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A Examples of computations

A.1 Step by step example : autonomous control

To measure whether the system

dx1(t)

dt
= sin(x21) + log(1 + x2) +

atan(ux1)
1 + x2

dx2(t)

dt
= x2 − ex1x2 ,

is controllable at a point xe, with asymptotic control ue, using Kalman condition we need to

1. differentiate the system with respect to its internal variables, obtain the Jacobian
A(x, u)

A(x, u) =

(
2x1 cos(x

2
1) +

u(1+x2)−1

1+u2x2
1

(1 + x2)
−1 − atan(ux1)

(1+x2)2

−x2e
x1x2 1− x1e

x1x2

)
2. differentiate the system with respect to its control variables, obtain a matrix B(x, u)

B(x, u) =

(
x1((1 + u2x2

1)(1 + x2))
−1

0

)
3. evaluate A and B in xe = [0.5], ue = 1

A(xe, ue) =

(
1.50 0.46
−0.64 0.36

)
, B(xe, ue) =

(
0.27
0

)
4. calculate the controllability matrix given by (2).

C = [B,AB]((xe, ue)) =

[(
0.27
0

)
,

(
1.50 0.46
−0.64 0.36

)(
0.27
0

)]
=

(
0.27 0.40
0 −0.17

)
5. output n−d, with d the rank of the controllability matrix, the system is controllable

if n− d = 0

n− rank(C) = 2− 2 = 0 : System is controllable in (xe = [0.5], ue = 1)

6. (optionally) if n− d = 0, compute the control feedback matrix K as in (3)

K = (−22.8 44.0) .

A.2 Step by step example: stability of linear PDE

To find the existence and behavior at infinite time of a solution, given a differential operator
Dx and an initial condition u0 we proceed as follows

1. find the Fourier polynomial f(ξ) associated to Dx

Dx = 2∂2x0
+ 0.5∂2x1

+ ∂4x2
− 7∂2x0,x1

− 1.5∂x1∂
2
x2
,

f(ξ) = −4πξ20 − πξ21 + 2πξ42 + 14πξ0ξ1 + 3iπξ1ξ
2
2

2. find the Fourier transform ũ0(ξ) of u0
u0(x) = e−3ix2x−10 sin(x0)e

2.5ix1e−x
2
2 ,

ũ0(ξ) = π3/21[−(2π)−1,(2π)−1](ξ0)δ0(ξ1 − 2.5(2π)−1)e−π
2(ξ2+3(2π)−1)2

3. find the set F of frequency ξ for which ũ0(ξ) 6= 0

F = [−(2π)−1, (2π)−1]× {2.5(2π)−1} × (−∞,+∞)
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4. minimize f(ξ) on F
minF (f(ξ)) = −22.6

5. output (0,0) if this minimum is infinite, (1,0) is finite and negative, (1,1) if finite
and positive. (optionally) output F
Out = (1, 0) : there exists a solution u ; it does not vanish at t→ +∞

A.3 Examples of inputs and outputs

A.3.1 Local stability

System Speed of convergence
at xe = [0.01]

d
dtx0 = − x1

atan (8x0x2)
+ 0.01

atan (0.0008)

d
dtx1 = − cos (9x0) + cos (0.09)

d
dtx2 = x0 −

√
x1 + x2 − 0.01 + 0.1

√
2

−1250



d
dtx0 = − 2x2

x0−2x2(x1−5) + 0.182

d
dtx1 = (x1 + (x2 − ex1) (tan (x0) + 3)) (log (3) + iπ)

+3.0 log (3) + 3.0iπ

d
dtx2 = asin

(
x0 log

(
− 4
x1

))
− asin (0.06 + 0.01iπ)

−0.445



d
dtx0 = ex1+e

− sin (x0−e2)
− 1.01ee

− sin (0.01−e2)

d
dtx1 = 0.06− 6x1

d
dtx2 = −201 + x0+2

x2
0x2

6.0 (locally stable)



d
dtx0 = x2e

−x1 sin (x1)− 9.9 · 10−5

d
dtx1 = 7.75.10−4 − ex2 atan (atan (x1))

4ex2+9

d
dtx2 = (x1 − asin (9)) e−

x0
log (3)+iπ

− (0.01− asin (9)) e−
0.01

log (3)+iπ

−0.0384



d
dtx0 = −x0(7− 4√7

√
i)

