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Abstract

Multi-armed bandit problems provide a framework to identify the optimal inter-
vention over a sequence of repeated experiments. Without additional assumptions,
minimax optimal performance (measured by cumulative regret) is well-understood.
With access to additional observed variables that d-separate the intervention from
the outcome (i.e., they are a d-separator), recent “causal bandit” algorithms prov-
ably incur less regret. However, in practice it is desirable to be agnostic to whether
observed variables are a d-separator. Ideally, an algorithm should be adaptive; that
is, perform nearly as well as an algorithm with oracle knowledge of the presence
or absence of a d-separator. In this work, we formalize and study this notion of
adaptivity, and provide a novel algorithm that simultaneously achieves (a) optimal
regret when a d-separator is observed, improving on classical minimax algorithms,
and (b) significantly smaller regret than recent causal bandit algorithms when the
observed variables are not a d-separator. Crucially, our algorithm does not require
any oracle knowledge of whether a d-separator is observed. We also generalize this
adaptivity to other conditions, such as the front-door criterion.

1 Introduction

Given a set of interventions (actions) for a specific experiment, we are interested in learning the best
one with respect to some outcome of interest. Without knowledge of specific causal structure relating
the observed variables, this task is impossible from solely observational data (c.f. Theorem 4.3.2
of [29]). Instead, we seek the most efficient way to sequentially choose interventions for i.i.d.
repetitions of the experiment, where the main challenge is that we cannot observe the counterfactual
effect of interventions we did not choose. Without any structural assumptions beyond i.i.d., one
can always learn the best intervention with high confidence by performing each intervention a
sufficient number of times [10]. In the presence of additional structure—such as a causal graph on
observables—this strategy may result in performing suboptimal interventions unnecessarily often.
However, the presence of such structure is often unverifiable, and incorrectly supposing that it exists
may catastrophically mislead the experimenter. Thus, a fundamental question arises: Can we avoid
strong, unverifiable assumptions while simultaneously performing fewer harmful interventions when
advantageous structure exists?

A natural framework in which to study this question is that of (multi-armed) bandit problems: Over
a sequence of interactions with the environment, the experimenter chooses an action using their
experience of the previous interactions, and then observes the reward of the chosen action. The goal
is to achieve comparable performance with what would have been achieved if the experimenter had
chosen the (unknown) optimal action in each interaction. Formally, performance is measured by
regret, which is the difference of the cumulative reward incurred by the experimenter compared to
the optimal action. In this partial-information setting, regret induces the classical trade-off between
exploration (choosing potentially suboptimal actions to learn if they’re optimal) and exploitation
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(choosing the action that empirically appears the best). In contrast, other measures of performance
(e.g., only identifying the average treatment effect or the best action at the end of all interactions) do
not penalize the experimenter for performing suboptimal actions during exploration, and consequently
are insufficient to study our question of interest.

For an action set A and a time horizon T , the minimax optimal regret for bandits without any
assumptions on the data (worst-case) is Õ(

√
|A|T ) [6], and is achieved by many algorithms [19].

Recently, Lu et al. [24] showed that, under additional causal structure, a new algorithm (C-UCB) can
achieve improved regret. In particular, if the experimenter has access to a variable Z—taking values
in a finite set Z—that d-separates [29] the intervention and the reward, as well as the interventional
distribution of Z for each a ∈ A, C-UCB achieves Õ(

√
|Z|T ) regret. However, as we show, the

performance of C-UCB when the d-separation assumption fails is orders of magnitude worse than
that of UCB. Is strict adaptation possible? That is, is there an algorithm that recovers the guarantee
of C-UCB when Z is a d-separator and the guarantee of UCB in all other environments, without
advance knowledge of whether Z is a d-separator?

As of yet, there is no general theory of adaptivity in the bandit setting. The closest we have to a
general method is the Corral algorithm and its offspring [2, 4]. Corral uses online mirror descent to
combine “base” bandit algorithms, but requires that each of the base algorithms is “stable” when
operating on importance-weighted observations. Unfortunately, while UCB is stable, simulations
reveal this not to be the case for C-UCB. This presents a barrier to adapting to causal structure via
Corral-like techniques, and raises the question of whether there is a new way to achieve adaptivity.

Contributions. We introduce the conditionally benign property for bandit environments: informally,
there exists a random variable Z such that the conditional distribution of the reward given Z is the
same for each action a ∈ A. We show that the conditionally benign property is (a) strictly weaker
than the assumption of Lu et al. [24] (in their proofs, they actually assume that all causal parents of
the reward are observed); (b) equivalent to Z being a d-separator when A is all interventions; and
(c) implied by the front-door criterion [29] when A is all interventions except the null intervention
(i.e., a pure observation). We then prove that any algorithm that achieves optimal worst-case regret
must incur suboptimal regret for some conditionally benign environment, and hence strict adaptation
to the conditionally benign property is impossible. Despite this, we introduce the hypothesis-tested
adaptive causal upper confidence bound algorithm (HAC-UCB), which provably (a) achieves non-
vacuous (sublinear in T ) regret at all times without any assumptions, (b) recovers the improved
performance of C-UCB for conditionally benign environments, and (c) performs as well as UCB in
certain environments where C-UCB and related algorithms (such as those studied in [25, 27]) incur
linear regret. Empirically, we observe these performance improvements on simulated data.

Impact. Recently, multiple works have developed causal bandit algorithms that achieve improved
performance in the presence of advantageous causal relationships (initiated by Bareinboim et al.
[7] and Lattimore et al. [17]; see Section 7 for more literature). Further, the last decade has seen
a flurry of work in bandits on designing algorithms that recover worst-case regret bounds while
simultaneously performing significantly better in advantageous settings, without requiring advance
knowledge of which case holds [e.g., 9, 31, 34, 26, 1]. However, to the best of our knowledge,
no existing work studies algorithms that achieve adaptive regret guarantees with respect to causal
structure. The present work provides a framework that expands the study of adaptive decision making
to the rich domain of causal inference.

2 Preliminaries

2.1 Problem Setting

We consider a general extension of the usual bandit setting where, in addition to a reward correspond-
ing to the action played, the experimenter observes some additional variables after choosing their
action; we call this the post-action context. This is distinct from the contextual bandit problem, where
the experimenter has access to side-information before choosing their action.

Let Y = [0, 1] be the reward space2, Z be a finite set of values for the post-action context to take,
and P(Z × Y) denote the set of joint probability distributions. For any p ∈ P(Z × Y) and

2Our results hold for Y = R using sub-Gaussian rewards with bounded mean at the expense of constants.
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(Z,Y)-valued random variable (Z, Y ), let p(Z) and p(Y | Z) denote the marginal and conditional
distributions respectively. Let Ep and Pp denote expectation and probability operators under p.

The stochastic bandit problem with post-action contexts proceeds as follows: For each round t ∈ [T ],
the experimenter selects At ∈ A while simultaneously {(Zt(a), Yt(a)) : a ∈ A} are independently
sampled from the environment, which is any family of distributions ν = {νa : a ∈ A} ∈P(Z×Y)A
indexed by the action set. The experimenter only observes (Zt(At), Yt(At)) and receives reward
Yt(At). From a causal perspective, (Zt(a), Yt(a))a∈A corresponds to the potential outcome vector,
and under causal consistency, (Zt(At), Yt(At)) corresponds to the observed data (Zt, Yt) under the
chosen intervention At.

The observed history up to round t is the random variable Ht = (As, Zs(As), Ys(As))s∈[t]. A
policy is a sequence of measurable maps from the observed history to the action set, denoted

π = (πt)t∈[T ] ∈ Π(A,Z, T ) :=
T∏
t=1

{
(A×Z × Y)t−1 → A

}
.

The experimenter chooses a policy in advance to select their action on each round according to
At = πt(Ht−1). Clearly, an environment ν and a policy π together define a joint probability
distribution on (At, Zt(a), Yt(a))t∈[T ],a∈A (which includes the “counterfactuals” not seen by the
player). Let Eν,π denote expectation under this joint distribution. The performance of a policy under
an environment is quantified by the regret

Rν,π(T ) = T ·max
a∈A

Eνa [Y ]− Eν,π
T∑
t=1

EνAt [Y ].

2.2 Specific Algorithms

Classical bandit algorithms take |A| and T as inputs. The dependence on T can often be dropped
using the doubling trick or more sophisticated techniques such as decreasing learning rates, but we
do not focus on these refinements in this work, instead allowing T as an input. In order to account for
the additional information provided by the post-action context, we also consider algorithms that take
|Z| as an input. By restricting dependence to only the cardinality of A and Z , we explicitly suppose
that there is no additional structure to exploit on these spaces; much work in the bandit literature
has focused on such structure through linear or Lipschitz rewards, but we defer these extensions to
future work in favour of focusing on adaptivity. For notational simplicity, we denote algorithmic
dependence on A or Z even though the dependence is actually through their cardinality (i.e., the
labellings of items in the sets are arbitrary).

In the causal bandit literature [17, 24, 27], it is common to suppose that the algorithm also receives
distributional information relating actions to intermediate variables. In particular, if the (unknown)
environment is ν, prior work supposes that the algorithm has access to the (interventional) marginal
distributions ν(Z) = {νa(Z) : a ∈ A}. In this work, we suppose instead that the algorithm has
access to a collection of approximate marginal distributions ν̃(Z) = {ν̃a(Z) : a ∈ A}; for example,
these could be an estimate of ν(Z) that was learned offline. Ideally, ν̃(Z) will be close to ν(Z), but
our novel method is entirely adaptive to this assumption: regardless of how well ν̃(Z) approximates
ν(Z), HAC-UCB incurs sublinear regret.

