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Abstract

Theoretical results show that neural networks can be approximated by Gaussian
processes in the infinite-width limit. However, for fully connected networks, it has
been previously shown that for any fixed network width, n, the Gaussian approxi-
mation gets worse as the network depth, d, increases. Given that modern networks
are deep, this raises the question of how well modern architectures, like ResNets,
are captured by the infinite-width limit. To provide a better approximation, we study
ReLU ResNets in the infinite-depth-and-width limit, where both depth and width
tend to infinity as their ratio, d/n, remains constant. In contrast to the Gaussian
infinite-width limit, we show theoretically that the network exhibits log-Gaussian
behaviour at initialization in the infinite-depth-and-width limit, with parameters
depending on the ratio d/n. Using Monte Carlo simulations, we demonstrate that
even basic properties of standard ResNet architectures are poorly captured by the
Gaussian limit, but remarkably well captured by our log-Gaussian limit. Moreover,
our analysis reveals that ReLU ResNets at initialization are hypoactivated: fewer
than half of the ReLUs are activated. Additionally, we calculate the interlayer
correlations, which have the effect of exponentially increasing the variance of
the network output. Based on our analysis, we introduce Balanced ResNets, a
simple architecture modification, which eliminates hypoactivation and interlayer
correlations and is more amenable to theoretical analysis.

1 Introduction

The characterization of infinite-width dynamics of gradient descent (GD) in terms of the so-called
Neural Tangent Kernel (NTK) [1–10] represented a major breakthrough in our understanding of deep
learning in the large-width regime. Before the identification of infinite-width limits, the theoretical
study of deep learning had long been hindered by the apparent analytical intractability of gradient
descent and variants acting on the nonconvex objectives used to train neural networks. Despite this
progress, evidence suggests that deep neural networks can outperform their infinite-width limits in
practice [11], particularly when the depth of the network is large. These observations motivate the
study of other approximations that may close the gap.

Several alternative limits have been proposed. Around the time of the discovery of the NTK limit,
mean-field limits were also characterized [12–15], and more recently have been linked with the NTK
limit [16]. Yang and Hu [17] describe a family of infinite-width limits indexed by the scaling limits
of initial weight variance, weight rescaling, and learning rates. This family includes both the NTK
and mean field limits. One motivation for studying these alternative limits is that they yield a notion
of feature learning, which provably does not occur in the NTK limit [17].
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Figure 1: Probability density function of ln ‖zout‖2 for six network configurations on initialization.
All networks have n = 100, nin = nout = 10, α = λ = 1/

√
2. Depth d varies by column. Top row:

Vanilla ReLU ResNets. Bottom Row: Balanced ResNets (Section 2.1), which randomize the non-
linearities used at each neuron thereby exponentially reducing the variance. The theoretical curves
shown are the result of Theorem 1 and Theorem 4. These predictions converge to the infinite-width
prediction when d/n→ 0. The details of the simulations and plot here is in Appendix C.

Despite the variety of these limits, one common feature is that the depth of the network (i.e., the
number of its layers) is treated as a constant as the width of the network is allowed to grow. Indeed,
for fixed width, n, the Gaussian approximations at initialization [18–23] worsen as the depth, d,
increases. While real-world networks are fairly wide, their relative depth is not trivial. Hanin and
Nica [24] were the first to compute an infinite-depth-and-width limit for fully connected networks.
While the training dynamics of this limit are still not completely understood, we now know that,
in the infinite-depth-and-width limit, the neural tangent kernel is random, and the derivative of the
kernel is nonzero at initialization. This means training does not correspond to that of a linear model,
like it does in the NTK limit [25, 26].

In addition to these theoretical corrections to the Gaussian limit, practitioners have begun to notice
that even basic properties of standard neural networks do not line up with those predicted by the
infinite-width limit. Perhaps the most basic is that the gradients of the network early in training
are not Gaussian, but instead are approximately log-Gaussian [27]. In fact, one should see log-
Gaussian behaviour agrees with the theoretical predictions of Hanin and Nica [24], although there
has yet to be a careful empirical comparison made between the precise predictions coming from
infinite-depth-and-width models and real world networks.

In practice, however, fully connected networks are not often used without architectural modifications.
In particular, residual connections, ushered into widespread use after the description of the ResNet
architecture [28], produced very deep architectures that were practically useful with optimization
techniques available at the time. Initialization schemes for ResNets have been studied in the infinite-
width limit [19, 29] or with modifications [30–32].

In this work, we consider the infinite-depth-and-width limit of fully connected architectures with resid-
ual connections (“Vanilla ResNets”) and standard initializations. Here, the analysis is complicated
by the effect of skip connections, which introduce interlayer correlations that have a non-negligible
effect in this limit. Surprisingly, we observe a counter-intuitive but fundamental phenomenon,
whereby these skip connection cause the network to be hypoactivated, meaning that less than half
of the neurons are activated on initialization. This fact undermines key assumptions that underlie
other infinite-depth-and-width limit studies of architectures without residual connections or with
nonstandard modifications, such as post-activation residual connections.
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Hypoactivation is a roadblock that all theoretical research into standard ResNet architectures must
contend with—it is an unavoidable property of the standard architecture and the root of many technical
difficulties. In order to sidestep this roadblock, we introduce a conjecture that bounds the size of
hypoactivation and effect on interlayer correlation. The conjecture is inspired by empirical evidence
from Monte Carlo simulations, as well as several simplified analyses that ignore certain technical
difficulties. The conjecture introduces what we believe to be the minimal assumption necessary to
allow rigorous theoretical work to proceed. It also defines an important open problem in the study of
limits of residual architectures.