9 − x1 + 0.0178− 0.00111 4
√
7
√
i

d
dtx1 = −0.000379 + e

− 63
cos ((x2−9) atan (x1))+7

d
dtx2 = −x0 − x1 + asin

(
cos (x0) +

x2

x0

)
−1.55 + 1.32i

3.52.10−11 (locally stable)
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A.3.2 Controllability: autonomous systems

Autonomous system
Dimension of

uncontrollable space
at xe = [0.5], ue = [0.5]

dx0

dt = − asin
(
x1

9 −
4 tan (cos (10))

9

)
− asin

(
4 tan (cos (10))

9 − 0.0556
)

dx1

dt = u− x2 + log
(
10 + tan (x1)

u+x0

)
− 2.36

dx2

dt = 2x1 + x2 − 1.5

0 (controllable)


dx0

dt = u− asin (x0)− 0.5 + π
6

dx1

dt = x0 − x1 + 2x2 + atan (x0)− 1.46

dx2

dt = 5x2

cos (x2)
− 2.85

1


dx0

dt = 6u+ 6x0 − 6x1

x0

dx1

dt = 0.75 + x21 − cos (u− x2)

dx2

dt = −x20 + x0 + log (ex2)− 0.75

2



dx0

dt = +x0

(
cos
(

u
x0+2x2

)
+ asin (u)

x1

)
−0.5 cos

(
1
3

)
− π

6

dx1

dt = πx1

4(x2+4) −
π
36

dx2

dt = 2.5− 108e0.5 − 12x0x2 + x1 + 108eu

0 (controllable)



dx0

dt = −10 sin
(

3x0

log (8) − 22
)
− 6.54

dx1

dt = sin
(
9 + −x1−4

8x2

)
− 1

dx2

dt = 4 tan
(
4x0

u

)
− 4 tan (4)

1
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A.3.3 Controllability: non-autonomous systems

Non-autonomous system Local controllability
at xe = [0.5], ue = [0.5]

dx0

dt = (x2 − 0.5) e− asin (8)

dx1

dt = et+0.5 − et+x1 + −x1+e
x0
u

x2
+ 1− 2e

dx2

dt = t(x2 − 0.5)
(
asin (6) +

√
tan (8)

) False


dx0

dt =
atan (

√
x2)

x0−1 − 2 atan
(√

2
2

)
dx1

dt = − u
−√x0x1+3 + x2 + log (x0)

+ log(2)− 0.5 + (1/(6−
√
2))

dx2

dt = −70t(x0 − 0.5)

False


dx0

dt = x0+7
sin (x0eu)+3

dx1

dt = − 9x2e
− sin (

√
log (x1))

x0
dx2

dt = t+ asin (tx2 + 4)

False


dx0

dt = 0.5− x2 + tan (x0)− tan (0.5)
dx1

dt = t
x1(t+cos (x1(t+u)))

− t
0.5(t+cos (0.5t+0.25))

dx2

dt = 2.75− x0 (u+ 4)− x0
True


dx0

dt = u (u− x0 − tan (8)) + 0.5(tan (8))
dx1

dt = − 6t(−2+π
2 )

x0x1
− 12t (4− π)

dx2

dt = −7(u− 0.5)− 7 tan (log (x2))
+7 tan (log (0.5))

True

A.3.4 Stability of partial differential equations using Fourier transform

PDE ∂tu+Dxu = 0 and initial condition Existence of a solution,
u→ 0 at t→ +∞ Dx = 2∂x0

(
2∂4x0

∂4x2
+ 3∂3x1

+ 3∂2x1

)
u0 = δ0(−18x0)δ0(−62x2)e89ix0−8649x2

1+89ix1−59ix2

False , False

 Dx = −4∂4x0
− 5∂3x0

− 6∂2x0
∂2x1

∂2x2
+ 3∂2x0

∂x1
− 4∂6x1

u0 = (162x0x2)
−1 (ei(−25x0+96x2) sin (54x0) sin (3x2)

) True , False


Dx = ∂x1

(
4∂5x0

∂x1
+ 4∂2x0

− 9∂x0
∂6x2

+2∂3x1
∂5x2
− 4∂3x1

∂4x2
− 2∂x2

)
u0 = (33x0)