We now introduce additional notation to define the algorithms of interest in this work. Suppose that
A, Z , ν̃(Z), and T are all fixed in advance, as well as a confidence parameter δ = δT ∈ (0, 1).
For each t ∈ [T ], z ∈ Z , and a ∈ A, define the number of the first t rounds on which z was
observed by TZt (z) = 1 ∨

∑t
s=1 I{Zs(As) = z} (where a ∨ b = max{a, b}), and similarly the

number of rounds on which a was chosen by TAt (a) = 1 ∨
∑t
s=1 I{As = a}. Further, define the

empirical mean estimate for the reward under the distribution induced by choosing the action a as
µ̂At (a) = [TAt (a)]−1∑t

s=1 Ys(As)I{As = a} and the empirical conditional mean estimate for the
reward given that z was observed as µ̂Zt (z) = [TZt (z)]−1∑t

s=1 Ys(As)I{Zs(As) = z}. Define
UCBAt (a) = µ̂At (a) +

√
log(2/δ)/(2TAt (a)), UCBZt (z) = µ̂Zt (z) +

√
log(2/δ)/(2TZt (z)), and

ŨCBt(a) =
∑
z∈Z UCBZt (z)Pν̃a [Z = z].

Using these objects, we define three algorithms, each of which produces actions that are
Ht-measurable. The upper confidence bound algorithm (UCB, [6]) is defined by AUCB

t+1 =
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arg maxa∈AUCBAt (a), and the causal upper confidence bound algorithm (C-UCB, [24]) is defined
by AC

t+1 = arg maxa∈A ŨCBt(a), where ties are broken by using some predetermined ordering on
A. Finally, we define a new combination of these two methods, which we call the hypothesis-tested
adaptive causal upper confidence bound algorithm (HAC-UCB) and describe precisely in Algorithm 1;
we denote its actions by AHAC

t+1.

Algorithm 1: HAC-UCB(A, Z , T , ν̃(Z))

do Play each a ∈ A for d4
√
T / |A| e rounds, and let ν̂a(Z) be the MLE of νa(Z)

if supa∈A
∑
z∈Z

∣∣∣Pν̃a [Z = z]− Pν̂a [Z = z]
∣∣∣ > 2T−1/4

√
|A| |Z| log T

replace ν̃(Z)←− ν̂(Z)
do Play each a ∈ A for d

√
T / |A| e rounds

set flag = True
while t ≤ T

if flag
/* Check if either of the two conditions fail */

set DAt−1(a) = UCBAt−1(a)− ŨCBt−1(a) +
√
|A||Z| logT
T 1/4

for a ∈ A do

if not −2
∑
z∈Z

√
logT

TZ
t−1(z) Pν̃a [Z = z] ≤ DAt−1(a) ≤ 2

√
logT

TA
t−1(a) + 2

√
|A||Z| logT
T 1/4

set flag = False; break
/* If conditions pass, play C-UCB */
if flag

set AHAC
t = AC

t ;
else

set AHAC
t = AUCB

t ;
else

/* If conditions ever fail, play UCB forever */
set AHAC

t = AUCB
t ;

Heuristically, HAC-UCB has an initial exploration period to ensure that ν̃(Z) is sufficiently accurate—
if not, it is replaced with the maximum likelihood estimate (MLE) of the marginals—and then
optimistically plays C-UCB until there is sufficient evidence that the environment is not conditionally
benign. The switch from C-UCB to UCB is decided by a hypothesis test performed on each round,
which uses the confidence intervals that will hold if the environment is conditionally benign. When
the arm mean estimates of UCB and C-UCB disagree, this provides evidence that the environment
is not conditionally benign, and the evidence is considered sufficient to switch when the size of the
disagreement is large compared to the size of the confidence intervals themselves. As we illustrate
in the proof of the regret bounds, with high probability this test will not induce a switch for a
conditionally benign environment, and will sufficiently limit the regret incurred by C-UCB if the
environment is not conditionally benign.

3 Conditionally Benign Property

We now formalize the main property that HAC-UCB will adaptively exploit.

Definition 3.1. An environment ν ∈P(Z × Y)A is conditionally benign if and only if there exists
p ∈P(Z × Y) such that for each a ∈ A, νa(Z)� p(Z) and νa(Y | Z) = p(Y | Z) p-a.s.

This definition does not require any causal terminology to define or use for regret bounds, but we now
instantiate it for the causal setting. For a collection of finite random variables V and a (potentially)
continuous random variable Y , let PV be the set of all joint probability distributions with strictly
positive marginal probabilities on V. Fix a DAG G on (V, Y ) such that Y is a leaf and two disjoint
sets Z ⊆ V and A ⊆ V such that PaGA ⊆ V \Z. Let A be the set of all possible do interventions on
A, and for each a ∈ A let pa denote the interventional distribution (Definition A.5). This structure
suggests a graphical analogue of the conditionally benign property.
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Definition 3.2. For any DAG G and A′ ⊆ A, (G,A′) is conditionally benign if and only if for all
p ∈PV that are Markov relative to G, {pa(Z, Y ) : a ∈ A′} is conditionally benign.

We now connect the conditionally benign property to d-separation (Definition A.6) and the front-door
criterion (Definition A.8). All proofs are deferred to Appendix A, along with standard notation and
definitions from the causal literature.
Theorem 3.3. Z d-separates Y from A on G if and only if (G,A) is conditionally benign.

This equivalence is a strict specialization of the conditionally benign property to the causal setting. In
particular, to define conditionally benign, we need not require all possible interventions be allowed.
Define A0 to be A with the null (observational) intervention removed, and let GĀ denote G with all
edges directed into A removed.
Theorem 3.4. Z d-separates Y from A on GĀ if and only if (G,A0) is conditionally benign.

The benefits of discarding the null intervention are demonstrated by the following fact.
Lemma 3.5. Z d-separates Y from A on GĀ if Z satisfies the front-door criterion for (A, Y) on G.

We visualize the preceding results in Figure 1. In graph (a), Z d-separates the intervention from
the reward, and hence any Markov relative distribution (Definition A.3) will induce a conditionally
benign environment. Graph (b) corresponds to a setting where one cannot hope to always improve per-
formance due to the direct effect of the intervention on the reward, and consequently the environment
need not be conditionally benign. In graph (c), the presence of the unobserved confounder U means
that Z does not d-separate the intervention from the reward. However, if the null intervention is not
considered, the arrow from U to A is never applicable, and hence any Markov relative distribution on
the modified DAG will induce a conditionally benign environment. Specifically, graph (c) satisfies
the front-door criterion, revealing that the conditionally benign property captures that this setting
is still benign for decision-making, even though the conditions assumed by Lu et al. [24] do not
hold. Finally, in graph (d), the unobserved confounder U once again violates d-separation, but also
the front-door criterion is not satisfied because of the back-door path from Z to Y . Hence, even
discarding the null intervention does not guarantee that the environment will be conditionally benign.

(a)

A Z Y

(b)

A Z Y

(c)

A Z Y

U (d)

A Z Y

U

Figure 1: DAGs to illustrate the conditionally benign property. A is the intervention, Z is the
post-action context, Y is the reward, and U is an unobserved variable. (G,A) is conditionally benign
for (a) but only (G,A0) is conditionally benign for (c). For (b) and (d) the environment need not be
conditionally benign.

4 Analysis of Bandit Algorithms

We now study the impact of the conditionally benign property on regret. All proofs are deferred to
Appendix B. First, recall the standard regret bound for UCB, with constants tuned to rewards in [0, 1].
Theorem 4.1 (Theorem 7.2 of [19]). For all A, Z , T , and ν ∈P(Z × Y)A, if δ = 2/T 2

Rν,UCB(T ) ≤ 2 |A|+ 4
√

2 |A|T log T .

Second, we generalize the main result of Lu et al. [24] by relaxing two assumptions: we only require
that the environment is conditionally benign, and we allow for approximate marginal distributions
using the following definition. Later, this will enable us to trade-off approximation error of ν̃(Z)
with online estimation of ν(Z) in order to ensure that HAC-UCB always incurs sublinear regret.
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Definition 4.2. For any ε ≥ 0, ν̃(Z) and ν(Z) are ε-close if

sup
a∈A

∑
z∈Z

∣∣∣Pν̃a [Z = z]− Pνa [Z = z]
∣∣∣ ≤ ε.

Theorem 4.3 (Refined Theorem 1 of [24]). For all ε > 0, A, Z , T , and conditionally benign
ν ∈P(Z × Y)A, if ν̃(Z) and ν(Z) are ε-close and δ = 2/T 2 then

Rν,C(T ) ≤ 2 |Z|+ 6
√
|Z|T log T + (log T )

√
2T + 2ε(1 +

√
log T )T.

Remark 4.4. Lu et al. [24] assume that ε = 0. Our result implies that an approximation error of
ε =

√
|Z| /T is sufficient to achieve the optimal rate. /

Next, we motivate our introduction of a new algorithm by showing that C-UCB can catastrophically
fail when the environment is not conditionally benign, incurring regret that is linear in T (which is as
bad as possible for bounded rewards).
Theorem 4.5. For every A and Z with |A| ≥ 2, there exists ν ∈ P(Z × Y)A such that even if
ν̃(Z) = ν(Z), for all possible settings of the confidence parameters, δT ,

lim
T→∞

Rν,C(T )
T

≥ 1/120.

Remark 4.6. This lower bound is specifically for C-UCB. However, any algorithm that relies on
eliminating actions from consideration via assumption rather than data is susceptible to such an issue.
In particular, this result is easily modified to apply for C-TS [24] and C-UCB-2 [27]. Other causal
algorithms (e.g., Parallel Bandit [17]) also intuitively suffer from the issue that our construction
exploits, although a different argument must be made since these rely on different causal structure. /

We now state our regret upper bound for our new algorithm, HAC-UCB. In Theorem 6.2, we will show
it is impossible to always achieve the optimal regret without knowledge of whether a d-separator is
observed, but the following theorem shows some adaptivity is always possible. Crucially, HAC-UCB
achieves sublinear regret without any assumptions on ν or ν̃(Z). For a more detailed breakdown of
the constants, see Eq. (B.9).

Theorem 4.7 (Main Result). For all A, Z , T ≥ 25 |A|2, ν ∈P(Z × Y)A, and ν̃(Z) ∈P(Z)A,

Rν,HAC(T ) ≤ 4 |A|+ 11T 3/4(log T )
√
|A| |Z|+ 15

√
(|A|+ |Z|)T log T + 5(log T )

√
T .