To demonstrate the utility of the conjecture, we show that it leads to precise predictions. In particular,
we prove a limit theorem characterizing the exact marginal distribution of the output at initialization
in the infinite-depth-and-width limit, up to order O(dn−2). Our limit result shows that ResNets have
log-Gaussian behaviour on initialization, and like fully connected networks [24], the behaviour is
determined by the depth-to-width aspect ratio. This corroborates recent empirical observations about
deep ResNets [27]. Since real world networks are finite, the question of how well this approximates
finite behaviour is of paramount importance. Based on Monte Carlo simulations, we find excellent
agreement between our predictions and finite networks (see Figure 1). Moreover, for very deep
networks (e.g. d/n = 1) the infinite-depth-and-width prediction is extremely different than the
infinite-width prediction. More surprisingly, however, is that even at comparatively small depth-to-
width ratio (e.g. d/n = 0.1) the two limits are already significantly different. Furthermore, we also
observe that the effects due to hypoactivation and interlayer correlation are non-negligible; these
effects are precisely the difference between Vanilla ResNets and so-called “Balanced Resnets” in
Figure 1. Perhaps most importantly, we observe that real network outputs exhibit exponentially larger
variance than predicted by infinite-width limits. This type of variance at initialization is known to
cause exploding and vanishing gradients and other types of training failures [33, 34]. Our result also
implies that the output neurons of the network are not independent as predicted by the Gaussian
infinite-width limit. See Figure 3.

In order to maintain the same skip connections from layer to layer, but render the activation patterns
completely independent from layer to layer on initialization, we introduce the Balanced ResNet
architecture, where the sign of each neuron’s activation function is randomized. We demonstrate
that this exponentially decreases the variance of the network output on initialization. Moreover, this
independence between neurons also makes the model more amenable to theoretical analysis and
opens the door to future understanding of network behaviour. Although it is beyond the scope of this
paper, a small preliminary empirical study (Appendix C) suggests that standard training regimes are
not negatively affected by replacing standard ResNet architectures with Balanced ones.

We summarize our main contributions as follows:

• We identify and characterize a fundamental property of ResNets that we call hypoactivation: less
than half of the ReLU neurons are activated. Based on empirical evidence, we formulate a precise
minimal conjecture bounding the effect of hypoactivation that permits us to make precise, rigorous
estimates for other properties of ResNets.

• We prove a limit theorem which shows that the output of ResNets on initialization exhibits
log-Gaussian behaviour with parameterization depending on the depth-to-width ratio d/n.

• We provide empirical evidence from Monte Carlo simulations showing our theory provides more
accurate predictions for simple properties of finite networks compared to the predictions made by
the Gaussian infinite-width limit.

• We introduce the Balanced ResNet architecture, which corrects the hypoactivation and variance
due to layerwise correlation from Vanilla ResNets. We also prove that the output for this architecture
is log-Gaussian on initialization with exponentially lower variance. This simple modification can
be applied to any neural network that uses ReLU activations.

2 Main Results

In terms of the notation in Table 1, a Vanilla ResNet with fully connected first/last layers and d
hidden layers of width n is defined by

z0 :=
1√
nin

W 0x, z` := αz`−1 +λ

√
2

n
W `ϕ+

(
z`−1

)
for 1 ≤ ` ≤ d, zout :=

1√
n
W outzd . (1)
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Notation Description Notation Description
nin ∈ N Input dimension nout ∈ N Output dimension
n ∈ N Hidden layer width d ∈ N Number of hidden layers (depth)
ϕ+(·) ReLU function

ϕ+(x) = max{x, 0}
ϕ−(·) “Domain Flipped” ReLU

ϕ−(x) = max{−x, 0}
α ∈ R Skip connection coefficient λ ∈ R+ Feed-forward coefficient
x ∈ Rnin Input W 0 ∈ Rnin×n Weight matrix at layer 0
zout ∈ Rnout Network output W out ∈ Rn×nout Weight matrix at final layer.
z` ∈ Rn Neurons (pre-activation)

for layer 1 ≤ ` ≤ d
W ` ∈ Rn×n Weight matrix at layer 1 ≤ ` ≤ d

all weights initialized i.i.d. ∼ N (0, 1)

Table 1: Notation

Note that factors of
√

2n−1 in the hidden layer are equivalent to intializing according to the so-called
He initialization [35]. Other intializations correspond to changing the coefficient λ. This setup is
similar to that of “Stable ResNets” [29], where the infinite-width limit is studied.

