional layer is active and C
d
1 = 16 ensures that the

decoder output size can be resized to original MNIST image size. We emphasize that this rule is
introduced to simplify the feasible architecture search for methods that do not support explicit input
constraints. Note that LEAF-GP could add additional constraints to ensure the architecture’s output
size can always be resized to the original image size of 28⇥28.

W
d
in,1 = 7, (25a)

W
d
in,2 = W

d
out,1, (25b)

w
d
out,i = S

d
i (W

d
in,i � 1) + F

d
i � 2P d

i +O
d
i , 8i 2 [1, 2] , (25c)

S
d
i � O

d
i + 1, 8i 2 [1, 2] , (25d)

W
d
out,i = b

d
conv,iw

d
out,i + (1� b

d
conv,i)W

d
in,i, 8i 2 [1, 2] (25e)

Similar to the encoder, Eq. (25) defines constraints for feasible decoder layers. For deconvolutional
layers, we also tune output padding O

d
i . According to the PyTorch [24] documentation, output

padding must be smaller than either stride or dilation. Given that we do not optimize dilation in

25

deconvolutional layers, Eq. (25d) enforces output padding to be smaller than stride. We introduce
similar constraints for fully-connected layers in both the encoder and decoder:

bfc,i 2 {0, 1}, 8i 2 [1, 4] , (26a)
Nfc = bfc,1 + bfc,2, (26b)

N
d
fc = bfc,3 + bfc,4, (26c)

bfc,1 � bfc,2, (26d)
bfc,3 � bfc,4 (26e)

To break symmetries in the benchmark problem, we add constraints (27a)–(27m):

¬be
conv,i ! C

e
i  4, 8i 2 [1, 2] , (27a)

¬be
conv,i ! S

e
i  1, 8i 2 [1, 2] , (27b)

¬be
conv,i ! P

e
i  0, 8i 2 [1, 2] , (27c)

¬be
conv,i ! F

e
i = 2, 8i 2 [1, 2] , (27d)

¬be
conv,i ! Act

e
i = ReLU, 8i 2 [1, 2] , (27e)

¬bfc,i ! Act
fc
i = ReLU, 8i 2 [1, 4] , (27f)

¬bfc,1 ! N
fc
1  0, (27g)

¬bd
dec,i ! C

d
i  4, 8i 2 [1, 2] , (27h)

¬bd
dec,i ! S

d
i  1, 8i 2 [1, 2] , (27i)

¬bd
dec,i ! P

d
i  0, 8i 2 [1, 2] , (27j)

¬bd
dec,i ! O

d
i  0, 8i 2 [1, 2] , (27k)

¬bd
dec,i ! F

d
i = 2, 8i 2 [1, 2] , (27l)

¬bd
dec,1 ! Act

d
1 = ReLU (27m)

Constraints (27a)–(27m) set layer-specific hyperparameters to pre-defined default values when the
associated layer is inactive. We select these defaults as the lower bound for non-categorical variables
and the first category for categorical variables. While SMAC is unable to handle more complicated
constraints restricting outputs of deconvolutional layers, it can handle hierarchical search space
structures. For VAE-NAS benchmark runs using SMAC as an optimizer we enforce hierarchies
according to constraints (27a)–(27m) which deactivate hyperparameters for inactive layers.

26

Table 4: Hyperparameter names, types, and domains for the VAE-NAS benchmark. The
transformation column refers to post-processing computations before passing the hyperparam-
eter value to the neural network training. The architecture with all layers activated comprises
C1-C2-FC1-FC2-L-FC3-FC4-D1-D2, with L referring to the latent space layer.

Name Type Domain Transformation

General
0 Learning rate conti. [�4.0,�2.0] ↵ = 10x0

1 Latent space size integer [16, 64] N
lat = x1

2 Num. conv. enc. layers integer [0, 2] N
e
conv = x2

3 Num. fully-conn. enc. layers integer [0, 2] N
e
fc = x3

4 Num. deconv. dec. layers integer [0, 2] N
d
dec = x4

5 Num. fully-conn. dec. layers integer [0, 2] N
d
fc = x5

Encoder
Convolutional layer 1 (C1)

6 Number of output channels integer [2, 5] C
e
1 = 2x6

7 Stride integer [1, 2] S
e
1 = x7

8 Padding integer [0, 3] P
e
1 = x8

9 Filter size categ. {3, 5} F
e
1 = x9

10 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
e
1 = x10

Convolutional layer 2 (C2)
11 Number of output channels integer [3, 6] C

e
2 = 2x11

12 Stride integer [1, 2] S
e
2 = x12

13 Padding integer [0, 3] P
e
2 = x13

14 Filter size categ. {3, 5} F
e
2 = x14

15 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
e
2 = x15

Fully-connected layer 1 (FC1)
16 Number of nodes integer [0, 15] N

fc
1 = 64⇥ x16

17 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
fc
1 = x17

Fully-connected layer 2 (FC2)
18 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act

fc
2 = x18

Decoder
Fully-connected layer 3 (FC3)