For all ε ≤ T−1/4
√
|A| |Z| log T , if ν is conditionally benign and ν̃(Z) and ν(Z) are ε-close then

Rν,HAC(T ) ≤ 4 |A|+ 2 |Z|+ 6
√
|Z|T log T + 4(log T )

√
T + 2ε(1 +

√
log T )T.

It is an open problem whether the dependence on T 3/4 is tight. In Theorem 6.2, we will show that
it is impossible to obtain worst-case regret of size

√
|A|T while still achieving improved regret

on conditionally benign environments. However, it may be possible to improve the dependence
on T , and the role of logarithmic factors in how much improvement is possible remains to be
understood. Towards improving this result, we now show that there exists an environment that
forces C-UCB to incur linear regret yet HAC-UCB will switch to following UCB (and hence incurs√
|A|T log T regret at worst). That is, HAC-UCB recovers the improved performance of C-UCB

when the conditionally benign property holds, is never worse than C-UCB, and optimally outperforms
C-UCB in some settings.
Theorem 4.8. There exists a constant C such that for any A and Z with |A| ≥ 2, there exists
ν ∈P(Z × Y)A so that for any δT used for C-UCB with ν̃(Z) = ν(Z),

lim
T→∞

Rν,C(T )
T

≥ 1/C,

and if ν̃(Z) = ν(Z) is used for HAC-UCB then

lim
T→∞

Rν,HAC(T )
|A|+ |Z|+

√
|A|T log T + (log T )

√
T
≤ C.

Remark 4.9. Theorem 4.8 could be stated with ν̃(Z) only ε-close to ν(Z), but for simplicity we have
supposed ε = 0 to highlight the role of the conditionally benign property. /
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5 Simulations

We now study the empirical performance of these algorithms in two key settings, corresponding
to a conditionally benign environment and the lower bound environment from Theorem 4.5. We
compare our algorithm HAC-UCB with UCB [5], C-UCB [24], C-UCB-2 [27], and Corral (for which
we use the learning rate and algorithm prescribed by [2] with the epoch-based, scale-sensitive UCB
prescribed by [4]); for all algorithms, we use the parameters that are optimal as prescribed by existing
theory. To focus solely on the impact of the conditionally benign property, we set ν̃(Z) = ν(Z). The
results of this section are a representative simulation demonstrating empirically that (a) for worst-
case environments, both C-UCB and C-UCB-2 incur linear regret, while HAC-UCB successfully
switches to incur sublinear regret to compete with Corral and UCB, and (b) for conditionally benign
environments, HAC-UCB and C-UCB enjoy improved performance compared to UCB, Corral, and
C-UCB-2, all three of which have regret growing like

√
|A|T . Implementation details are available

in Appendix D and code can be found at https://github.com/blairbilodeau/adaptive-causal-bandits.

5.1 Conditionally Benign Environment

First, we consider a conditionally benign environment. Taking the gap ∆ =
√
|A| (log T )/T , the

fixed conditional distribution for Z = {0, 1} is Y | Z ∼ Ber(1/2 + (1− Z)∆). Then, for a small
ε (we take ε = 0.0005), we set Pν1 [Z = 0] = 1− ε and Pνa [Z = 0] = ε for all other a ∈ A \ {1}.
Thus, a∗ν = 1, and the actions are separated by ∆. In summary, each z ∈ Z has positive probability
of being observed, yet each action nearly deterministically fixes Z.

In Figure 2 (left panel) we observe three main effects: (a) C-UCB and HAC-UCB perform simi-
larly (their regret curves overlap), both achieving much smaller regret that remains unchanged by
increasing |A|, (b) UCB grows at the worst-case rate of roughly

√
|A|T log T , not taking advantage

of the conditionally benign property, and (c) neither Corral nor C-UCB-2 realize the benefits of the
conditionally benign property, since the regret increases with |A| and empirically they perform worse
than UCB. We note that the x-axis starts at T = 500 to satisfy the minor requirement of T > |A|2.
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Figure 2: Regret when the conditionally benign property holds (left) and when it fails (right).

5.2 Worst Case Environment

Second, we consider an environment that is not conditionally benign. We use the same general
environment from our lower bound in Theorem 4.5, where the causal algorithms learn a biased
estimate of which z ∈ {0, 1} has a higher conditional mean since Z is not a d-separator, and
consequently they concentrate onto a bad action.

In Figure 2 (right panel), we again observe three main effects: (a) both C-UCB and C-UCB-2 incur
linear regret, as prescribed by Theorem 4.5, (b) HAC-UCB achieves sublinear regret, although it is
worse than UCB (we show in Theorem 6.2 that optimal adaptivity is impossible), and (c) Corral does
not suffer linear regret, but appears to still do worse than HAC-UCB for large T .
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6 Adaptivity for Causal Structures

Thus far we have analyzed the regret of various algorithms in two cases: environments that either
are or are not conditionally benign. Minimax algorithms (UCB) fail to achieve smaller regret
for conditionally benign environments, while causal algorithms (C-UCB) fail catastrophically in
environments that are not conditionally benign. In this section, we formalize the notion of strict
adaptivity (adaptive minimax optimality) with respect to the conditionally benign property, show that
it is impossible to be adaptively minimax optimal with respect to the conditionally benign property,
and discuss a relaxed notion of optimal adaptivity based on Pareto optimality.

6.1 Generic Algorithms

In order to describe adaptivity (and its impossibility) in the stochastic bandit problem with post-
action contexts, we require a higher level of abstraction than a policy, which we achieve with
algorithms. It is possible to define algorithms and the corresponding notion of adaptivity in abstract
generality. However, we take the same perspective as Bilodeau et al. [8] (who define adaptive
minimax optimality with respect to relaxations of the i.i.d. assumption), and sacrifice some generality
by defining algorithms using the specific objects we study in this work. Formally, an algorithm is any
map from the problem-specific inputs to the space of compatible policies, denoted by

a : (A,Z, T, ν̃(Z)) 7→ a(A,Z, T, ν̃(Z)) ∈ Π(A,Z, T ).

We denote the set of all algorithms by AC-MAB, and the subset of algorithms that are constant in
(Z, ν̃(Z)) by AMAB; this subset contains the classical bandit algorithms that are agnostic to knowledge
of post-action contexts, or more specifically, do not exploit causal structure.

6.2 Adaptive Minimax Optimality

Let p : P(Z × Y)A 7→ {0, 1} encode whether a given environment satisfies a certain property of
interest; in this work, it is always an indicator for whether ν is conditionally benign. Further, for every
q ∈P(Z), denote the set of all environments with marginal q by ΠA,Z(q) = {ν ∈P(Z × Y)A :
ν(Z) = q}. There are multiple ways one could define optimal adaptivity: we propose the following
notion of strict adaptivity, which requires that the experimenter to do as well as they possibly could
have if they had access to p(ν) in advance, but without this knowledge.
Definition 6.1. An algorithm a ∈ AC-MAB is adaptively minimax optimal with respect to p if and only
if there exists C > 0 such that for all A, Z , q ∈P(Z)A, and T ,

sup
ν∈ΠA,Z(q)

Rν,a(A,Z,q,T )(T ) ≤ C inf
π∈Π(A,Z,T )

sup
ν∈ΠA,Z(q)

Rν,π(T ) (6.1)

and
sup

ν∈ΠA,Z(q), p(ν)=1
Rν,a(A,Z,q,T )(T ) ≤ C inf

π∈Π(A,Z,T )
sup

ν∈ΠA,Z(q), p(ν)=1
Rν,π(T ). (6.2)

6.3 Impossibility of Strict Adaptivity

We now show it is impossible for any algorithm to always realize the benefits of the conditionally
benign property while also recovering the worst-case rate of

√
|A|T (e.g., Theorems 9.1 and 15.2 of

[19]), even when the algorithm has access to the true marginals. Our proof strategy is a modification
of the finite-time lower bounds from Section 16.2 of Lattimore and Szepesvári [19]. Notably, the
lower bounds of Lu et al. [24] already imply that any algorithm that does not take advantage of
causal structure cannot be adaptively minimax optimal. We prove a significantly stronger result: even
algorithms that use Z and ν̃(Z) = ν(Z) cannot be adaptively minimax optimal!
Theorem 6.2. Let a ∈ AC-MAB be such that there exists C > 0 such that for all A, Z , and T ,

sup
ν∈P(Z×Y)A

Rν,a(A,Z,ν(Z),T )(T ) ≤ C
√
|A|T .

There exists a constant C ′ such that for all A, Z , and T ≥ |A|, there exists conditionally benign
ν ∈P(Z × Y)A with

Rν,a(A,Z,ν(Z),T )(T ) ≥ C ′
√
|A|T .
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6.4 Pareto-Adaptive Minimax Optimality

In light of this impossibility result, it is of interest to characterize relaxations of strict adaptivity that
are achievable. Koolen [15] and Lattimore [18] introduce the Pareto frontier of regret, which when
applied to the conditionally benign property, is all tuples of regret guarantees such that improving the
regret in conditionally benign environments would necessarily force the worst-case regret to increase.
We propose that it is desirable for an algorithm to do as well as possible in the worst-case, subject to
always realizing smaller regret on conditionally benign environments. Formally, let A?C-MAB be the
subset of a ∈ AC-MAB that satisfy Eq. (6.2) for some constant C.
Definition 6.3. An algorithm a? ∈ A?C-MAB is Pareto-adaptively minimax optimal with respect to p if
and only if there exists C > 0 such that for all a ∈ A?C-MAB, A, Z , q ∈P(Z)A, and T ,

sup
ν∈ΠA,Z(q)

Rν,a?(A,Z,q,T )(T ) ≤ C sup
ν∈ΠA,Z(q)

Rν,a(A,Z,q,T )(T ).

It remains an open problem to prove whether HAC-UCB is Pareto-adaptively minimax optimal, and
more generally to identify the Pareto frontier for the causal bandit problem.

7 Related Work

Kocaoglu et al. [14] and Lindgren et al. [23] efficiently used interventions to learn a causal graph
under standard causal assumptions [29]. Hyttinen et al. [13] identified the minimal number of
experiments needed to learn underlying causal structure of variables with only a linear structural
assumption. Lee and Bareinboim [20, 22, 21] identified the minimal set of interventions that permit
causal effect identification in the presence of known causal structure, while Kumor et al. [16] studied
analogues of the back-door condition for identifying causal effects with unobserved confounders.