In the infinite-depth-and-width limit, the intuition that half of the ReLU units are active (i.e. nonzero)
because of symmetry is surprisingly not correct. We find that the following quantities play an
important role. We define the average hypoactivation (of layer `) and the total hypoactivation of
the network by

h` := E
[∥∥ϕ+

(
ẑ`
)∥∥2]− 1

2
, htotal :=

∑d
`=1 h` , (2)

where ẑ` := z`/
∥∥z`∥∥ and E means expectation over the choice of random network weights on

initialization. The average hypoactivation is a measure of how many ReLU neurons are activated in
layer `; h` = 0 indicates roughly half of the neurons are active. Counter-intuitively, we observe that in
a vanilla ResNet, h` is negative and |h`| = O(1/n), indicating slightly less than half the neurons are
active.2 After compounding over d layers, the total hypoactivation is of order htotal = O(d/n) = O(1)
in the infinite-depth-and-width limit. As we will see, this effect has a non-trivial contribution.

At the same time, we also find the covariance between the activations of various layers does not
vanish in the infinite-depth-and-width limit. This motivates the definition of the total interlayer
covariance correction

Itotal :=
∑

1≤` 6=`′≤dCov
(

2
∥∥ϕ+

(
ẑ`
)∥∥2 , 2‖ϕ+

(
ẑ`
′)‖2) . (3)

As with the hypoactivation, skip connections cause this term to be non-trivial. We formulate
Conjecture 5, which contains a precise encapsulation of the behaviour of ẑ` we observe.

Conjecture 5 (Informal). In expectation, the layers ẑ` can be approximated by uniform random
variables from the sphere up to a relative error of O(1/n).

The conjecture is well supported by Monte-Carlo simulations (see Figure 4). We provide a more
detailed discussion and a precise statement of Conjecture 5 in Section 4. Assuming the conjecture
holds, we prove a limit theorem about the distribution of zout. Informally, this says that zout is
approximately a log-Gaussian scalar times an independent Gaussian vector

zout ≈ ‖x‖√
nin

(
α2 + λ2

) d
2 exp

(
1

2
N
(
−β

2
+ 2chtotal, β + c2Itotal

))
~Z, (4)

where ~Z has iid N (0, 1) entries, and β and c are defined by

β :=
2

n
+
d

n
· 5λ4 + 4α2λ2

(α2 + λ2)2
, c :=

λ2

α2 + λ2
. (5)

The precise statement, including asymptotic error bounds, is as follows.
Theorem 1. For any choice of hyperparameters nin, nout, n, d, α, λ, and every input x, the output
zout at initialization has a marginal distribution which can be written in the form

zout d=
‖x‖√
nin

(
α2 + λ2

) d
2 exp

(
1

2
G

)
~Z, (6)

2For a quantity f = f(n, d) whose dependence on width and depth may be implicit, we use the notation
f = O(da/nb) to mean that, for all choice of constants α, λ, r−, r+ > 0, there exists a constant C > 0 such
that |f(n, d)| ≤ Cda/nb for all d, n where r− < d/n < r+. This notation will allow us to state precise limit
theorems when d, n→∞ with the ratio d/n converging to a constant.
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Figure 2: Empirical mean and variance and infinite-depth-and-width prediction for the random
variable G(n, d, α, λ) from (6) compared to the results of Theorems 1 & 4 . For these simulations,
α = λ = 1/

√
2, d/n = 1 are fixed and width n is varied on the x-axis. The error bars indicate

95% confidence interval (CI) of the Monte-Carlo simulation, with truncation at 1e−3 for plotting on
log-scale. The balanced ResNet predictions fall within the Monte-Carlo CI and so are not plotted on
log scale. Since d/n is fixed, Figure 2b indicates the error in the asymptotic prediction of variance (7)
is O(n−1) = O(dn−2) as claimed. On the other hand, the error in mean (7) is O(n−2) = O(dn−3);
this is one order smaller than the statement proven in Theorem 1. A possible explanation is that the
sub-leading error term in our approximation for G is mean zero.

where ~Z ∈ Rnout is a Gaussian random vector with iid N (0, 1) entries, G = G(n, d, α, λ) is a
random variable which is independent of ~Z and whose distribution does not depend on nin, nout or x.

Consider the limit where both the network depth d→∞ and hidden layer width n→∞ in such a
way that the ratio d/n converges to a non-zero constant. In this limit, assuming that Conjecture 5
holds, then the random variable G ∈ R has the following asymptotic behaviour:

E [G] = −β
2

+ 2chtotal +O

(
d

n2

)
, Var [G] = β + c2Itotal +O

(
d

n2

)
, (7)

where β and c are as in (5), and moreover G converges in distribution to a Gaussian random variable
with mean and variance given by (7) in this limit.

The main ideas of the proof of Theorem 1 is given in Section 5 and the detailed proof is given in
Appendix B. We also provide more explicit formulas for htotal, Itotal below.
Proposition 2. Assume Conjecture 5 is true. Then in the same infinite-depth-and-width limit as
Theorem 1, the total hypoactivation htotal and total interlayer covariance Itotal obey

htotal = Cα,λ
d

n
+O

(
d

n2

)
, Itotal =

∑
1≤` 6=`′≤d

J̄2(θ|`′−`|)− J̄2(π − θ|`′−`|)
n

+O

(
d

n2

)
. (8)

Here Cα,λ is a constant depending on α, λ and

J̄2(θ) := J2 (θ) /π = 3 sin(θ) cos(θ)/π + (1− θ/π)
(
1 + 2 cos2 θ

)
,

where J2(θ) first appeared in [36], and θk is such that cos(θk) = αk/(α2 + λ2)k/2 .

