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A APPENDIX

In this supplementary file, we provide technical proofs of the theoretical results in Section 4.3, and
present extra empirical experiments regarding our kernel diffusion approach with symmetric and
asymmetric Gaussian kernels applied to DBSCAN. All the numerical experiments are carried out on
a standard work station with a Intel 64-cores CPU and two Nvidia P100 GPUs.

A.1 PROOFS OF THEORETICAL RESULT.

Proof of Theorem 1. Since {D1, · · · , Dm} are disjoint, we have p(x, y) = 0 if x and y belong to
different clusters. By the definition of matrix P , for each x 2 Dj , we have

Z

D
p(x, y)dFn(y) = 1,

which implies that Z

x2Dj

Z

y2Dj

p(x, y)dFn(x)dFn(y) = |Dj |.

Therefore,

⇢̄j |Dj | =
Z

x2Dj

Z

y2Dj

p(x, y)dFn(x)dFn(y) = |Dj |,

which implies that ⇢̄j = 1 for any j = 1, , . . . ,m.

Before proceeding to the proof of Theorem 2, we need following auxiliary lemma that relates the
stationary distribution of a Markov chain to an arbitrary vector g.
Lemma A.1. Let P be transition probability matrix of a finite inreducible discrete time Markov
chain with n states, which admits a stationary distribution, denoted by vector ⇡. We write e =
(1, . . . , 1)T 2 Rn as the a column vector of ones. The following holds for any vector g such that
g
T
e 6= 0:

(1) (I � P + eg
T ) is non-singular.

(2) Let H = (I � P + eg
T )�1, then ⇡

T = g
T
H.

Proof. Since ⇡ is the stationary distribution, we have ⇡
T
e = 1. Applying Theorem 3.3 in (Hunter,

1982) yields that matrix (I � P + eg
T ) is non-singular.

Next recall that ⇡T
P = ⇡

T , therefore we have

⇡
T (I � P + eg

T ) = ⇡
T � ⇡

T
P + ⇡

T
eg

T

= ⇡
T
eg

T

= g
T
,

which implies ⇡T = g
T
H .

Proof of Theorem 2. Note that for for each x 2 D, the linear reference function ⇢FKD(x) =R
D p(y, x)dFn(y) is the corresponding column average of the transition matrix P . We write the i-th

column vector of P as
pi =

�
p(x1, xi), . . . , p(xn, xi)

�T
.

Therefore ⇢FKD(xi) = e
T
pi/n

Since the Markov chain induced by the kernel k(x, y) is ergodic, the density ⇢(x, t) of the diffusion
process Xt, will converge to the limiting stationary distribution of the Markov chain, denoted by ⇡.

We can write the n-vectors of g and ⇡ in the following form:

g = (g1, . . . , gn)
T = n

�
⇢FKD(x1), . . . , ⇢FKD(xn)

�T and ⇡ =
�
⇢KD(x1), . . . , ⇢KD(xn)

�T
,
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where gi = e
T
pi is the i-th column sums of matrix P . As a result, we have
Z

D
ĝ(x)dFn(x) =

1

n
e
T
g = 1, and n

Z

D
⇢̂(x)dFn(x) = e

T
⇡ = 1.

By the definition of g, we know

(egT )2 = neg
T and e

T
P = g

T
.

It follows from Lemma A.1 that (I � P + eg
T ) is non-singular and ⇡

T = g
T
H, where H =

(I � P + eg
T )�1

.

We define D = I + eg
T . By simple algebra calculation, we can find D is non-singular with

D
�1 = I � eg

T

n+ 1
.

As a result, it is easy to see that that gTD�1 =
g
T

n+ 1
and

H
�1 = D � P = (I � PD

�1)D.

Use the Neumann series, we have

H = D
�1(I � PD

�1)�1 = D
�1

1X

i=0

(PD
�1)i.

Thus

⇡
T � g

T
/n = g

T

✓
H � I

n

◆
= g

T


D

�1
1X

i=0

(PD
�1)i � I

n

�
.

Since we assume for any x 2 D, ĝ(x) < c for some 0 < c < 1. This leads to

g
T
pj  nce

T
pj = ncgj .