Bareinboim et al. [7] introduced causal bandits with a binary motivating example to demonstrate
that empirically better performance can be achieved by exploiting a specific, known causal structure.
Lattimore et al. [17] and Yabe et al. [35] studied best-arm identification, where the experimenter does
not incur any penalty for exploration rounds. Given knowledge of the causal graph informing the
interventions and response, they separately proved that exponential improvements in the dependence
of the regret on the action set are possible provided the underlying distribution on the causal graph is
sufficiently “balanced”.

Sen et al. [32] obtained an instance-dependent regret bound under causal assumptions, but obtained
the wrong dependence on the arm gap (∆−2 rather than ∆−1), and consequently in the worst-case
the dependence on T may still dwarf the structural benefits. Sen et al. [33] studied an alternative type
of intervention, where rather than fixing a node only the conditional probabilities are changed. This
notion is easily stated in our notation, since we allow for abstract families of distributions (indexed by
abstract “interventions”) to define a environment. However, they focused on distribution-dependent
guarantees under stronger causal assumptions, and hence our results are not directly comparable.

All of the above regret bounds heavily require assumptions about the causal graph, and without such
assumptions the presumed information learned from non-intervening rounds can catastrophically
mislead the experimenter in exactly the same way that C-UCB suffers in our Theorem 4.5. Hence,
it remains an interesting open problem to study adaptivity in each of these variations of the causal
bandit setting, and our work provides a stepping stone to do so.

Prior to the present work, Lu et al. [24] has already been extended in multiple directions. de Kroon
et al. [12] observed that C-UCB can be reduced to requiring only a separating set, but only prove
the regret is no worse than that of UCB if a separating set is observed. The authors remark that a
causal discovery algorithm could in principle be used to learn the separating set online, but observed
in their experiments that they obtain biased estimates and hence there are no convergence guarantees.
Lu et al. [25] replaced knowledge of the causal graph with the assumption that the causal graph has
a tree structure, and incorporated the cost of learning the tree into the full regret bound. Nair et al.
[27] provided an instance-dependent regret bound for an alternative algorithm to C-UCB, which they
call C-UCB-2, in the presence of the full causal graph. While they demonstrated empirically that
C-UCB-2 outperforms C-UCB for certain instances, we find that C-UCB-2 performs much worse
when a d-separator is observed, and the provable linear lower bound (Theorem 4.5) also applies to
C-UCB-2 when there are no observed d-separators.
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8 Discussion

We have demonstrated that the improved regret possible when a d-separator is observed can also be
realized in the multi-armed bandit problem by requiring only certain conditional independencies,
which we have formalized using the conditionally benign property. We proved that it is impossible
to optimally adapt to this property, but provided a new algorithm (HAC-UCB) that simultaneously
recovers the improved regret for conditionally benign environments and significantly improves on
prior work when the conditionally benign property does not hold. Crucially, our algorithm requires
no more assumptions about the world than vanilla bandit algorithms. We expect our results to spur
future work on (a) improved adaptation to the conditionally benign property, (b) relaxations of the
conditionally benign property for which optimal adaptation is possible, and (c) adaptation in more
general partial feedback settings.

In practice, HAC-UCB will be most useful in settings with a large action space and intermediate
variables that may plausibly satisfy the conditionally benign property. In passing, we mention that one
such example is learning the causal effect of genome edits (interventions) on disease phenotypes. Here,
the post-action context could be gene expressions that are sometimes assumed to be a d-separator
(e.g., [3]). We leave the implementation of our algorithm in clinical settings and collaboration with
practitioners for future work.
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A Proofs for Causal Equivalences

We begin with a restating of standard definitions for completeness.

A.1 Standard Results from Causal Literature

To be more explicit about the role of Y in the causal setting (namely, it may be continuous), we
introduce some more notation. Let V = (V1, . . . , VM , Y) denote random variables each taking values
in Vi = {v1

i , . . . , v
ki
i } and [0, 1] respectively. A causal bandit graph is any directed acyclic graph

(DAG) G defined on the nodes (V1, . . . , VM , Y ) such that (a) Y is a leaf node and (b) if there is a
directed arrow from Vi to Vi′ , then i < i′. Let PV denote the set of all probability distributions p on
(V1, . . . , VM , Y ) such that the marginal probabilities over (V1, . . . , VM ) are all strictly positive.
Definition A.1 (Markovian parents, Definition 1.2.1 of [29]). For any p ∈ PV and i ∈ [M ], the
Markovian parents of Vi under p is the minimum-cardinality subset V′ ⊆ (V1, . . . , Vi−1) such that
Vi ⊥ (V1, . . . , Vi−1) \ V′ | V′ under p. We denote this by Papi . Similarly, PapY is the minimum-
cardinality subset V′ ⊆ V such that Y ⊥ V \V′ |V′ under p.
Definition A.2 (Graphical parents). For any causal bandit graph G, the graphical parents of Vi under
G is the unique subset V′ ⊆ V of variables that have a directed arrow into Vi. We denote this by
PaGi . Similarly, PaGY is the unique subset V′ ⊆ V of variables that have a directed arrow into Y.
Definition A.3 (Markov relative, Theorem 1.2.7 of [29]). A distribution p ∈PV is Markov relative
to a causal bandit graph G if any only if for all V ∈ V ∪ {Y }, PapV ⊆ PaGV .
Remark A.4 (Equation 1.33 of [29]). If p ∈PV is Markov relative to G, then for all measurable
B ⊆ Y and (j1, . . . , jM ) ∈

∏M
i=1[ki],

p(Y ∈ B, V1 = vj1
1 , . . . , VM = vjMM ) = p(Y ∈ B | PaGY = uY)

M∏
i=1

p(Vi = vjii | PaGi = ui),

where the conditioning is understood to be on the event where the parents take the specific values
defined by u = (vj1

1 , . . . , v
jM
M ). /

Definition A.5 (Causal intervention, Definition 1.3.1 of [29]). Let p ∈PV be Markov relative to G.
The interventional distribution induced on V by the intervention a = do(Vi1 = v

ji1
i1
, . . . , Vi` = v

ji`
i`

)
is

pa(Y ∈ B, V1 = vj1
1 , . . . , VM = vjMM )

= I{Vi1 = v
ji1
i1
, . . . , Vi` = v

ji`
i`
}p(Y ∈ B | PaGY = uY)

∏
i 6∈{i1,...,i`}

p(Vi = vjii | PaGi = ui).

Definition A.6 (d-Separated, Definition 2.4.1 of [30]). Z d-separates Y from A (on G) if and only
if every path between A and Y is blocked; that is, every path contains either (a)©→ B →© or
©← B →© such that B ∈ Z, or (b)©→ B ←© with no descendents of B (including itself) in
Z.
Definition A.7 (Back-Door Path, Section 3.3.1 of [29]). A path from Z to Z′ is a back-door path if it
begins with an arrow directed into Z.
Definition A.8 (Front-Door Criterion, Definition 3.3.3 of [29]). Z satisfies the front-door criterion
relative to (A, Y) on G if and only if (a) all directed paths from A to Y pass through Z, (b) there is no
unblocked back-door path from A to Z, and (c) all back-door paths from Z to Y are blocked by A.

A.2 Proof of Theorem 3.3

We first state an intuitive result about d-separation that is used often in the causal literature, but we
could not find stated or proved precisely as follows.

Lemma A.9. If Z d-separates Y from A and PaGA ⊆ V \ Z, then Z d-separates Y from (A,PaGA).

Proof of Lemma A.9. First, every path from PaGA to Y that passes through A must satisfy one of (a)
or (b) since a subpath does. Further, every path from PaGA to Y that doesn’t pass through A can be

13



extended to a (back-door) path from A to Y using the edge PaGA → A, but PaGA ⊆ V \Z (and hence
this part of the path cannot satisfy either property), so the original path must satisfy either (a) or
(b).

Next, we recall the probabilistic equivalence of d-separation.

Theorem A.10 (Theorem 1.2.4 of [29]). Fix a causal bandit graph G and two disjoint sets Z ⊆ V
and A ⊆ V such that PaGA ⊆ V \ Z. Then Z d-separates Y from A if and only if Y ⊥ A | Z under
every distribution p ∈PV that is Markov relative to G.

We now turn to the main argument to prove Theorem 3.3. Let p ∈ PV and a = do(A = a) be
arbitrary. First, we prove the “Causal Effect Rule” [30]. For any V′ ⊆ V,

pa(V′ = v′) =
∑

u
pa(V′ = v′ | PaGA = u)pa(PaGA = u)

=
∑

u
p(V′ = v′ |A = a,PaGA = u)p(PaGA = u),

where the sum is over all possible values that PaGA can take and we have used that (a) conditional
on PaGA, the interventional and conditional distributions given A = a are equivalent, and (b) the
marginal distribution of PaGA is unchanged by intervening on A.

Now, suppose Z d-separates Y from A. Then, it follows that

pa(Y ∈ B | Z = z) = pa(Y ∈ B,Z = z)
pa(Z = z)

=
∑

u p(Y ∈ B,Z = z |A = a,PaGA = u)p(PaGA = u)∑
u p(Z = z |A = a,PaGA = u)p(PaGA = u)

=
∑

u p(Y ∈ B | Z = z,A = a,PaGA = u)p(Z = z |A = a,PaGA = u)p(PaGA = u)∑
u p(Z = z |A = a,PaGA = u)p(PaGA = u)

=
∑

u p(Y ∈ B | Z = z)p(Z = z |A = a,PaGA = u)p(PaGA = u)∑
u p(Z = z |A = a,PaGA = u)p(PaGA = u)

= p(Y ∈ B | Z = z),

where the second last step uses Lemma A.9.

Conversely, suppose there exists p ∈PV that is Markov relative to G and under which Y 6⊥ A | Z.
This implies (see the remark following Theorem 1.2.4 in [29]) there exists p ∈ PV with
p(Y ∈ B | Z = z,A = a,PaGA = u) 6= p(Y ∈ B | Z = z). By the above, this implies that
pa(Y ∈ B | Z = z) 6= p(Y ∈ B | Z = z).