Remark 3. The Gaussian infinite-width limit predicts that the marginals of zout should have the form
of (6) withG being identically zero. As zout depends exponentially onG, the infinite-depth-and-width
limit predicts the variance is exponentially larger than the infinite-width limit. See Section 3.1 for a
detailed discussion and Figure 3 for verification against finite networks.

Using Monte Carlo simulations, we estimate the constant Cα,λ. The result of Theorem 1 is then
compared against finite networks in Figure 2. Full proof can be found Appendix B.

The idea of using a scaling parameter α = 1/
√

2 in the skip connections has been noted in empirical
papers [37] and also studied under simplified assumptions on the number of activation in each layer
[38]. Our result shows that by choosing α2 + λ2 = 1, the prefactor in (6) does not grow with depth
thereby enabling deeper networks to be trained.

5



In the case that α = 0, λ = 1, the architecture reduces to a fully connected network. In this case,
log-Gaussian behaviour of the network was discovered in Hanin and Nica [24]. The fully connected
case is simpler because the direction vectors ẑ` are always uniformly distributed on the unit sphere
and are independent from layer to layer. This means h` = 0 and θn = 0 which greatly simplifies the
result of Theorem 1.

Furthermore, the proof easily extends to the case where the coefficients α`, λ` vary from layer to
layer; see Appendix A.1 for the general statement. Hayou et al. [29] and Hanin and Rolnick [33] have
studied ResNets where α` = 1 in every layer, but λ` is allowed to vary. The prefactor of our result in
this case becomes

∏d
`=1 (12 + λ2`) ≈ exp

(∑d
`=1 λ

2
`

)
, which is akin to the behaviour found in those

papers. Additionally, our result precisely quantifies the log-Gaussian behaviour and its dependence
on the sequence λi through the parameters β and c in the infinite-depth-and-width limit.

2.1 Log-Gaussian Behaviour of Balanced ResNets

Given a collection of iid uniformly random signs, s`i ∈ {+,−}, 1 ≤ ` ≤ d, 1 ≤ i ≤ n, a balanced
ResNet is defined much like a Vanilla ResNet, except that a random sign is applied preactivation:

z` := αz`−1 + λ

√
2

n
W `ϕs`

(
z`−1

)
for 1 ≤ ` ≤ d,

where at each layer the vector function ϕs` : Rn → Rn applies either ϕ+ or ϕ− to the entries
according to the random signs s`. More precisely, the i-th component is

ϕs`(z)i :=

{
ϕ+(zi) = max(zi, 0), if s`i = + ,

ϕ−(zi) = max(−zi, 0), if s`i = − .

An equivalent definition is the entrywise multiplication ϕs`(z) = ϕ+(s` � z). Note that the random
signs s`i are not trainable parameters; they are frozen on initialization. This same symmetrization was
first exploited by Allen-Zhu et al. [39] and Bai and Lee [40] to study a quadratic approximation of
the network. We now present a corresponding limiting theorem for Balanced ResNets.
Theorem 4. For a balanced ResNet, the same result as Theorem 1 given in (6) still holds, but with
the mean and variance of G given simply by

E [G] = −β
2

+O

(
d

n2

)
, Var [G] = β +O

(
d

n2

)
. (9)

Balanced ResNets are constructed so that the activation of each neuron is independent of all others
due to the random signs s`. This eliminates the hypoactivation and variance terms which complicated
the analysis of the Vanilla ResNet and necessitated Conjecture 5. Instead, for Balanced ResNets it is
straightforward to compute that for any fixed z, w ∈ Rn we have

E
[
‖ϕs`(z)‖2

]
=
‖z‖2

2
,Var

[
‖ϕs`(z)‖2

]
=

n∑
i=1

z4i
4
,Cov

[
‖ϕs`(z)‖2 , ‖ϕs`′ (w)‖2

]
= 0. (10)

Even though the layers ẑ`, ẑ`
′

are correlated, because the activation functions ϕs` and ϕs`′ are set
to be independent on initialization, the correlation between layers does not induce a correlation on
which neurons are activated from layer to layer. This explains why there is no hypoactivation and
interlayer correlation correction in Theorem 4 as there is in Theorem 1.

3 Consequences of Theorems 1 & 4 and Comparison to Infinite-Width Limit

3.1 Vanishing and Exploding Norms

By the basic fact E[exp(N (µ, σ2))] = exp(µ + 1
2σ

2) it follows from Theorems 1 & 4 that, when
the inputs x has ‖x‖ =

√
nin, the mean size scale of any neuron zout

i is approximately

E
[
(zout
i )2

]
≈
{

(α2 + λ2)d exp
(
2chtotal + 1

2c
2Itotal

)
, for Vanilla ResNets,

(α2 + λ2)d , for Balanced ResNets.
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Figure 3: Behaviour of the mean and variance of the typical output (zout
i )2 and the correlation between

(zout
i )2, (zout

j )2 for two different output neurons. Here n = 200, α = λ = 1/
√

2 and d/n varies on
the x-axis. The infinite width prediction for correlation is zero, but due to plotting on log-scale, we
replace zero by 0.01 for display.