−1
(
e86ix0−56ix1−16x2

2+87ix2 sin (33x0)
) True , False


Dx = −6∂7x0

∂2x2
+ ∂5x0

∂6x2
− 9∂4x0

∂2x1
− 9∂4x0

∂4x2

+7∂2x0
∂6x2

+ 4∂2x0
∂5x2
− 6∂6x1

u0 = δ0(88x1)e
−2x0(2312x0+15i)

True , True
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B Mathematical definitions

B.1 Notions of stability

Let us consider a system
dx(t)

dt
= f(x(t)). (7)

xe is an attractor, if there exists ρ > 0 such that

|x(0)− xe| < ρ =⇒ lim
t→+∞

x(t) = xe. (8)

But, counter intuitive as it may seem, this is not enough for asymptotic stability to take place.

Definition B.1. We say that xe is a locally (asymptotically) stable equilibrium if the two
following conditions are satisfied:

(i) xe is a stable point, i.e. for every ε > 0, there exists η > 0 such that

|x(0)− xe| < η =⇒ |x(t)− xe| < ε, ∀ t ≥ 0. (9)

(ii) xe is an attractor, i.e. there exists ρ > 0 such that

|x(0)− xe| < ρ =⇒ lim
t→+∞

x(t) = xe. (10)

In fact, the SMT of Subsection 3.1 deals with an even stronger notion of stability, namely
the exponential stability defined as follows:

Definition B.2. We say that xe is an exponentially stable equilibrium if xe is locally stable
equilibrium and, in addition, there exist ρ > 0, λ > 0, and M > 0 such that

|x(0)− xe| < ρ =⇒ |x(t)| ≤Me−λt|x(0)|.

In this definition, λ is called the exponential convergence rate, which is the quantity predicted
in our first task. Of course, if xe is locally exponentially stable it is in addition locally
asymptotically stable.

B.2 Controllability

We give here a proper mathematical definition of controllability. Let us consider a non-
autonomous system

dx(t)

dt
= f(x(t), u(t), t), (11)

such that f(xe, ue) = 0.

Definition B.3. Let τ > 0, we say that the nonlinear system (11) is locally controllable at
the equilibrium xe in time τ with asymptotic control ue if, for every ε > 0, there exists η > 0
such that, for every (x0, x1) ∈ Rn × Rn with |x0 − xe| ≤ η and |x1 − xe| ≤ η there exists a
trajectory (x, u) such that

x(0) = x0, x(τ) = x1

|u(t)− ue| ≤ ε, ∀ t ∈ [0, τ ].
(12)

An interesting remark is that if the system is autonomous, the local controllability does not
depend on the time τ considered, which explains that it is not precised in Theorem 3.2.
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B.3 Tempered distribution

We start by recalling the multi-index notation: let α = (α1, ..., αn) ∈ Nn, x ∈ Rn, and
f ∈ C∞(Rn), we denote

xα = xα1
1 × · · · × xαnn

∂αx f = ∂α1
x1
. . . ∂αnxn f.

(13)

α is said to be a multi-index and |α| =
∑n
i=1 |αi|. Then we give the definition of the Schwartz

functions:
Definition B.4. A function φ ∈ C∞ belongs to the Schwartz space S(Rn) if, for any
multi-index α and β,

sup
x∈Rn

|xα∂βxφ| < +∞. (14)

Finally, we define the space of tempered distributions:
Definition B.5. A tempered distribution φ ∈ S ′(Rn) is a linear form u on S(Rn) such that
there exists p > 0 and C > 0 such that

|〈u, φ〉| ≤ C
∑

|α|,|β|<p

sup
x∈Rn

|xα∂βxφ|, ∀ φ ∈ S(Rn). (15)

C Additional experiments

C.1 Prediction of speed of convergence with higher precision

In Section 5.1, λ is predicted with a 10% margin error. Prediction of λ to better accuracy
can be achieved by training models on data rounded to 2, 3 or 4 significant digits, and
measuring the number of exact predictions on the test sample. Overall, we predict λ with
two significant digits in 59.2% of test cases. Table 8 summarizes the results for different
precisions (for transformers with 6 layers and a dimensionality of 512).