A.3 Proof of Theorem 3.4

If Z d-separates Y from A on GĀ, then by Theorem 3.3 {pa(Z, Y ) : a ∈ A} is conditionally benign
for every p ∈ PV that is Markov relative to GĀ, and hence is still conditionally benign when the
null intervention is excluded. It remains to observe that for any p that is Markov relative to G, there
exists p′ that is Markov relative to GĀ such that

{p′a(Z, Y ) : a ∈ A0} = {pa(Z, Y ) : a ∈ A0}.

Conversely, suppose there exists p ∈PV that is Markov relative to GĀ and under which Y 6⊥ A | Z.
Since necessarily pa(Y ∈ B | Z = z) = p(Y ∈ B | Z = z) when a is the null intervention,
it must be some a ∈ A0 that realizes the failure from the proof of Theorem 3.3, which means
{pa(Z, Y ) : a ∈ A0} is not conditionally benign.
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A.4 Proof of Lemma 3.5

Suppose that Z satisfies the front-door criterion relative to (A, Y) on G and there exists a path from
A to Y on GĀ that is unblocked by Z. The path cannot be directed, since by the front-door criterion
(a) it would include the subpath©→ Z→©, and hence would be blocked. The path also cannot be
a back-door path since there are no arrows going into A on GĀ. Thus, there must be some part of the
path that is of the form©→ B ←© for some variable B ∈ V and there are no remaining colliders
on the subpath from B to Y. Since the path is unblocked, this B must have a descendant (potentially
itself) in Z, and this creates a back-door path from Z to Y. On the portion of the back-door path that
is from Z to B, there can be no colliders since then Z would not be a descendant of B, and hence
this backdoor path contains no colliders. Since the back-door path also does not contain A, it is
unblocked by A, which violates the front-door criterion (c). Thus, no path from A to Y on GĀ that is
unblocked by Z can exist, so Z blocks every path and hence Z d-separates Y from A on GĀ.

B Proofs for Regret Bounds

B.1 Concentration of Empirical Means

For a fixed t ∈ [T ], a ∈ A, and z ∈ Z , define the events

EAt (a) =
{∣∣∣µ̂At (a)− Eνa [Y ]

∣∣∣ ≤√ log(2/δ)
2TAt (a)

}
and

EZt (z) =
{

max
a∈A

∣∣∣µ̂Zt (z)− Eνa [Y | Z = z]
∣∣∣ ≤√ log(2/δ)

2TZt (z)

}
.

Let EA = ∩t∈[T ],a∈AE
A
t (a), EZ = ∩t∈[T ],z∈ZE

Z
t (z), and E = EA ∩ EZ . Finally, define the

event

Eν =
{

sup
a∈A

∑
z∈Z

∣∣∣Pν̂a [Z = z]− Pνa [Z = z]
∣∣∣ ≤ √|A| |Z| log T

T 1/4

}
.

Lemma B.1. For any ν ∈P(Z × Y)A and π ∈ Π(A,Z, T ),

Pν,π [(EA)′] ≤ |A|Tδ.

Proof of Lemma B.1. For each a ∈ A, define the new i.i.d. random variables Y ◦1 (a), . . . , Y ◦T (a) ∼ νa.
For any t ∈ [T ], Hoeffding’s inequality can be applied to obtain

Pνa

(∣∣∣1
t

t∑
s=1

Y ◦s (a)− Eνa [Y ]
∣∣∣ >√ log(2/δ)

2t

)
≤ δ.

Then, using the i.i.d. property of (Y1(a), . . . , YT (a)),

Pν,π

(
∃t ∈ [T ], a ∈ A :

∣∣µ̂At (a)− Eνa [Y ]
∣∣ >√ log(2/δ)

2TAt (a)

)

≤
T∑
t=1

∑
a∈A

Pνa

(∣∣∣1
t

t∑
s=1

Y ◦s (a)− Eνa [Y ]
∣∣∣ >√ log(2/δ)

2t

)
≤ |A|Tδ,

where we have used a union bound over a ∈ A and t ∈ [T ].

Lemma B.2. For any ν ∈P(Z × Y)A that is conditionally benign and π,

Pν,π [(EZ)′] ≤ |Z|Tδ.
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Proof of Lemma B.2. Since ν is conditionally benign, there exists p ∈P(Z × Y) such that for each
a ∈ A, νa(Y | Z) = p(Y | Z). Fix z ∈ Z , and define joint the distribution qz(Y, Z) = p(Y | Z)I{Z =
z}. Finally, define the new i.i.d. random variables V ◦1 , . . . , V

◦
T ∼ qz . For any t ∈ [T ], Hoeffding’s

inequality can be applied to obtain

Pqz

(∣∣∣1
t

t∑
s=1

V ◦s − Eqz [Y ]
∣∣∣ ≤√ log(2/δ)

2t

)
≤ δ.

Then,

Pν,π

(
∃t ∈ [T ], z ∈ Z : max

a∈A

∣∣∣µ̂Zt (z)− Eνa [Y | Z = z]
∣∣∣ >√ log(2/δ)

2TZt (z)

)

= Pν,π

(
∃t ∈ [T ], z ∈ Z :

∣∣∣µ̂Zt (z)− Ep[Y | Z = z]
∣∣∣ ≤√ log(2/δ)

2TZt (z)

)

≤
T∑
t=1

∑
z∈Z

Pqz

(∣∣∣1
t

t∑
s=1

V ◦s − Eqz [Y ]
∣∣∣ ≤√ log(2/δ)

2t

)
≤ |Z|Tδ.

where we have used a union bound over z ∈ Z and t ∈ [T ].

Theorem B.3 (Theorem 1 of Canonne [11]). Let p be any distribution on [k] for some integer k. For
any ε, δ > 0, if n ≥ max{k/ε2, (2/ε2) log(2/δ)} and X1, . . . , Xn is an i.i.d. sample from p, then
the MLE estimator

p̂n(j) = 1
n

n∑
t=1

I{Xt = j} ∀j ∈ [k]

satisfies

P
[1

2
∑
j∈[k]

|p̂n(j)− p(j)| > ε
]
≤ δ.

Lemma B.4. If ν̂(Z) is estimated using uniform exploration of at least d4
√
T/|A|e rounds for each

a ∈ A,
Pν,π [(Eν)′] ≤ 2 |A| /T.

Proof. Let ε = (1/2)T−1/4
√
|A| |Z| log T , δ = 2/T , and n denote the number of ex-

ploration rounds used to estimate each ν̂a. By a union bound and Theorem B.3, if n ≥
max{|Z| /ε2, (2/ε2) log(2/δ)} then

Pν,π [(Eν)′] ≤ Pν,π

[
∃a ∈ A :

∑
z∈Z

∣∣∣Pν̂a [Z = z]− Pνa [Z = z]
∣∣∣ > 2ε

]

≤
∑
a∈A

Pν,π

[
1
2
∑
z∈Z

∣∣∣Pν̂a [Z = z]− Pνa [Z = z]
∣∣∣ > ε

]
≤ 2 |A| /T.

Then, it remains to observe that when T ≥ 3 and |Z| ≥ 2 (which can be trivially assumed, since ν̂ is
known exactly if |Z| = 1),

|Z|
ε2 = 4 |Z|

√
T

|A| |Z| log T ≤
4
√
T

|A|
and

2
ε2 log(2/δ) = 8

√
T

|A| |Z| log T (log T ) ≤ 4
√
T

|A|
.
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B.2 Bounding Accumulated Regret

Lemma B.5. For any ν ∈P(Z × Y)A, π ∈ Π(A,Z, T ), and t < t′ ∈ [T ], it holds almost surely
that

t′∑
s=t

1√
TAs−1(As)

≤
√

8 |A| (t′ − t) .

Proof of Lemma B.5. Using Lemma 4.13 of Orabona [28],
t′∑
s=t

1√
TAs−1(As)

=
t′∑
s=t

∑
a∈A

I{As = a}√
1 ∨

∑s−1
j=1 I{Aj = a}

≤
t′∑
s=t

∑
a∈A

I{As = a}√∑t−1
j=1 I{Aj = a}+ (1/2)

∑s
j=t I{Aj = a}

≤
√

2
∑
a∈A

∫ ∑t′

j=1
I{Aj=a}∑t−1

j=1
I{Aj=a}

x−1/2dx

=
√

8
∑
a∈A

√√√√ t′∑
j=1

I{Aj = a} −

√√√√t−1∑
j=1

I{Aj = a}


≤
∑
a∈A

√√√√8
t′∑
j=t

I{Aj = a}

≤ |A|

√√√√ 8
|A|

∑
a∈A

t′∑
j=t

I{Aj = a}

=
√

8 |A| (t′ − t).

Lemma B.6. For any ν ∈P(Z × Y)A, π ∈ Π(A,Z, T ), and t < t′ ∈ [T ],

Eν,π

[
t′∑
s=t

∑
z∈Z

1√
TZs−1(z)

PνAs [Z = z]
]
≤
√

8 |Z| (t′ − t) +
√

(1/2)(t′ − t) log(t′ − t) + 2.

Proof of Lemma B.6. First,

Eν,π

[
t′∑
s=t

∑
z∈Z

√
1/TZs−1(z)PνAs [Z = z]

]

= Eν,π

[
t′∑
s=t

∑
z∈Z

√
1/TZs−1(z) I{Zs(As) = z}

]

+ Eν,π

[
t′∑
s=t

∑
z∈Z

√
1/TZs−1(z)

(
PνAs [Z = z]− I{Zs(As) = z}

)]

≤
√

8 |Z| (t′ − t) + Eν,π

[
t′∑
s=t

∑
z∈Z

√
1/TZs−1(z)

(
PνAs [Z = z]− I{Zs(As) = z}

)]
,

where we have used the same argument as Lemma B.5 applied to TZs−1(z) rather than TAs−1(a).
Following the analysis of Lu et al. [24], for t ≤ j ≤ t′ define the random variable

Mj =
j∑
s=t

∑
z∈Z

√
1/TZs−1(z)

(
PνAs [Z = z]− I{Zs(As) = z}

)
.
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Then,

Eν,π [Mj | Aj , Hj−1] = Mj−1 +
∑
z∈Z

√
1/TZj−1(z)Eν,π

[
PνAs [Z = z]− I{Zj(Aj) = z} | Aj

]
= Mj−1.

