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A APPENDIX

In this supplementary file, we provide technical proofs of the theoretical results in Section and
present extra empirical experiments regarding our kernel diffusion approach with symmetric and
asymmetric Gaussian kernels applied to DBSCAN. All the numerical experiments are carried out on
a standard work station with a Intel 64-cores CPU and two Nvidia P100 GPUs.

A.1 PROOFS OF THEORETICAL RESULT.

Proof of Theorem Since {D1, - -, Dy, } are disjoint, we have p(z,y) = 0 if z and y belong to
different clusters. By the definition of matrix P, for each x € D;, we have

/ P y)dFa(y) = 1,

D

which implies that
/ / Pz, y)dFu(@)dFy(y) = |D;.
zeD; JyeD;

Therefore,

51D;| = / / p(,y)dF (2)dFo(y) = D,
zeD; JyeD

J

which implies that p; = 1 forany j = 1,,...,m. O

Before proceeding to the proof of Theorem we need following auxiliary lemma that relates the
stationary distribution of a Markov chain to an arbitrary vector g.

Lemma A.1. Let P be transition probability matrix of a finite inreducible discrete time Markov
chain with n states, which admits a stationary distribution, denoted by vector m. We write e =
(1,...,1)T € R™ as the a column vector of ones. The following holds for any vector g such that

gle #0:
(1) (I — P+ egT) is non-singular.
(2) Let H= (I — P+ egT)™ 1, then 7T = gT H.
Proof. Since 7 is the stationary distribution, we have 77e¢ = 1. Applying Theorem 3.3 in (Hunter]
1982) yields that matrix (I — P 4 eg”') is non-singular.
Next recall that 77 P = 7T, therefore we have
7l(I—P+eg)=al —aTP +nTleg?
— TegT
=47,
which implies 77 = g7 H. O
Proof of Theorem Note that for for each € D, the linear reference function pggp(z) =

Jp p(y, ©)dF,(y) is the corresponding column average of the transition matrix P. We write the i-th
column vector of P as

T
pi = (p(xhxi)v s 7p(x7uxi))
Therefore ppxp(7;) = eTp;/n

Since the Markov chain induced by the kernel k(z, y) is ergodic, the density p(z, t) of the diffusion
process X, will converge to the limiting stationary distribution of the Markov chain, denoted by 7.

We can write the n-vectors of g and 7 in the following form:

9=(91,--,90)" = n(pp(@1), -, prxo (@)’ and 7= (pp(@1),- .., prolza))
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where g; = eTp; is the i-th column sums of matrix P. As a result, we have

/Dg(x)an(x) = %eTg =1, and n/D plx)dF,(x) = eT'm = 1.

By the definition of g, we know
(egT)> =neg” and TP =g".

It follows from Lemma|A.1|that (I — P + eg?) is non-singular and 77 = g7 H, where H =
(I—P+eg™)™ L.

We define D = I + eg”. By simple algebra calculation, we can find D is non-singular with

Do
n+1
g7
As a result, it is easy to see that that g7 D~ = ‘+ 1 and
n

H*'=D-P=(I-PDHD.

Use the Neumann series, we have

o0
H = D—I(I_PD—I)—l — D—l Z(PD—I)Z
i=0

Thus
I - o1
T T T T| -1 —1yi
— ) = H-—— )= D PD - —1.
7Tg/ﬂg< n)Q{ ;( )n]
Since we assume for any = € D, §(z) < ¢ for some 0 < ¢ < 1. This leads to
ngj < nceij = ncg;.

Therefore, let x; be the j-th compoenent of gTPD™!, it s straightforward

. <
K;j_n—&—l

—g; < cgj.

This implies for every z € D,

lpxp (z) — prxo (2)] < prxp(2)

I =, 1
n+1§c_g

1 1

n+1)(1—c¢) n|

< prrp ()

pxp(T)
prxp(T)

Hence we have lim,, , | 1] = 0, which completes the proof. O

A.2 ADDITIONAL EXPERIMENT RESULTS

Metadata of benchmark datasets. The number of samples n, the number of clusters ¢, and feature
dimension d for each benchmark dataset are listed in Table[d]below.

Benckmark datasets with DBSCAN. We provide the performance of the conventional density

functions, pnaive and prc, and the proposed kernel diffusion density functions with symmetric and

asymmetric Gaussian kernels, pgp, and pygp (* € {sym, asym}), applied to DBSCAN on 13 bench-

mark datasets. The results are summarised in Table Similar to DPC, we see that both pgp' and
asym . . . . asym .

pxp uniformly outperform ppaive and ppc in terms of clustering quality. pgp, , which has better

local adaptivity analytically, achieves the best results on most datasets and outperforms others by a

significant margin in Breast-o, Control, Haberma and Seeds.
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Table 4: Metadata of benchmark datasets, includes sample size (n), the number of clusters (c), and
feature dimension d.

Dataset n

Banknote 1372
Breast-d 569

N

Breast-o 699 9
Control 600 60
Glass 214 9

Haberman 306
Ionosphere 351

WLWNGWRRTIANDNDN| O
oY)
M~

Iris 150 4
Libras 360 90
Pageblocks 5473 10
Seeds 210 7
Segment 210 19
Wine 178 13

Table 5: Clustering performance on benchmark datasets with different density functions applied to
DBSCAN. Pairwise F-score (F'p) and BCube F-score (F'5) under optimal parameter tuning are given.
The best and second-best results in each dataset are bolded and underlined, respectively.

| Fr | Fi

Dataset

. sym asym sym asym . sym asym sym asym
‘Pnawe PLC ‘pKD PkD  PFKD PFKD ‘/’nawe PLC ‘IOKD PkD  PFKD PFKD

Banknote | 26.8 60.7 | 62.0 664 654 664 | 265 65.1|60.7 674 657 67.4
Breast-d 56.7 63.0]65.0 66.6 672 66.6| 609 647|660 674 672 674
Breast-o 182 5531592 706 70.5 70.6 | 159 50.7|523 713 706 71.2
Control 325 37.1]51.0 603 489 59.1 |342 50.1|53.7 669 51.6 65.7
Glass 220 29.8|29.8 425 42.0 425|258 369|369 452 435 452
Haberman | 68.6 722 |68.6 75.6 689 753|692 731|692 758 683 75.7
Ionosphere | 25.9 684|680 742 742 74.2 | 238 64.1|63.7 721 721 721

Iris 66.2 69.8|662 572 737 133|672 766|672 67.0 794 79.0
Libras 18.1 120|156 13.8 202 135 |31.1 165|421 455 329 377
Pageblocks | 48.4 89.290.0 90.1 89.9 90.1 | 452 85.5(89.7 89.5 89.7 89.5
Seeds 578 476|578 632 224 624|592 53.0(592 70.0 244 69.2
Segment | 18.5 47.9 |54.8 30.8 414 30.8 | 225 552|666 53.6 59.9 536
Wine 40.5 405|405 49.5 50.0 49.5 | 45.7 457|457 523 513 523
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