Table 8: Exact prediction of local convergence speed to given precision.
Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Overall

2 digits 83.5 68.6 55.6 48.3 40.0 59.2
3 digits 75.3 53.2 39.4 33.4 26.8 45.7
4 digits 62.0 35.9 25.0 19.0 14.0 31.3

D Proofs of theorems

D.1 Analysis of Problem 2

The proofs of Theorem 3.2, of validity of the feedback matrix given by the expression (3),
and of the extension of Theorem 3.2 to the non-autonomous system given by condition (4)
can be found in Coron (2007). We give here the key steps of the proof for showing that the
matrix K given by (3) is a valid feedback matrix to illustrate the underlying mechanisms:

• Setting V (x(t)) = x(t)trC−1T x(t), where x is solution to x′(t) = f(x, ue+K.(x−xe)),
and

CT =

(
e−AT

[∫ T

0

e−AtBBtre−A
trtdt

]
e−A

trT

)
. (16)

• Showing, using the form of CT , that

d

dt
(V (x(t))) = −|BtrC−1T x(t)|2 − |Btre−TA

tr

C−1T x(t)|2

18
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• Showing that, if for any t ∈ [0, T ], |BtrC−1T x(t)|2 = 0, then for any i ∈ {0, ..., n− 1},

xtrC−1T AiB = 0, ∀ t ∈ [0, T ].

• Deducing from the controllability condition (2), that

x(t)trC−1T = 0, ∀ t ∈ [0, T ].

and therefore from the invertibility of C−1T ,

x(t) = 0, ∀ t ∈ [0, T ].

• Concluding from the previous and LaSalle invariance principle that the system is
locally exponentially stable.

D.2 Analysis of Problem 3

In this section we prove Proposition 3.1. We study the problem

∂tu+
∑
|α|≤k

aα∂
α
x u = 0 on R+ × Rn, (17)

with initial condition
u(0, ·) = u0 ∈ S ′(Rn), (18)

and we want to find a solution u ∈ C0([0, T ],S ′(Rn)).
Denoting ũ the Fourier transform of u with respect to x, the problem is equivalent to

∂tũ(t, ξ) +
∑
|α|≤k

aα(iξ)
αũ(t, ξ) = 0, (19)

with initial condition ũ0 ∈ S(Rn). As the only derivative now is with respect to time, we
can check that

ũ(t, ξ) = ũ0(ξ)e
−f(ξ)t, (20)

where f(ξ) =
∑
|α|≤k aα(iξ)

α, is a weak solution to (19) belonging to the space
C0([0,+∞),D′(Rn)). Indeed, first of all we can check that for any t ∈ [0,+∞), ξ →
exp (−f(ξ)t) is a continuous function and ũ0 belongs to S ′(Rn) ⊂ D′(Rn), thus ũ(t, ·) be-
longs to D′(Rn). Besides, t → e−f(ξ)t is a C∞ function whose derivative in time are of
the form P (ξ)e−f(ξ)t where P (ξ) is a polynomial function. ũ is continuous in time and
ũ ∈ C0([0,+∞),D′(Rn)). Now we check that it is a weak solution to (19) with initial
condition ũ0. Let φ ∈ C∞c ([0,+∞) × Rn) the space of smooth functions with compact
support, we have

− 〈ũ, ∂tφ〉+
∑
|α|≤k

aα(iξ)
α〈ũ, φ〉+ 〈ũ0, φ〉

=− 〈ũ0, ∂t(e−f(ξ)tφ)〉 − 〈ũ0, f(ξ)e−f(ξ)tφ〉+ 〈ũ0, e−f(ξ)tf(ξ)φ〉+ 〈ũ0, φ〉
=0.