(Note that the terms with β cancel out!) When α2 + λ2 = 1, this is constant for Balanced ResNets.
In contrast, Vanilla ResNets have a complicated dependence on the network depth d and width n
due to the hypoactivation and correlations terms. This means the behaviour is exp(Cd/n), which is
somewhat surprising. A more serious issue is the variance which Theorems 1 & 4 predict to be

Var
[
(zout
i )2

]
≈
{

(α2 + λ2)2d
(
3 exp

(
β + c2Itotal

)
− 1
)

exp
(
4chtotal + c2Itotal

)
, for Vanilla,

(α2 + λ2)2d (3 exp (β)− 1) , for Balanced.

Since β ≈ Cd/n, the term exp(β) represents exponentially larger variance for deep nets compared to
shallow ones of the same width. In contrast, the variance predicted by the infinite width limit does not
grow with depth for this model when α2 + λ2 = 1. This effect means the relative sizes of different
network outputs can be widely disparate. Unlike problems with the mean, this issue is harder to
resolve. For example, normalization methods that divide all neurons by a constant does nothing to
address the large relative disparity between two points. Techniques like batch normalization will be
skewed by large outliers. This kind of variance is known to obstruct training [33]. The input-output
derivative ∂xiz

out has the same type of behaviour as zout itself; a simple proof is given in Appendix B.
It is expected that the gradient with respect to the weights ∂W `

ij
zout will also have the same qualitative

behaviour [27] although more investigation is needed to understand this theoretically. Exponentially
large variance for gradients is a manifestation of the vanishing-and-exploding gradient problem [34].

Balanced ResNets suffer from this variance problem less because the interlayer correlation term
is zero. Since this variance reduction happens at the exponential scale in, the difference can be
significant; for networks with d/n = 1, the contribution is a factor of ≈ e5.5 ≈ 250 for Vanilla
ResNets vs. ≈ e2.5 ≈ 10 for Balanced ResNets. See Figure 3 for a comparison of these theoretically
predicted properties vs experiments with finite networks.

3.2 Correlated Output Neurons

Since the same random variable G multiplies the entire vector zout, the individual neurons in the
output layer are not independent. For example, Theorem 1 and 4 predict that the squared entries have
strictly positive correlation given by Corr

(
(zout
i )

2
,
(
zout
j

)2)
= (exp(σ2) − 1)/(3 exp(σ2) − 1)

for any two neurons i 6= j where σ2 = Var(G). This tends to 1/3 as d/n grows. The effect of
correlated output neurons persists for Balanced ResNet but is reduced again due to the lower variance.
This is very different from the infinite-width limit, which predicts that individual neurons should be
independent Gaussians. This prediction of the theorem matches finite networks closely; see Figure 3.

4 Conjecture 5: Hypoactivation and Layerwise Correlations

Vanilla ResNets have a subtle asymmetry in the architecture due to the skip connections. Unlike fully
connected networks, the distribution of ẑ` := z`/

∥∥z`∥∥ for ` ≥ 1 is not exactly uniformly distributed
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Figure 4: Monte Carlo evidence for Conjecture 5. d = 200, α = λ = 1/
√

2, and
n varies on the x-axis. The plots show the quantities (a)

∣∣E‖ϕ+(ẑ`)‖2 − E‖ϕ+(u)‖2
∣∣,

(b)
∣∣Var‖ϕ+(ẑ`)‖2 −Var‖ϕ+(u)‖2

∣∣, (c)
∣∣Cov

(
‖ϕ+(ẑ`)‖2, ϕ+(ẑ`−1)‖2

)
− C(θ1)

∣∣, (d)∣∣Cov
(
‖ϕ+(ẑ`)‖2, ϕ+(ẑ`−2)‖2

)
− C(θ2)

∣∣. C(θk) is the theoretical covariance formula from the
term where `′ − ` = k in (8). Note also that the absolute error is expected to be O(n−2) when the
theoretical quantity is O(n−1). Figures (a) and (b) verify the conjecture in (11) and (12), and Figures
(c) and (d) verify (13) when k = 1 and k = 2 respectively. For display, we clip the bottom edge of
the CI to 2e−5; otherwise the error bar would go down to −∞ on the log scale.

on the unit sphere. Informally speaking, ẑ` can be thought of as a random walk whose variance at
each step is proportional to

∥∥ϕ+(ẑ`)
∥∥. More randomness is injected when

∥∥ϕ+(ẑ`)
∥∥ is large and

less when it is small. The net effect is that the walk moves slower when
∥∥ϕ+(ẑ`)

∥∥ is small, thereby
spending more time in those locations. Consequently, ‖ϕ+(ẑ`)‖ is biased toward smaller values.

The size of this effect is limited by entropy; most of the unit sphere Sn−1 has ‖ϕ+(u)‖2 ≈ 1/2 in
the sense that for any ε > 0, the measure of the set

{
u : |‖ϕ+(u)‖2 − 1

2 | > 1/n
1
2−ε
}

vanishes as
n→∞.