19 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
fc
3 = x19

Fully-connected layer 4 (FC4)
20 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act

fc
4 = x20

Deconvolutional layer 1 (D1)
21 Number of input channels integer [3, 6] C

d
1 = 2x21

22 Stride integer [1, 2] S
d
1 = x22

23 Padding integer [0, 3] P
d
1 = x23

24 Output Padding integer [0, 1] O
d
1 = x24

25 Filter size categ. {3, 5} F
d
1 = x25

26 Activation function categ. {ReLU, PReLU, Leaky ReLU} Act
d
1 = x26

Deconvolutional layer 2 (D2)
27 Number of input channels integer [2, 5] C

d
2 = 2x27

28 Stride integer [1, 2] S
d
2 = x28

29 Padding integer [0, 3] P
d
2 = x29

30 Output Padding integer [0, 1] O
d
2 = x30

31 Filter size categ. {3, 5} F
d
2 = x31

27

References
[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical programming,

95(1):3–51, 2003.

[2] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. Botorch:
a framework for efficient Monte-Carlo Bayesian optimization. Advances in Neural Information
Processing Systems, 33:21524–21538, 2020.

[3] R. Baptista and M. Poloczek. Bayesian optimization of combinatorial structures. In International
Conference on Machine Learning, pages 462–471. PMLR, 2018.

[4] H. Y. Benson and Ü. Sağlam. Mixed-integer second-order cone programming: A survey. In
Theory Driven by Influential Applications, pages 13–36. INFORMS, 2013.

[5] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.
Advances in Neural Information Processing Systems, 24, 2011.

[6] D. E. Bernal, Q. Chen, F. Gong, and I. E. Grossmann. Mixed-integer nonlinear decomposition
toolbox for Pyomo (MindtPy). In Computer Aided Chemical Engineering, volume 44, pages
895–900. Elsevier, 2018.

[7] J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497–
89509, 2020.

[8] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex mixed
integer nonlinear programs. Discrete Optimization, 5(2):186–204, 2008.

[9] F. Boukouvala and M. G. Ierapetritou. Derivative-free optimization for expensive constrained
problems using a novel expected improvement objective function. AIChE Journal, 60(7):
2462–2474, 2014.

[10] P. Buathong, D. Ginsbourger, and T. Krityakierne. Kernels over sets of finite sets using RKHS
embeddings, with application to Bayesian (combinatorial) optimization. In International
Conference on Artificial Intelligence and Statistics, pages 2731–2741. PMLR, 2020.

[11] F. Ceccon, J. Jalving, J. Haddad, A. Thebelt, C. Tsay, C. D. Laird, and R. Misener. OMLT:
Optimization & machine learning toolkit. arXiv, 2202.02414, 2022.

[12] C. A. Coello and E. M. Montes. Constraint-handling in genetic algorithms through the use of
dominance-based tournament selection. Advanced Engineering Informatics, 16(3):193–203,
2002.

[13] C. Coey, M. Lubin, and J. P. Vielma. Outer approximation with conic certificates for mixed-
integer convex problems. Mathematical Programming Computation, 12(2):249–293, 2020.

[14] D. D. Cox and S. John. A statistical method for global optimization. In Proceedings 1992 IEEE
International Conference on Systems, Man, and Cybernetics, pages 1241–1246. IEEE, 1992.

[15] A. Davies and Z. Ghahramani. The random forest kernel and other kernels for big data from
random partitions. arXiv, 1402.4293, 2014.

[16] E. Daxberger, A. Makarova, M. Turchetta, and A. Krause. Mixed-variable Bayesian optimization.
In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence, pages 2633–2639, 2021.

[17] L. Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[18] A. Deshwal, S. Belakaria, and J. R. Doppa. Scalable combinatorial Bayesian optimization with
tractable statistical models. arXiv, 2008.08177, 2020.

[19] A. Deshwal, S. Belakaria, and J. R. Doppa. Bayesian optimization over hybrid spaces. In
International Conference on Machine Learning, pages 2632–2643. PMLR, 2021.

28

[20] S. Drewes and S. Ulbrich. Mixed integer second order cone programming. Verlag Dr. Hut
Germany, 2009.

[21] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. The Journal of
Machine Learning Research, 20(1):1997–2017, 2019.

[22] P. I. Frazier. A tutorial on Bayesian optimization. arXiv, 1807.02811, 2018.

[23] É. Fromont, H. Blockeel, and J. Struyf. Integrating decision tree learning into inductive
databases. In International Workshop on Knowledge Discovery in Inductive Databases, pages
81–96. Springer, 2006.