(21)

Hence, u defined by (20) is indeed a weak solution of (19) in C0([0,+∞),D′(Rn)). Now,
this does not answer our question as this only tells us that at time t > 0, u(t, ·) ∈ D′(Rn)
which is a less regular space than the space of tempered distribution S ′(Rn). In other words,
at t = 0, ũ = ũ0 has a higher regularity by being in S ′(Rn) and we would like to know if
equation (19) preserves this regularity. This is more than a regularity issue as, if not, one
cannot define a solution u as the inverse Fourier Transform of ũ because such function might
not exist. Assume now that there exists a constant C such that

∀ξ ∈ Rn , ũ0(ξ) = 0 or Re(f(ξ)) > C. (22)

∀ ξ ∈ Rn, 1supp(ũ0)e
−f(ξ)t ≤ e−Ct. (23)
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This implies that, for any t > 0, ũ ∈ S ′(Rn). Besides, defining for any p ∈ N,

Np(φ) =
∑

|α|,|β|<p

sup
ξ∈Rn

|ξα∂βξ φ(ξ)|, (24)

then for t1, t2 ∈ [0, T ],

Np((e−f(ξ)t1 − e−f(ξ)t2)φ) =
∑

|α|,|β|<p

sup
ξ∈Rn

|ξαPβ(ξ, φ)|, (25)

where Pβ(ξ, φ) is polynomial with f(ξ), φ(ξ), and their derivatives of order strictly smaller
than p. Besides, each term of this polynomial tend to 0 when t1 tends to t2 on supp(ũ0), the
set of frequency of u0. Indeed, let β1 be a multi-index, k ∈ N, and Qi(ξ) be polynomials in
ξ, where i ∈ {0, ..., k}.∣∣∣∣∣1supp(u0)∂

β1

ξ φ(ξ)

(
k∑
i=0

Qi(ξ)t
i
1e
−f(ξ)t1 −Qi(ξ)ti2e−f(ξ)t2

)∣∣∣∣∣
≤

k∑
i=0

max
supp(ũ0)

∣∣∣ti1e−f(ξ)t1 − ti2e−f(ξ)t2∣∣∣max
ξ∈Rn

∣∣∣∂β1

ξ φ(ξ)Qi(ξ, t)
∣∣∣ . (26)

From (22), the time-dependant terms in the right-hand sides converge to 0 when t1 tends to
t2. This implies that u ∈ C0([0, T ],S ′(Rn)). Finally let us show the property of the behavior
at infinity. Assume that C > 0, one has, for any φ ∈ S(Rn)

〈ũ(t, ·), φ〉 = 〈ũ0,1supp(ũ0)e
−f(ξ)tφ〉. (27)

Let us set g(ξ) = e−f(ξ)tφ(ξ), one has for two multi-index α and β

|ξα∂βξ g(ξ)| ≤ |ξ
αQ(ξ)e−f(ξ)t|, (28)

where Q is a sum of polynomials, each multiplied by φ(ξ) or one of its derivatives. Thus
ξαQ(ξ) belongs to S(Rn) and therefore, from assumption (22),

|ξα∂βξ g(ξ)|1supp(u0) ≤ max
ξ∈Rn

|ξαQ(ξ)|e−Ct, (29)

which goes to 0 when t→ +∞. This imply that ũ(t, ·)→ 0 in S ′(Rn) when t→ +∞, and
hence u(t, ·)→ 0. This ends the proof of Proposition 3.1.

Let us note that one could try to find solutions with lower regularity, where u is a distribution
of D′(R+ × Rn), and satisfies the equation

∂tu+
∑
|α|≤k

aα∂
α
x u = δt=0u0 on R+ × Rn. (30)

This could be done using for instance Malgrange-Erhenpreis theorem, however, studying the
behavior at t→ +∞ may be harder mathematically, hence this approach was not considered
in this paper.

E Size of the problem space

Lample and Charton (2020) provide the following formula to calculate the number of functions
with m operators:

E0 = L

E1 = (q1 + q2L)L

(m+ 1)Em = (q1 + 2q2L)(2m− 1)Em−1 − q1(m− 2)Em−2

Where L is the number of possible leaves (integers or variables), and q1 and q2 the number
of unary and binary operators. In the stability and controllability problems, we have q1 = 9,
q2 = 4 and L = 20 + q, with q the number of variables.