To quantify the effect of the bias, we can think of the evolution of ẑ`, ` = 1, 2, . . . as a random
walk that takes different step sizes at a different points on the sphere. It is reasonable to expect that
the behaviour of this processes will be similar to that of a time changed Brownian motion, which
is slowed down at the points where ẑ` takes smaller steps. (Proving this comparison precisely is
technically difficult since the parameter n simultaneously plays both the role dimension and the
step size of the walk.) Based on this heurstic comparison to time changed Brownian motion and on
extensive Monte Carlo simulations we conjecture that the expected size of the hypoactivation effect
is only O(1/n) in expectation; Conjecture 5 contains a precise statement.

Even if each layer ẑ` is marginally close to the uniform distribution on the unit sphere, the directions
ẑ` and ẑ`+1 are not independent because of the skip connections in the network. As above, the exact
behaviour is complicated due to fluctuations in the exact number of neurons which are activated
in each layer. However, using the idea that

∥∥ϕ+(ẑ`)
∥∥2 = 1

2 (1 + o(1)), we construct the following
approximation. From (16), we have the approximation z`+1/

∥∥z`∥∥ = αẑ` + λg`+1/
√
n (1 + o(1))

We observe that the norm of RHS is concentrated around
√
α2 + λ2 as n→∞, so normalizing this

to get ẑ`+1 we have

ẑ`+1 =

(
α√

α2 + λ2
ẑ` +

λ√
α2 + λ2

g`+1

√
n

)
(1 + o(1)) .

Iterating this gives the same relationship for ẑ`+k where the first coefficient becomes αk/
√
α2 + λ2

k
.

As before, based on Monte Carlo simulations, we conjecture that the size of the error is O(1/n) in
expectation. We formalize this as a precise statement in Conjecture 5 below.
Conjecture 5. The distribution of the unit vector ẑ` = z`/

∥∥z`∥∥ is approximately uniformly dis-
tributed from the unit sphere u ∈ Sn−1 in the precise sense that the following asymptotics hold

E
[∥∥ϕ+(ẑ`)

∥∥2] = E
[
‖ϕ+(u)‖2

](
1 +O

(
1

n

))
, (11)

Var
[∥∥ϕ+(ẑ`)

∥∥2] = Var
[
‖ϕ+(u)‖2

](
1 +O

(
1

n

))
, (12)
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(a) Hypoactivation as a function of layer `

0.480 0.485 0.490 0.495
0.480

0.483

0.486

0.489

(b) Autoregressive behaviour
E‖ϕ+(ẑ

`)‖2 vs E‖ϕ+(ẑ
`+1)‖2

Figure 5: Monte-Carlo simulation for the behaviour of the unit vector ẑ` as a function of layer
0 ≤ ` ≤ d. Here n = d = 50, α = λ =

√
2
−1

. Figure 5a shows the mean fraction of neurons which
are activated, E

[
#{i : z`i > 0}

]
/n and the norm of the ReLU E

[
‖ϕ+(ẑ`)‖2

]
. The hypoactivation

h` is how far this is from 1
2 . At layer ` = 0, ẑ` is uniformly distributed from a unit sphere, but

approaches a different steady-state as we go deeper into the network. Figure 5b shows evidence that
the process E

[
‖ϕ+(ẑ`)‖2

]
seems to be a linear function of the previous layer E

[
‖ϕ+(ẑ`−1)‖2

]
.

Figure 4 illustrates the dependence as n varies.

where the constants in the big O(·) notation are uniform in `. Moreover, for two layers `, `′, which
are k ≥ 1 layers apart |`′ − `| = k, the joint distribution of ẑ`, ẑ`

′
is approximately equal to the joint

distribution of u, cos(θk)u + sin(θk)g/
√
n where g is a Gaussian vector with iid N (0, 1) entries

which is independent of u and θ is such that cos(θk) = αk/(α2 + λ2)k/2 in the sense that the
following asymptotics hold

Cov

[∥∥ϕ+(ẑ`)
∥∥2 ,∥∥∥ϕ+(ẑ`

′
)
∥∥∥2] = Cov

[
‖ϕ+(u)‖2 ,

∥∥∥∥ϕ+(cos(θk)u+
sin(θk)√

n
g)

∥∥∥∥2
](

1 +O

(
1

n

))
,

(13)
where the constant in the big O(·) notation is uniform in `, `′.

See Figure 4 for Monte Carlo simulations empirically verifying the conjecture for a fixed depth d, and
see Figure 5 for verifying the uniformity in layers `. In particular, we observe that in Figure 5a, we can
see the effect of hypoactivation converges rapidly to an equilibrium as the layer ` increases. In fact,
we can further verify in Figure 5b that hypoactivation appears to be autoregressive, which implies the
convergence is exponentially fast. This motivated the uniformity in layers in Conjecture 5.