Further, it holds almost surely that

|Mj −Mj−1| =

∣∣∣∣∣∑
z∈Z

√
1/TZj−1(z)

[
PνAs [Z = z]− I{Zj(Aj) = z}

]∣∣∣∣∣
=

∣∣∣∣∣Eν,π
[∑
z∈Z

√
1/TZj−1(z) I{Zj(Aj) = z}

∣∣∣ Aj , Hj−1

]
−
∑
z∈Z

√
1/TZj−1(z) I{Zj(Aj) = z}

∣∣∣∣∣
=

∣∣∣∣∣Eν,π
[√

1/TZj−1(Zj(Aj)) | Aj , Hj−1

]
−
√

1/TZj−1(Zj(Aj))

∣∣∣∣∣
≤ 1.

Then, by Azuma-Hoeffding, for all x > 0

Pν,π

[
|Mt′ |>

√
x(t′ − t) log(t′ − t)

]
≤ 2e−2x log(t′−t).

Thus, since |Mt′ | ≤ t′ − t,

Eν,π

[
t′∑
s=t

∑
z∈Z

√
1/TZt−1(z)

(
PνAs [Z = z]− I{Zs(As) = z}

)]
≤ 2(t′ − t)e−2x log(t′−t) +

√
x(t′ − t) log(t′ − t).

Taking x = 1/2 gives the result.

B.3 Proof of Theorem 4.3

First, by Lemma B.2

Rν,C(T ) = Eν,C
T∑
t=1

[
Eνa∗ν [Y ]− Eν

AC
t

[Y ]
]

≤ |Z|T 2δ + Eν,C
[
I{EZ}

T∑
t=1

(
Eνa∗ν [Y ]− Eν

AC
t

[Y ]
)]
.

(B.1)

Then, by the conditionally benign property,

Eν,C
[
I{EZ}

T∑
t=1

(
Eνa∗ν [Y ]− Eν

AC
t

[Y ]
)]

= Eν,C
[
I{EZ}

T∑
t=1

(
Eνa∗ν [Y ]− ŨCBt(AC

t ) + ŨCBt(AC
t )− Eν

AC
t

[Y ]
)]

= Eν,C
[
I{EZ}

T∑
t=1

(∑
z∈Z

Eνa∗ν [Y | Z = z]Pνa∗ν [Z = z]− ŨCBt(AC
t )
)]

+ Eν,C
[
I{EZ}

T∑
t=1

(
ŨCBt(AC

t )−
∑
z∈Z

Eν
AC
t

[Y | Z = z]Pν
AC
t

[Z = z]
)]
.
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We bound these terms separately. First, using the fact that ν̃(Z) and ν(Z) are ε-close, the definition
of EZ , and the definition of AC

t ,

Eν,C
[
I{EZ}

T∑
t=1

(∑
z∈Z

Eνa∗ν [Y | Z = z]Pνa∗ν [Z = z]− ŨCBt(AC
t )
)]

≤ Eν,C
[
I{EZ}

T∑
t=1

(∑
z∈Z

Eνa∗ν [Y | Z = z]Pν̃a∗ν [Z = z]− ŨCBt(AC
t )
)]

+ εT

≤ Eν,C
[
I{EZ}

T∑
t=1

(
ŨCBt(a∗ν)− ŨCBt(AC

t )
)]

+ εT

≤ εT.

(B.2)

Second, using the definition of EZ , the fact that ν̃(Z) and ν(Z) are ε-close, the conditionally benign
property, and Lemma B.6,

Eν,C
[
I{EZ}

T∑
t=1

(
ŨCBt(AC

t )− Eν
AC
t

[Y ]
)]

= Eν,C
[
I{EZ}

T∑
t=1

(∑
z∈Z

(
µ̂Zt (z) +

√
log(2/δ)/(2TZt (z))

)
Pν̃

AC
t

[Z = z]− Eν
AC
t

[Y ]
)]

≤ Eν,C
[
I{EZ}

T∑
t=1

(∑
z∈Z

(
Eν

AC
t

[Y | Z = z] +
√

2 log(2/δ)/TZt (z)
)
Pν̃

AC
t

[Z = z]− Eν
AC
t

[Y ]
)]

≤ Eν,C
[
I{EZ}

T∑
t=1

(∑
z∈Z

(
Eν

AC
t

[Y | Z = z] +
√

2 log(2/δ)/TZt (z)
)
Pν

AC
t

[Z = z]− Eν
AC
t

[Y ]
)]

+ ε

(
1 +

√
2 log(2/δ)

)
T

= Eν,C
[
I{EZ}

T∑
t=1

∑
z∈Z

√
2 log(2/δ)/TZt (z)Pν

AC
t

[Z = z]
]

+ ε

(
1 +

√
2 log(2/δ)

)
T

≤ 4
√

2 |Z|T log T + (log T )
√

2T + 4
√

log T + ε(1 + 2
√

log T )T.
(B.3)

where the last line follows by taking δ = 2/T 2. The theorem then follows by combining Eqs. (B.1)
to (B.3).

B.4 Proof of Theorem 4.5

We may assume without loss of generality that

lim
T→∞

log(1/δT )
T

= 0.

If this is not the case, then for large enough T , it holds that log(1/δT ) ≥ c T for some c, and hence
the instance dependent lower bounds for UCB variants [6] imply that regret grows linearly in T in the
worst-case. We may also assume |Z| > 1, for otherwise C-UCB plays the same arm forever (using
its arbitrary tie-break rule) and so C-UCB can be forced to incur linear regret in a trivial way.

To illustrate that the lower bound is witnessed by a diversity of environments, we describe the
construction in more general terms and then provide an example instantiation at the end of the proof.
Let A0 and Z0 be arbitrary, nonempty, strict subsets of A and Z respectively, and let A1 = A \ A0
and Z1 = Z \ Z0.

We now describe sufficient conditions for an environment to be not conditionally benign and to force
C-UCB to incur linear regret. For pA(0) and pA(1) in (0, 1), let the marginal distribution be such
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that for i ∈ {0, 1}, if a ∈ Ai then

Pνa [Z = z] = pA(i)
|Z1|

I{z ∈ Z1}+ 1− pA(i)
|Z0|

I{z ∈ Z0}.

Similarly, for µA,Z(0, 0), µA,Z(0, 1), µA,Z(1, 0), and µA,Z(1, 1) in (0, 1), let the conditional distri-
bution be such that for i, j ∈ {0, 1}, if a ∈ Ai and z ∈ Zj then

νa(Y | Z = z) = Ber(µA,Z(i, j)).
Observe that for i ∈ {0, 1}, if a ∈ Ai then

Eνa [Y ] = µA,Z(i, 1)pA(i) + µA,Z(i, 0)[1− pA(i)].

We suppose the following conditions:

(1) ∀a ∈ A0, a
′ ∈ A1 Eνa [Y ] > Eνa′ [Y ],

(2) pA(0) < pA(1),
(3) min{µA,Z(0, 1), µA,Z(1, 1)} > max{µA,Z(0, 0), µA,Z(1, 0)}.

By Condition (1), a∗ν ∈ A0 (note that then all a ∈ A0 are equally optimal), so a constant amount of
regret is incurred whenever AC

t ∈ A1. We now argue that under Conditions (2) and (3), this happens
for a constant fraction of rounds with high probability.

First, we require slightly more notation to understand the behaviour of AC
t . For every t ∈ [T ],

i ∈ {0, 1}, and z ∈ Z , let

TA,Zt (i, z) =
t∑

s=1
I{AC

s ∈ Ai, Zs = z}.

Define TAt (i) =
∑
z∈Z TA,Zt (i, z), and note that TZt (z) = TA,Zt (0, z) + TA,Zt (1, z). Further, let

µ̂A,Zt (i, z) = 1
TA,Zt (i, z)

t∑
s=1

Ys(AC
s)I{AC

s ∈ Ai, Zs = z},

By definition,

µ̂Zt (z) = TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z).

Define the event F to be the case that for all t ∈ [T ], i, j ∈ {0, 1}, and z ∈ Zj ,∣∣∣µ̂A,Zt (i, z)− µA,Z(i, j)
∣∣∣ ≤√ log T

TA,Zt (i, z)
,

and let G be the event that for all t ∈ [T ] and z ∈ Z ,

TZt (z)
t
≥ min

a∈A
Pνa [Z = z]−

√
log T
t

and
TZt (z)
t
≤ max

a∈A
Pνa [Z = z] +

√
log T
t

.

By Hoeffding and a union bound (i.e., the same arguments as Lemmas B.1 and B.2), Pν([F ∩G]′) ≤
8 |Z| /T .

Now, suppose the event F ∩G holds, and consider a fixed t. Recall that AC
t ∈ A1 is implied by

max
a1∈A1

{∑
z∈Z

(
µ̂Zt (z) +

√
log(2/δT )
2TZt (z)

)
Pνa1

[Z = z]
}

> max
a0∈A0

{∑
z∈Z

(
µ̂Zt (z) +

√
log(2/δT )
2TZt (z)

)
Pνa0

[Z = z]
}
.
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This is equivalent to

0 <
∑
z∈Z1

(
TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z) +

√
log(2/δ)
2TZt (z)

)
pA(1)− pA(0)

|Z1|

−
∑
z∈Z0

(
TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z) +

√
log(2/δ)
2TZt (z)

)
pA(1)− pA(0)

|Z0|
.

The following two cases hold.

(i) For all z ∈ Z1,

TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z) +

√
log(2/δ)
2TZt (z)

≥ TA,Zt (0, z)
TZt (z)

(
µA,Z(0, 1)−

√
log T

TA,Zt (0, z)

)
+ TA,Zt (1, z)

TZt (z)

(
µA,Z(1, 1)−

√
log T

TA,Zt (1, z)

)

≥ min{µA,Z(0, 1), µA,Z(1, 1)} − 2
√

log T
(
t pA(0)/|Z1| −

√
t log T

)−1/2
.