20



Under review as a conference paper at ICLR 2021

Replacing, we have, for a function with q variables and m operators
E0(q) = 20 + q

E1(q) = (89 + 4q)(20 + q)

(m+ 1)Em(q) = (169 + 8q)(2m− 1)Em−1 − 4(m− 2)Em−2

In the stability problem, we sampled systems of n functions, with n variables, n from 2 to 6.
Functions have between 3 and 2n+ 2 operators. The number of possible systems is

PSst =

6∑
n=2

(
2n+2∑
m=3

Em(n)

)n
> E14(6)

6 ≈ 3.10212

(since Em(n) increases exponentially with m and n, the dominant factor in the sum is the
term with largest m and n)

In the autonomous controllability problem, we generated systems with n functions (n between
3 and 6), and n + p variables (p between 1 and n/2). Functions had between n + p and
2n+ 2p+ 2 operators. The number of systems is

PSaut =

6∑
n=3

n/2∑
p=1

2(n+p+1)∑
m=n+p

Em(n+ p)

n

> E20(9)
6 ≈ 4.10310

For the non-autonomous case, the number of variables in n+ p+ 1, n is between 2 and 3
and p = 1, therefore

PSnaut =

3∑
n=2

 2(n+2)∑
m=n+1

Em(n+ 2)

n

> E10(5)
3 ≈ 5.1074

Because expressions with undefinite or degenerate jacobians are skipped, the actual problem
space size will be smaller by several orders of magnitude. Yet, problem space remains large
enough for overfitting by memorizing problems and solutions to be impossible.

F Model architecture

The networks used in this paper are very close to the one described in Vaswani et al.
(2017). They use an encoder/decoder architecture. The encoder stack contains 6 transformer
layers, each with a 8 head self-attention layer, a normalization layer, and a one layer feed
forward network with 2048 hidden units. Inputs is fed through trainable embedding and
positional embedding, and the encoder stack learns a representation of dimension 512. The
decoder contains 6 transformer layers, each with a (8-head) self-attention layer, a cross
attention (pointing to the encoder output) layer, normalization and feed forward linear layer.
Representation dimension is the same as the encoder (512). The final output is sent to a
linear layer that decodes the results.

The training loss is the cross entropy between the model predicted output and actual result
from the dataset. During training, we use the Adam optimizer, with a learning rate of 0.0001
and scheduling (as in Vaswani et al. (2017)). Mini-batch size varies from one problem to the
other, typically between 32 and 128 examples.

During training, we use 8 GPU. The model is distributed across GPUs, so that all of them
have access to the same shared copy of the model. At each iteration, every GPU processes
an independently generated batch, and the optimizer updated the model weights using the
gradients accumulated by all GPU. Overall, this is equivalent to training on a single GPU,
but with 8 times larger batches.

G Algorithmic complexity

Let n be the system degree, p the number of variables and q the average length (in tokens) of
functions in the system. In all problems considered here, we have p = O(n). Differentiating
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or evaluating an expression with q tokens is O(q), and calculating the Jacobian of our system
is O(npq), i.e. O(n2q).

In the stability experiment, calculating the eigenvalues of the Jacobian will be O(n3) in most
practical situations. In the autonomous controllability experiments, construction of the n×np
Kalman matrix is O(n3p), and computing its rank, via singular value decomposition or any
equivalent algorithm, will be O(n3p) as well. The same complexity arise for feedback matrix
computations (multiplication, exponentiation and inversion are all O(n3) for a square n
matrix). As a result, for controllability, complexity is O(n4). Overall, the classical algorithms
have a complexity of O(n2q) for Jacobian calculation, and O(n3) (stability) and O(n4)
(controllability) for the problem specific computations.

Current transformer architectures are quadratic in the length of the sequence, in our case
nq, so a transformer will be O(n2q2) (in speed and memory usage). Therefore, the final
comparison will depend on how q, the average length of equations, varies with n, the number
of parameters. If q = O(1) or O(log(n)), transformers have a large advantage over classical
methods. This means sparse Jacobians, a condition often met in practice. For controllability,
the advantage remains if q = O(n1/2), and the two methods are asymptotically equivalent if
q = O(n).

However, current research is working on improving transformer complexity to log-linear
or linear. If this happened (and there seem to be no theoretical reason preventing it),
transformers would have lower asymptotic complexity in all cases.

H Learning curves

Although all generated datasets included more than 50 million examples, most models were
trained on less. The following curves shows how performance increases with the number of
training examples, for the end to end stability problem (i.e. predicting whether systems of
degree 2 to 5 are stable). There are twelve curves corresponding to as many experiments
over shuffled versions of the dataset (i.e. different experiments used different parts of the
dataset).