[24] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural
Information Processing Systems, 2018.

[25] E. C. Garrido-Merchán and D. Hernández-Lobato. Dealing with categorical and integer-valued
variables in Bayesian optimization with Gaussian processes. Neurocomputing, 380:20–35,
2020.

[26] S. Gopakumar, S. Gupta, S. Rana, V. Nguyen, and S. Venkatesh. Algorithmic assurance:
An active approach to algorithmic testing using Bayesian optimisation. Advances in Neural
Information Processing Systems, 31, 2018.

[27] S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh. Bayesian optimization for
adaptive experimental design: A review. IEEE access, 8:13937–13948, 2020.

[28] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[29] E. Han, I. Arora, and J. Scarlett. High-dimensional Bayesian optimization via tree-structured
additive models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 7630–7638, 2021.

[30] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, and A. Aspuru-Guzik. Gryffin: An algorithm
for Bayesian optimization of categorical variables informed by expert knowledge. Applied
Physics Reviews, 8(3):031406, 2021.

[31] T. Head, MechCoder, G. Louppe, I. Shcherbatyi, fcharras, Z. Vinícius, cmmalone, C. Schröder,
nel215, and N. C. et al. scikit-optimize/scikit-optimize: v0.5.2. Zenodo, Mar. 2018. doi:
10.5281/zenodo.1207017.

[32] A. Hedar. Test function web pages. Retrieved May 18, 2022, from http://www-optima.amp.
i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm.

[33] H. Hijazi, P. Bonami, and A. Ouorou. An outer-inner approximation for separable mixed-integer
nonlinear programs. INFORMS Journal on Computing, 26(1):31–44, 2014.

[34] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential Model-Based Optimization for General
Algorithm Configuration. In Proceedings of the 5th International Conference on Learning and
Intelligent Optimization, pages 507–523. Springer-Verlag, 2011.

[35] R. Jenatton, C. Archambeau, J. González, and M. Seeger. Bayesian optimization with tree-
structured dependencies. In International Conference on Machine Learning, pages 1655–1664.
PMLR, 2017.

[36] Y. Jin and J. Branke. Evolutionary optimization in uncertain environments-a survey. IEEE
Transactions on Evolutionary Computation, 9(3):303–317, 2005.

[37] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu. LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 3149–3157. Curran Associates Inc., 2017.

[38] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv, 1412.6980, 2014.

[39] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv, 1312.6114, 2013.

29

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

[40] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian Institute for Advanced Research).
URL http://www.cs.toronto.edu/~kriz/cifar.html.

[41] Y.-J. Kuo and H. D. Mittelmann. Interior point methods for second-order cone programming
and or applications. Computational Optimization and Applications, 28(3):255–285, 2004.

[42] D. Lee, H. Park, and C. D. Yoo. Face alignment using cascade Gaussian process regression
trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4204–4212, 2015.

[43] J.-C. Lévesque, A. Durand, C. Gagné, and R. Sabourin. Bayesian optimization for conditional
hyperparameter spaces. In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 286–293. IEEE, 2017.

[44] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf,
R. Sass, and F. Hutter. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization. The Journal of Machine Learning Research, 23:54–1, 2022.

[45] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone
programming. Linear algebra and its applications, 284(1-3):193–228, 1998.

[46] M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. Extended formulations in mixed-integer
convex programming. In International Conference on Integer Programming and Combinatorial
Optimization, pages 102–113. Springer, 2016.

[47] A. Lundell and J. Kronqvist. Polyhedral approximation strategies for nonconvex mixed-integer
nonlinear programming in SHOT. Journal of Global Optimization, 82(4):863–896, 2022.

[48] X. Ma and M. Blaschko. Additive tree-structured covariance function for conditional parameter
spaces in Bayesian optimization. In International Conference on Artificial Intelligence and
Statistics, pages 1015–1025. PMLR, 2020.

[49] V. V. Mišić. Optimization of tree ensembles. Operations Research, 68(5):1605–1624, 2020.

[50] M. Mistry, D. Letsios, G. Krennrich, R. M. Lee, and R. Misener. Mixed-integer convex nonlinear
optimization with gradient-boosted trees embedded. INFORMS Journal on Computing, 33(3):
1103–1119, 2021.

[51] G. Nanfack, P. Temple, and B. Frénay. Constraint enforcement on decision trees: A survey.
ACM Computing Surveys (CSUR), 2022.

[52] D. Nguyen, S. Gupta, S. Rana, A. Shilton, and S. Venkatesh. Bayesian optimization for
categorical and category-specific continuous inputs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5256–5263, 2020.

[53] S. Nijssen and E. Fromont. Mining optimal decision trees from itemset lattices. In Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 530–539, 2007.