(ii) For all z ∈ Z0,

TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z) +

√
log(2/δ)
2TZt (z)

≤ TA,Zt (0, z)
TZt (z)

(
µA,Z(0, 0) +

√
log T

TA,Zt (0, z)

)
+ TA,Zt (1, z)

TZt (z)

(
µA,Z(1, 0) +

√
log T

TA,Zt (1, z)

)
+

√
log(2/δ)
2TZt (z)

≤ max{µA,Z(0, 0), µA,Z(1, 0)}+ 2
√

log T
(
t(1− pA(1))/|Z0| −

√
t log T

)−1/2

+
√

log(2/δ)
(
t(1− pA(1))/|Z0| −

√
t log T

)−1/2
.

That is,∑
z∈Z1

(
TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z) +

√
log(2/δ)
2TZt (z)

)
pA(1)− pA(0)

|Z1|

−
∑
z∈Z0

(
TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z) +

√
log(2/δ)
2TZt (z)

)
pA(1)− pA(0)

|Z0|

≥
[

min{µA,Z(0, 1), µA,Z(1, 1)} − 2
√

log T
(
t pA(0)/|Z1| −

√
t log T

)−1/2

−max{µA,Z(0, 0), µA,Z(1, 0)} − 2
√

log T
(
t(1− pA(1))/|Z0| −

√
t log T

)−1/2

−
√

log(2/δ)
(
t(1− pA(1))/|Z0| −

√
t log T

)−1/2](
pA(1)− pA(0)

)
.

By Condition (3), for large enough T and t ≥ T/2, this last step can be further lower bounded3 using

min{µA,Z(0, 1), µA,Z(1, 1)} − 2
√

log T
(
t pA(0)/|Z1| −

√
t log T

)−1/2

−max{µA,Z(0, 0), µA,Z(1, 0)} − 2
√

log T
(
t(1− pA(1))/|Z0| −

√
t log T

)−1/2

−
√

log(2/δ)
(
t(1− pA(1))/|Z0| −

√
t log T

)−1/2

≥
(

min{µA,Z(0, 1), µA,Z(1, 1)} −max{µA,Z(0, 0), µA,Z(1, 0)}
)
/2.

3When δT is polynomial in T , this can be improved to only require t ≥ (log T )2.
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Thus, we have that for sufficiently large T and any a0 ∈ A0 and a1 ∈ A1

Rν,C(T ) = Eν,C
T∑
t=1

(Eνa0
[Y ]− Eν

AC
t

[Y ])

≥ Eν,C
[
I{F ∩G}

T∑
t=1

(Eνa0
[Y ]− Eν

AC
t

[Y ])
]

≥ (T/4)
(
Eνa0

[Y ]− Eνa1
[Y ]
)

(1− 8 |Z| /T )

≥ (T/5)
(
Eνa0

[Y ]− Eνa1
[Y ]
)
.

Finally, a concrete example of an environment that satisfies Conditions (1)–(3) is:

µA,Z(0, 0) = 1/6 µA,Z(1, 0) = 2/6
µA,Z(0, 1) = 5/6 µA,Z(1, 1) = 4/6
pA(0) = 6/8 pA(1) = 7/8.

For simplicity, we use the constants from this example in the theorem statement.

B.5 Proof of Theorem 4.7

First, by Lemmas B.1 and B.4 with δ = 2/T 2,

Rν,HAC(T ) = Eν,HAC

T∑
t=1

[
Eνa∗ν [Y ]− Eν

AHAC
t

[Y ]
]

≤ 4 |A|+ Eν,HAC

[
I{EA ∩ Eν}

T∑
t=1

(
Eνa∗ν [Y ]− Eν

AHAC
t

[Y ]
)]
.

(B.4)

Let τHAC
0 be the last round on which the algorithm uniformly explores and τHAC

1 be the last round on
which AHAC

t = AC
t . Since the algorithm is deterministic, τHAC

0 is fixed but τHAC
1 is stochastic. Then,

Eν,HAC

[
I{EA ∩ Eν}

T∑
t=1

(
Eνa∗ν [Y ]− Eν

AHAC
t

[Y ]
)]

= τHAC
0 + Eν,HAC

[
I{EA ∩ Eν}

∑
τHAC

0 <t≤τHAC
1

(
Eνa∗ν [Y ]− Eν

AC
t

[Y ]
)]

+ Eν,HAC

[
I{EA ∩ Eν}

∑
t>τHAC

1

(
Eνa∗ν [Y ]− Eν

AUCB
t

[Y ]
)]
.

(B.5)

Suppose that ν is conditionally benign and ν̃(Z) and ν(Z) are ε-close for ε ≤ T−1/4
√
|A| |Z| log T .

By triangle inequality, on the event Eν

sup
a∈A

∑
z∈Z

∣∣∣Pν̃a [Z = z]− Pν̂a [Z = z]
∣∣∣ ≤ 2

√
|A| |Z| log T
T 1/4 ,
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and thus ν̃(Z) will not be replaced by ν̂(Z). Further, on EA ∩ EZ with δ = 2/T 2, for all t it holds
that

UCBAt−1(a)− ŨCBt−1(a)

≥ Eνa [Y ]−
∑
z∈Z

(
Eν [Y | Z = z] + 2

√
log T

TZt−1(z)

)
Pν̃a [Z = z]

=
∑
z∈Z

Eν [Y | Z = z]Pνa [Z = z]−
∑
z∈Z

(
Eν [Y | Z = z] + 2

√
log T

TZt−1(z)

)
Pν̃a [Z = z]

≥ −2
∑
z∈Z

√
log T

TZt−1(z)
Pν̃a [Z = z]−

√
|A| |Z| log T
T 1/4

and
UCBAt−1(a)− ŨCBt−1(a)

≤ Eνa [Y ] + 2
√

log T
TAt−1(a)

−
∑
z∈Z

Eν [Y | Z = z]Pν̃a [Z = z]

=
∑
z∈Z

Eν [Y | Z = z]Pνa [Z = z] + 2
√

log T
TAt−1(a)

−
∑
z∈Z

Eν [Y | Z = z]Pν̃a [Z = z]

≤ 2
√

log T
TAt−1(a)

+
√
|A| |Z| log T
T 1/4 ,

and hence τHAC
1 = T . Thus, by Lemma B.2 with δ = 2/T 2, we can actually bound Eq. (B.5) using

Eν,HAC

[
I{EA ∩ Eν}

T∑
t=1

(
Eνa∗ν [Y ]− Eν

AHAC
t

[Y ]
)]

≤ τHAC
0 + 2 |Z|+ Eν,HAC

[
I{EA ∩ EZ ∩ Eν}

T∑
t=τHAC

0 +1

(
Eνa∗ν [Y ]− Eν

AHAC
t

[Y ]
)]

≤ τHAC
0 + 2 |Z|+ Eν,C

[
I{EA ∩ EZ}

T∑
t=1

(
Eνa∗ν [Y ]− Eν

AC
t

[Y ]
)]

≤ 5
√
T + 2 |Z|+ 4

√
2 |Z|T log T + (log T )

√
2T + 4

√
log T + ε(2 + 2

√
log T )T,

where the last line follows from Eqs. (B.2) and (B.3) and the definition of τHAC
0 . The statement follows

from combining this with Eq. (B.4).

Otherwise, consider when ν is not conditionally benign. By Theorem 4.1,

Eν,HAC

[
I{EA ∩ Eν}

∑
t>τHAC

1

(
Eνa∗ν [Y]− Eν

AHAC
t

[Y]
)]

≤ Eν,UCB

[
I{EA}

T∑
t=1

(
Eνa∗ν [Y ]− Eν

AUCB
t

[Y ]
)]

≤ 4
√

2 |A|T log T .

(B.6)

It remains to focus on the regret contribution from when AHAC
t = AC

t . The key observation is that if
t ≤ τHAC

1 then the hypothesis test passed for this round. We decompose the regret incurred using

Eν,HAC

[
I{EA ∩ Eν}

∑
τHAC

0 <t≤τHAC
1

(
Eνa∗ν [Y ]− Eν

AC
t

[Y ]
)]

= Eν,HAC

[
I{EA ∩ Eν}

∑
τHAC

0 <t≤τHAC
1

(
Eνa∗ν [Y ]− ŨCBt−1(AC

t ) + ŨCBt−1(AC
t )− Eν

AC
t

[Y ]
)]
.
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First, on the event EA ∩ Eν with δ = 2/T 2,

∑
τHAC

0 <t≤τHAC
1

(
Eνa∗ν [Y ]− ŨCBt−1(AC

t )
)

≤(a)
∑

τHAC
0 <t≤τHAC

1

(
UCBAt−1(a∗ν)− ŨCBt−1(AC

t )
)

≤(b)
∑

τHAC
0 <t≤τHAC

1

(
ŨCBt−1(a∗ν)− ŨCBt−1(AC

t ) + 2
√

log T
TAt−1(a∗ν)

)
+ 2T 3/4

√
|A| |Z| log T

≤(c) 2
∑

τHAC
0 <t≤τHAC

1

√
log T

TAt−1(a∗ν)
+ 2T 3/4

√
|A| |Z| log T

≤(d) 2
∑

τHAC
0 <t≤τHAC

1

√
|A| log T√

T
+ 2T 3/4

√
|A| |Z| log T

≤ 4T 3/4
√
|A| |Z| log T ,

(B.7)
where we have used that (a) EA holds; (b) the hypothesis test for HAC-UCB passed; (c) AC

t =
arg maxa∈A ŨCBt−1(a); and (d) for τHAC

0 < t, TAt−1(a∗ν) ≥ TA
τHAC

0
(a∗ν) ≥

√
T/|A|.