5 Proof Ideas for Theorems 1 & 4

A key element of the proof is the following property of Gaussian random matrices. If W which has
iid N (0, 1) entries, then for any vector x, we have

Wx
d
= ‖x‖ g, (14)

where g is a vector whose entries are iid N (0, 1) random variables. Because of the fully connected
first and last layer of the network, (14) implies that

z0
d
=
‖x‖√
nin

g, zout d=

∥∥zd∥∥√
n
g′. (15)

Hence G := ln
(

(
∥∥zd∥∥2 /n) · (‖x‖2 /nin)−1 ·

(
α2 + λ2

)−d)
only depends on n, d, α, λ. (Equiva-

lently, G has the distribution of ln(
∥∥zd∥∥2 /n · (α2 + λ2

)−d
) when z0 = g.) With this definition, (15)

also shows zout is proportional to exp(G/2), establishing the first part of Theorem 1.
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From this construction, the essence of the proof is to understand the distribution of
∥∥zd∥∥ when z0 = g.

To understand
∥∥zd∥∥, we look at the ratios

∥∥z`+1
∥∥ /∥∥z`∥∥ layer by layer. By using the homogeneity

property of ReLU ϕ+(|c|x) = |c|ϕ+(x), we can divide z`+1 from (1) by
∥∥z`∥∥ to obtain

z`+1

‖z`‖ = αẑ` + λ

√
2

n
W `+1ϕ+(ẑ`)

d
= αẑ` + λ

√
2

n

∥∥ϕ+(ẑ`)
∥∥ g`+1, (16)

where g` are iid Gaussian vectors with iid N (0, 1) entries by application of (14). Hence∥∥z`+1
∥∥

‖z`‖
d
=

∥∥∥∥∥αẑ` + λ

√
2

n

∥∥ϕ+(ẑ`)
∥∥ g`+1

∥∥∥∥∥ d
=

∥∥∥∥∥α~e1 + λ

√
2

n

∥∥ϕ+(ẑ`)
∥∥ g`+1

∥∥∥∥∥ .
The last equality follows by applying an orthogonal transformation O such that Oẑ` = ~e1 =
(1, 0, 0 . . . , 0)T inside the norm, and observing that Gaussian random vectors are invariant under
orthogonal transformations Og` d

= g`. Hence we have the telescoping product for
∥∥zd∥∥:

∥∥zd∥∥ =
∥∥z0∥∥ d−1∏

`=0

∥∥z`+1
∥∥2

‖z`‖
d
=
∥∥z0∥∥ d−1∏

`=0

∥∥∥∥∥α~e1 + λ

√
2

n

∥∥ϕ+(ẑ`)
∥∥ g`+1

∥∥∥∥∥ . (17)

This shows that
∥∥zd∥∥ is a product of d random variables which are dependent on each other only

through the terms
∥∥ϕ+(ẑ`)

∥∥. (Note that
∥∥z0∥∥ is independent of ẑ0 since z0 is Gaussian.) Since∥∥ϕ+(ẑ`)

∥∥2 ≈ 1/2 with typical fluctuations on the scale 1/
√
n, therefore the dependence between

terms of (17) is small.

Taking the ln of (17) exhibits ln(
∥∥zd∥∥2 /n) as a sum of these weakly correlated random variables.

Here we note that various tail estimates for the same or related quantities have been developed [3,
41], however these estimates are not precise enough to pinpoint the exact limiting distribution. In
contrast, we are able to derive the exact limiting distribution via a Central Limit Theorem (CLT) for
weakly correlated sums [42]. The proof of Theorem 1 is completed by computing the mean, variance
and covariance of terms using Conjecture 5. For Theorem 4, the final calculation is simplified by (10)
which shows the terms are uncorrelated. The detailed proof is given in Appendix B.
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A Appendix

A.1 Layer dependent coefficients

We stated our main result with fixed α, λ, but the result easily extends to the case where α, λ vary
from layer to layer. This allows comparison between our result and the infinite width limits [29,
33], where they have α = 1 and allow λi to varying layer by layer. The statement in that setting is
modified as follows.
Proposition 6. Suppose αi, λi are sequences such that λi is uniformly bounded away from 0. Define
the network by

z0 =

√
1

nin
W 0x, z` = α`z

`−1 + λ`

√
2

n
W `ϕ+

(
z`−1

)
for 1 ≤ ` ≤ d, zout =

√
1

n
W outzd

(18)

Consider the limit where both the network depth d→∞ and hidden layer width n→∞ in such a
way that the ratio d

n converges to a constant. In this limit, the distribution of the network output zout

for a given input x is given by

zout d=
‖x‖√
nin

∏̀
i=1

√
α2
i + λ2i exp

(
1

2
G

)
~Z (19)

where ~Z = (Z1, . . . , Znout) ∈ Rnout is a Gaussian random vector with iid N (0, 1) entries and,
assuming that Conjecture 5 holds, then the random variable G ∈ R converges to a Gaussian random
variable in this limit and satisfies

E [G] = −β
2

+

d∑
`=1

2λ2`
α2
` + λ2`

h` +O

(
d

n2

)
(20)

Var [G] = β +

d∑
`,`′=1

` 6=`′

λ4`
(α2
` + λ2`)

2

J̄2(θ`,`′)− J̄2(π − θ`,`′)
n

+O

(
d

n2

)
, (21)

where θ`,`′ is such that cos (θ`,`′) =
∏`′−1
i=`

α2
i√

α2
i+λ

2
i

and β = 2
n + 1

n

∑d
`=1

5λ4
`+4α2

`λ
2
`

(α2
`+λ

2
`)

2 .