[54] T. P. Papalexopoulos, C. Tjandraatmadja, R. Anderson, J. P. Vielma, and D. Belanger. Con-
strained discrete black-box optimization using mixed-integer programming. In International
Conference on Machine Learning, pages 17295–17322. PMLR, 2022.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, and L. e. a. Antiga. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32, pages
8024–8035. Curran Associates, Inc., 2019.

[56] A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in Neural
Information Processing Systems, 20, 2007.

[57] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

30

http://www.cs.toronto.edu/~kriz/cifar.html

[58] S. R. Rath. Convolutional Variational Autoencoder in PyTorch on MNIST
Dataset. Retrieved May 18, 2022, from https://debuggercafe.com/
convolutional-variational-autoencoder-in-pytorch-on-mnist-dataset/.

[59] B. Ru, A. Alvi, V. Nguyen, M. A. Osborne, and S. Roberts. Bayesian optimisation over multiple
continuous and categorical inputs. In International Conference on Machine Learning, pages
8276–8285. PMLR, 2020.

[60] R. Sauer, A. Colville, and C. Burwick. Computer points way to more profits. Hydrocarbon
Processing, 84(2), 1964.

[61] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of
the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

[62] solab ntu. opt-prob-collection. Retrieved May 18, 2022, from http://www.github.com/
solab-ntu/opt-prob-collect/.

[63] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test functions and
datasets. Retrieved May 18, 2022, from http://www.sfu.ca/~ssurjano.

[64] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the Condor
experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

[65] A. Thebelt, J. Kronqvist, R. M. Lee, N. Sudermann-Merx, and R. Misener. Global optimization
with ensemble machine learning models. In Computer Aided Chemical Engineering, volume 48,
pages 1981–1986. Elsevier, 2020.

[66] A. Thebelt, J. Kronqvist, M. Mistry, R. M. Lee, N. Sudermann-Merx, and R. Misener. ENT-
MOOT: A framework for optimization over ensemble tree models. Computers & Chemical
Engineering, 151:107343, 2021.

[67] A. Thebelt, C. Tsay, R. M. Lee, N. Sudermann-Merx, D. Walz, T. Tranter, and R. Misener.
Multi-objective constrained optimization for energy applications via tree ensembles. Applied
Energy, 306:118061, 2022.

[68] A. Thebelt, J. Wiebe, J. Kronqvist, C. Tsay, and R. Misener. Maximizing information from
chemical engineering data sets: Applications to machine learning. Chemical Engineering
Science, 252:117469, 2022.

[69] A. Tran, J. Sun, J. M. Furlan, K. V. Pagalthivarthi, R. J. Visintainer, and Y. Wang. pBO-
2GP-3B: A batch parallel known/unknown constrained Bayesian optimization with feasibility
classification and its applications in computational fluid dynamics. Computer Methods in
Applied Mechanics and Engineering, 347:827–852, 2019.

[70] M. Trencseni. Solving CIFAR-10 with Pytorch and SKL. Retrieved May 18, 2022, from
https://bytepawn.com/solving-cifar-10-with-pytorch-and-skl.html.

[71] J. P. Vielma, I. Dunning, J. Huchette, and M. Lubin. Extended formulations in mixed integer
conic quadratic programming. Mathematical Programming Computation, 9(3):369–418, 2017.

[72] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International Conference on Machine Learning,
pages 7105–7114. PMLR, 2019.

[73] A. Zafari, R. Zurita-Milla, and E. Izquierdo-Verdiguier. Evaluating the performance of a random
forest kernel for land cover classification. Remote sensing, 11(5):575, 2019.

31

https://debuggercafe.com/convolutional-variational-autoencoder-in-pytorch-on-mnist-dataset/
https://debuggercafe.com/convolutional-variational-autoencoder-in-pytorch-on-mnist-dataset/
http://www.github.com/solab-ntu/opt-prob-collect/
http://www.github.com/solab-ntu/opt-prob-collect/
http://www.sfu.ca/~ssurjano
https://bytepawn.com/solving-cifar-10-with-pytorch-and-skl.html

	Introduction
	Related work
	Technical background on prior work
	Tree ensemble kernel as a Gaussian process prior
	Posterior distribution
	Global optimization of tree ensembles

	Tree ensemble kernels for Bayesian optimization
	Numerical studies
	Uncertainty metric
	Local vs. global acquisition optimization
	Constrained spaces
	Mixed-variable spaces

	Conclusion
	Acknowledgements
	Appendix
	General experimental setup
	Algorithms
	LEAF-GP and LEAF-GP-RND
	GA
	SKOPT-GBRT and SKOPT-RF
	SMAC
	UCB-MATERN and EI-MATERN

	Benchmark problems
	Unconstrained problems
	Constrained problems
	CIFAR-NAS

	Additional Results
	VAE-NAS