Therefore, let j be the j-th compoenent of gTPD
�1, it is straightforward

j 
nc

n+ 1
gj  cgj .

This implies for every x 2 D,

|⇢KD(x)� ⇢FKD(x)|  ⇢FKD(x)

����
1

n+ 1

1X

i=0

c
i � 1

n

����

 ⇢FKD(x)

����
1

(n+ 1)(1� c)
� 1

n

����.

Hence we have limn!1 | ⇢KD(x)
⇢FKD(x)

� 1| = 0, which completes the proof.

A.2 ADDITIONAL EXPERIMENT RESULTS

Metadata of benchmark datasets. The number of samples n, the number of clusters c, and feature
dimension d for each benchmark dataset are listed in Table 4 below.

Benckmark datasets with DBSCAN. We provide the performance of the conventional density
functions, ⇢naive and ⇢LC, and the proposed kernel diffusion density functions with symmetric and
asymmetric Gaussian kernels, ⇢⇤KD and ⇢

⇤
FKD (⇤ 2 {sym, asym}), applied to DBSCAN on 13 bench-

mark datasets. The results are summarised in Table 5. Similar to DPC, we see that both ⇢
sym
KD and

⇢
asym
KD uniformly outperform ⇢naive and ⇢LC in terms of clustering quality. ⇢

asym
KD , which has better

local adaptivity analytically, achieves the best results on most datasets and outperforms others by a
significant margin in Breast-o, Control, Haberma and Seeds.
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Table 4: Metadata of benchmark datasets, includes sample size (n), the number of clusters (c), and
feature dimension d.

Dataset n c d

Banknote 1372 2 4
Breast-d 569 2 30
Breast-o 699 2 9
Control 600 6 60
Glass 214 7 9
Haberman 306 2 3
Ionosphere 351 2 34
Iris 150 3 4
Libras 360 15 90
Pageblocks 5473 5 10
Seeds 210 3 7
Segment 210 7 19
Wine 178 3 13

Table 5: Clustering performance on benchmark datasets with different density functions applied to
DBSCAN. Pairwise F-score (FP ) and BCube F-score (FB) under optimal parameter tuning are given.
The best and second-best results in each dataset are bolded and underlined, respectively.

Dataset FP FB

⇢naive ⇢LC ⇢
sym
KD ⇢

asym
KD ⇢

sym
FKD ⇢

asym
FKD ⇢naive ⇢LC ⇢

sym
KD ⇢

asym
KD ⇢

sym
FKD ⇢

asym
FKD

Banknote 26.8 60.7 62.0 66.4 65.4 66.4 26.5 65.1 60.7 67.4 65.7 67.4
Breast-d 56.7 63.0 65.0 66.6 67.2 66.6 60.9 64.7 66.0 67.4 67.2 67.4
Breast-o 18.2 55.3 59.2 70.6 70.5 70.6 15.9 50.7 52.3 71.3 70.6 71.2
Control 32.5 37.1 51.0 60.3 48.9 59.1 34.2 50.1 53.7 66.9 51.6 65.7
Glass 22.0 29.8 29.8 42.5 42.0 42.5 25.8 36.9 36.9 45.2 43.5 45.2
Haberman 68.6 72.2 68.6 75.6 68.9 75.3 69.2 73.1 69.2 75.8 68.3 75.7
Ionosphere 25.9 68.4 68.0 74.2 74.2 74.2 23.8 64.1 63.7 72.1 72.1 72.1
Iris 66.2 69.8 66.2 57.2 73.7 73.3 67.2 76.6 67.2 67.0 79.4 79.0
Libras 18.1 12.0 15.6 13.8 20.2 13.5 31.1 16.5 42.1 45.5 32.9 37.7
Pageblocks 48.4 89.2 90.0 90.1 89.9 90.1 45.2 85.5 89.7 89.5 89.7 89.5
Seeds 57.8 47.6 57.8 63.2 22.4 62.4 59.2 53.0 59.2 70.0 24.4 69.2
Segment 18.5 47.9 54.8 30.8 41.4 30.8 22.5 55.2 66.6 53.6 59.9 53.6
Wine 40.5 40.5 40.5 49.5 50.0 49.5 45.7 45.7 45.7 52.3 51.3 52.3
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