Overall, less than 10 million examples are needed to achieve close to optimal accuracy.
Learning curves from different experiments are close, which proves the stability of the
learning process.

I Out-of-distribution generalization

In all our experiments, trained models are tested on held-out samples generated with the
same procedure as the training data, and our results prove that the model can generalize
out of the training data. However, training and test data come from the same statistical
distribution (iid). This would not happen in practical cases: problems would come from
some unknown distribution over problem space. Therefore, it is interesting to investigate
how the model performs when the test set follows a different statistical distribution. This
provides insight about how learned properties generalize, and may indicate specific cases
over which the model struggles.

To this purpose, we modified the data generator to produce new test datasets for end to end
stability prediction (section 5.1). Four modifications were considered:

1. Unary operators: varying the distribution of operators in the system. In the
training data, unary operators are selected at random from a set of nine, three
trigonometric functions, three inverse trigonometric functions, logarithm and ex-
ponential, and square root (the four basic operations are always present). In this
set of experiments, we generated four test sets, without trigonometric functions,
without logs and exponentials, only with square roots, and with a different balance
of operators (mostly square roots).

2. Variables and integers: varying the distribution of variables in the system. In
the training data, 30% of the leaves are numbers, the rest variables. We changed
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Figure 1: End to end stability accuracy vs number of training examples. 12 models,
trained over shuffled versions of the same dataset.

this probability to 0.1, 0.5 and 0.7. This has no impact on expression length, but
higher probabilities make the Jacobians more sparse.

3. Expression lengths: making expressions longer than in the train set. In the
training data, for a system of n equations, we generate functions with 3 to 2n+ 3
operators. In this experiments, we tried functions between n+ 3 and 3n+ 3 and
2n+ 3 and 4n+ 3. This means that the test sequences are, on average, much longer
that those seen at training, a known weakness of sequence to sequence models.

4. Larger degree: our models were trained on systems with 2 to 5 equations, we
tried to test it on systems with 6 equations. Again, this usually proves difficult for
transformers.

Note that the two first sets of experiments feature out-of-distribution tests, exploring different
distributions over the same problem space as the training data. The two last sets, on the
other hand, explore a different problem space, featuring longer sequences.

Table 9 presents the results of these experiments. Changing the distribution of operators,
variables and integers has little impact on accuracy, up to two limiting cases. First, over
systems of degree five (the largest in our set, and more difficult for the transformers) change in
operator distribution has a small adverse impact on performance (but not change in variable
distribution). Second, which the proportion of integers become very large, and therefore
Jacobians become very sparse, the degree of the systems has less impact on performance.
But overall results remain over 95%, and the model proves to be very resistant to changes in
distribution over the same problem space.

Over systems with longer expressions, overall accuracy tends to decreases. Yet, systems of two
or three equations are not affected by a doubling of the number of operators (and sequence
length), compared to the training data. Most of the loss in performance concentrates on
larger degrees, which suggests that it results from the fact that the transformer is presented
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at test time with much longer sequences that what it saw at training. In any case, all results
but one are well above the fastText baseline (60.5%).

When tested on systems with six equations, the trained model predicts stability in 78.7% of
cases. This is a very interesting result, where the model is extrapolating out of the problem
space (i.e. no system of six equations have been seen during training) with an accuracy well
above chance level, and the fastText baseline.

Table 9: End to end stability: generalization over different test sets.
Overall Degree 2 Degree 3 Degree 4 Degree 5

Baseline: training distribution 96.4 98.4 97.3 95.9 94.1

Unary operators: no trigs 95.7 98.8 97.3 95.5 91.2
Unary operators: no logs 95.3 98.2 97.1 95.2 90.8
Unary operators: no logs and trigs 95.7 98.8 97.7 95.2 91.0
Unary operators: less logs and trigs 95.9 98.8 96.8 95.0 93.1

Variables and integers: 10% integers 96.1 98.6 97.3 94.7 93.8
Variables and integers: 50% integers 95.6 97.8 96.7 94.3 93.1
Variables and integers: 70% integers 95.7 95.7 95.9 95.7 95.5

Expression lengths: n+3 to 3n+3 89.5 96.5 92.6 90.0 77.9
Expression lengths: 2n+3 to 4n+3 79.3 93.3 88.3 73.4 58.2

System degree: degree 6 78.7
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