Second, again on the event EA ∩ Eν with δ = 2/T 2,

∑
τHAC

0 <t≤τHAC
1

(
ŨCBt−1(AC

t )− Eν
AC
t

[Y ]
)

≤(a)
∑

τHAC
0 <t≤τHAC

1

(
UCBAt−1(AC

t ) + 2
∑
z∈Z

√
log T

TZt−1(z)
Pν̃a [Z = z] +

2
√
|A| |Z| log T
T 1/4 − Eν

AC
t

[Y ]
)

≤(b)
∑

τHAC
0 <t≤τHAC

1

(
2
√

log T
TAt−1(AHAC

t )
+ 2

∑
z∈Z

√
log T

TZt−1(z)
Pν̃a [Z = z] +

√
|A| |Z| log T
T 1/4

)

≤(c)
∑

τHAC
0 <t≤τHAC

1

(
2
√

log T
TAt−1(AHAC

t )
+ 2

∑
z∈Z

√
log T

TZt−1(z)
Pνa [Z = z] + 7

(log T )
√
|A| |Z|

T 1/4

)

≤(d) 4
√

2 |A|T log T + 7T 3/4(log T )
√
|A| |Z|+ 2

∑
τHAC

0 <t≤τHAC
1

∑
z∈Z

√
log T

TZt−1(z)
Pνa [Z = z],

(B.8)
where we have used that (a) the hypothesis test for HAC-UCB passed; (b) EA holds; (c) ν̃(Z)
and ν(Z) are 3T−1/4

√
|A| |Z| log T -close (if the original ν̃ does not satisfy this, then by triangle

inequality it is replaced with ν̂ that does satisfy this); and (d) Lemma B.5. It remains to take
expectation and apply Lemma B.6, and then combine Eqs. (B.6) to (B.8) to obtain

Rν,HAC(T ) ≤ 4 |A|+ 4
√

2 |A|T log T + 5
√
T + 4T 3/4

√
|A| |Z| log T

+ 4
√

2 |A|T log T + 7T 3/4(log T )
√
|A| |Z|

+ 2
√

log T
[√

8 |Z|T +
√

(T/2) log T + 2
]
.

(B.9)
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B.6 Proof of Theorem 4.8

Supposing the event EA holds (from Lemma B.1), every a ∈ A0 satisfies

UCBAt−1(a) ≥ µA,Z(0, 1)pA(0) + µA,Z(0, 0)(1− pA(0)).
We use the same environment construction from the proof of Theorem 4.5 in Appendix B.4. Using
the specific choice of δT , this argument implies that on the event F ∩G, AC

t ∈ A1 for sufficiently
large T and t ≥ 2

√
T . Recall that

µ̂Zt (z) = TA,Zt (0, z)
TZt (z)

µ̂A,Zt (0, z) + TA,Zt (1, z)
TZt (z)

µ̂A,Zt (1, z).

Since TA,Zt (0, z) ≤ 2
√
T and TZt (z) grows linearly in t on the event F ∩ G, for every α ∈ (0, 1)

and ε > 0 there exists T large enough such that for all t ≥ (log T )
√
T (crucially, the log T ensures

that the proportion of these t where AC
t ∈ A1 tends to 1 as T gets larger) it holds that for z ∈ Zj ,

µ̂Zt (z) ≤ αµA,Z(0, j) + (1− α)µA,Z(1, j) + ε.

This implies that for all ε > 0, taking α small enough and T large enough with t ≥ (log T )
√
T gives

ŨCBt−1(a) ≤ µA,Z(1, 1)pA(0) + µA,Z(1, 0)(1− pA(0)) + ε.

By the exploration phase,

2
√

log T
TAt−1(a)

≤ 2

√
|A| log T√

T
,

and hence can be made arbitrarily small by taking T sufficiently large. Thus, under the assumption

[µA,Z(0, 1)− µA,Z(1, 1)]pA(0) + [µA,Z(0, 0)− µA,Z(1, 0)](1− pA(0)) > 0, (B.10)

for large enough T the first condition from Algorithm 1 will fail for some a ∈ A0 when
t = (log T )

√
T . Note that Eq. (B.10) is satisfied by the example given in the proof of Theorem 4.5.

This implies that, on the event F ∩G ∩ EA, for large enough T the HAC-UCB algorithm switches
to following UCB when t = (log T )

√
T . Since this joint event holds with probability larger than

1− 2(|A|+ |Z|)/T , combining the exploration phase regret with the regret bound of Theorem 4.1
gives the result.

C Proof of Theorem 6.2

Fix A, Z , and T . Let Z0 be an arbitrary strict subset of Z and Z1 = Z \ Z0. Fix ∆ ∈ (0, 1/20) and
ε ∈ (0, 1) to be chosen later. Define the family of marginal distributions

qa[Z ∈ Z0] =
{

1/2 + 2∆ a = 1
1/2 a 6= 1,

where probability is evenly spaced within Z0 and Z1 respectively. Further, define the Bernoulli
conditional response distribution

p̃[Y = 1 | Z = z] =
{

3/4 z ∈ Z0
1/4 z ∈ Z1.

Define the Bernoulli conditionally benign environment ν̃ ∈P(Z × Y)A for all a ∈ A by

Pν̃a [Y = 1] =
∑
z∈Z

p̃[Y = 1 | Z = z]qa[Z = z].

Notice that

Eν̃a [Y ] =
{

1/2 + ∆ a = 1
1/2 a 6= 1.
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Then, for every a0 6= 1, define νa0 ∈P(Z × Y)A for all a ∈ A by

Pνa0
a

[Y = 1] =
∑
z∈Z

pa0
a [Y = 1 | Z = z]qa[Z = z],

where

pa0
a [Y = 1 | Z = z] =



3/4 a = 1, z ∈ Z0
1/4 a = 1, z ∈ Z1
3/4 + 2∆(1 + ε) a = a0, z ∈ Z0
1/4 a = a0, z ∈ Z1
3/4 a 6∈ {1, a0}, z ∈ Z0
1/4 a 6∈ {1, a0}, z ∈ Z1.

Notice that νa0 is not conditionally benign, and

Eνa0
a

[Y ] =


1/2 + ∆ a = 1
1/2 + ∆(1 + ε) a = a0
1/2 a 6∈ {1, a0}.

We now extend Lemma 15.1 of Lattimore and Szepesvári [19]. In particular, let πq = a(A,Z, q, T )
and observe that for any ν ∈ ΠA,Z(q),

dPν,πq (HT ) =
T∏
t=1

πqt (At | Ht−1)Pν [Zt(At), Yt(At) | At].

Thus, for every a0 6= 1,

KL
(
Pν̃,πq ‖ Pνa0 ,πq

)
= Eν̃,πq

[
log

dPν̃,πq
dPνa0 ,πq

(HT )
]

=
T∑
t=1

Eν̃,πq
[
Eν̃,πq

[
log Pν̃ [Zt(At), Yt(At)]

Pνa0 [Zt(At), Yt(At)]

∣∣∣ At]]

=
T∑
t=1

Eν̃,πq
[

KL
(
Pν̃At ‖ Pνa0

At

)]
=
∑
a∈A

Eν̃,πq [TAT (a)] KL
(
Pν̃a ‖ Pνa0

a

)
.

Since the marginal distribution q is shared, for each a ∈ A this simplifies to

KL
(
Pν̃a ‖ Pνa0

a

)
=
∑
z∈Z

qa(Z = z)KL (ν̃a(Y | z) ‖ νa0
a (Y | z))

=
{

0 a 6= a0
(1/2)KL (Ber(3/4) ‖ Ber(3/4 + 2∆(1 + ε))) a = a0.

Thus, by Pinsker’s inequality (Theorem 14.2 of [19]),

Rν̃,πq (T ) +Rνa0 ,πq (T ) > T∆
2 Pν̃,πq [TAT (1) ≤ T/2] + T∆ε

2 Pνa0 ,πq [TAT (1) > T/2]

≥ T∆ε
4 exp{−KL

(
Pν̃,πq ‖ Pνa0 ,πq

)
}

= T∆ε
4 exp

{
− Eν̃,πq [TAT (a0)] (1/2)KL (Ber(3/4) ‖ Ber(3/4 + 2∆(1 + ε)))

}
.

Using that KL (Ber(3/4) ‖ Ber(3/4 + 2∆(1 + ε))) ≤ 4x2 for x < 1/10 and the assumption of the
theorem, this implies that for all T ,

Eν̃,π [TAT (a0)] ≥
log(T∆ε)− log(8C

√
|A|T )

(1/2)KL (Ber(3/4) ‖ Ber(3/4 + 2∆(1 + ε))) ≥ 1
8∆2(1 + ε)2 log ∆ε

√
T

8C
√
|A|

.
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Finally, we combine this with

Rν̃,π(T ) =
∑
a0 6=1

∆Eν̃,π [TAT (a0)],

choose ε = 1, and set

∆ =
16C

√
|A|√

T
.

D Simulation Details

Here we provide more details for the simulations in Section 5. First, the regret bounds are computed
by sampling a new data realization for each horizon T we consider, computing the expected regret
(with respect to the data randomness) for this realization, and then averaging this value (i.e., over the
algorithm randomness) over M = 300 realizations.

C-UCB and UCB are implemented exactly according to Subsection 2.2, HAC-UCB is implemented
exactly according to Algorithm 1, and C-UCB-2 is implemented exactly according to Algorithm 3 of
Nair et al. [27] (including their time-adaptive confidence bound). For Corral, we use the log-barrier
method from Algorithms 1 and 2 of Agarwal et al. [2] with base algorithms UCB and C-UCB. We
use the prescribed learning rate from their Theorem 5 of

η = 1
40 · R(T ) log T ,

where R(T ) is an upper bound on the regret of C-UCB. In order to use UCB and C-UCB with
importance-weighted losses, we implement the epoch-based approach of Arora et al. [4] along with
their Freedman’s inequality confidence bound of√

4ρ log t
Tt

+ 4ρ log t
3Tt

for the arm means (UCB) and the post-action context conditional means (C-UCB) respectively, where
ρ is an upper bound on the importance-weighted losses.

For Corral, it is typical in experiments (e.g., [4]) to swap out the Freedman’s inequality confidence
bound for the usual Hoeffding’s inequality confidence bound. However, there are no theoretical
guarantees for the algorithm then (due to the importance-weighted losses), and we observed in
additional experiments that it is still not adaptive (i.e., it does no better than UCB even in conditionally
benign environments).
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