The corresponding limit theorem for balanced ResNets also holds; the hypoactivation and layer-wise
covariance term in (20) vanish.

The behaviour is a complicated function of the sequences αi, λi. It would be interesting to use these
theoretical results to guide the choice of parameters αi, λi and investigate how this effects training
behaviour.

B Proof of main results

To simplify the exposition of the proofs, we will assume without loss of generality that α2 + λ2 = 1.
The general case can be reduced to the case α2 + λ2 = 1 by dividing by

√
α2 + λ2 in each layer and

rescaling the parameters α, λ to α√
α2+λ2

and λ√
α2+λ2

.

By the argument of Section 5, the proof reduces to showing that the random variable G =

ln(
∥∥z0∥∥2 /n) +

∑d
`=1 ln(X`) has the desired asymptotic behaviour where X` is defined to be

X` =

∥∥∥∥∥α~e1 + λ

√
2

n

∥∥ϕ+

(
ẑ`
)∥∥ g`∥∥∥∥∥

2

= α2 + λ2
2

n

∥∥ϕ+

(
ẑ`
)∥∥2 ∥∥g`∥∥2 + 2αλ

√
2

n

∥∥ϕ+

(
ẑ`
)∥∥ g`1.

(22)

B.1 Mean Calculation

Lemma 7. E[X`] = 1 + 2λ2h` where h` is the hypoactivation of layer `.

14



Proof. Taking expectation of both sides of (22), we have

E [X`] = α2 + λ2
2

n
E
[∥∥ϕ+

(
ẑ`
)∥∥2]E [∥∥~g`∥∥2]+ 2αλ

√
2

n
E
[∥∥ϕ+

(
ẑ`
)∥∥]E [~g`1]

= α2 + λ2
2

n

(
1

2
+ h`

)
n+ 0 = 1 + 2λ2h`,

where we have used α2 + λ2 = 1 in the last line.

Corollary 8. Assume Conjecture 5. Then h` = O
(
1
n

)
and E[X`] = 1 +O( 1

n ).

Proof. By the conjecture, h` = E[
∥∥ϕ+(ẑ`)

∥∥2]− 1
2 = E[

∥∥ϕ+(ẑ`)
∥∥2]−E[‖ϕ+(u)‖2] = O( 1

n ).

B.2 Variance Calculation

Lemma 9. Let z ∈ Rn be any random vector and let g ∈ Rn be an independent Gaussian random
vector with iid N (0, 1) entries. Define

X =

∥∥∥∥∥αe1 + λ

√
2

n
‖ϕ+(z)‖ g

∥∥∥∥∥
2

= α2 + λ22 ‖ϕ+(z)‖2 ‖g‖
2

n
+

2αλ√
n

∥∥∥√2ϕ+(z)
∥∥∥ g1.

Then

Var(X) = λ4
n+ 2

n
Var

[
2 ‖ϕ+(z)‖2

]
+

2λ4

n
E
[
2 ‖ϕ+(z)‖2

]2
+

4α2λ2

n
E
[
2 ‖ϕ+(z)‖2

]
.

Proof. We will use the decomposition Var (X) = E
[
(X − α2)2

]
+
(
E[X]− α2

)2
and compute

the the two terms individually.

In the second term, since E[g1] = 0 and E[‖g‖2] = n, we have E[X]− α2 = λ2E
[
2 ‖ϕ+(z)‖2

]
.

To compute E[(X − α2)2], notice that X − α2 = λ22 ‖ϕ+(z)‖2 · 1n ‖g‖
2

+ 2αλ 1√
n

∥∥√2ϕ+(z)
∥∥ g1

is a sum of two terms. The two terms are uncorrelated since Cov(‖g‖2 , g1) = 0. Hence, the
expectation of the cross term in

(
X − α2

)2
is zero and we can compute

E
[
(X − α2)2

]
= λ4E

[
4 ‖ϕ+(z)‖4

]
E

[
‖g‖4
n2

]
+

4α2λ2

n
E
[
2 ‖ϕ+(z)‖2

]
E
[
g21
]

= λ4E
[
4 ‖ϕ+(z)‖4

] n+ 2

n
+

4α2λ2

n
E
[
2 ‖ϕ+(z)‖2

]
.

We have used the fact about χ2
n random variables that E

[
‖g‖4

]
= n(n+ 2). Finally then:

Var (X) = E
[(
X − α2

)2]− λ4E [2 ‖ϕ+(z)‖2
]2

= λ4E
[
4 ‖ϕ+(z)‖4

] n+ 2

n
− λ4E

[
2 ‖ϕ+(z)‖2

]2
+

4α2λ2

n
E
[
2 ‖ϕ+(z)‖2

]
= λ4

n+ 2

n
Var

[
2 ‖ϕ+(z)‖2

]
+

2λ4

n
E
[
2 ‖ϕ+(z)‖2

]2
+

4α2λ2

n
E
[
2 ‖ϕ+(z)‖2

]

Lemma 10. If u ∈ Sn−1 is a random vector which is distributed uniformly from the unit sphere, then

E
[
2 ‖ϕ+(u)‖2

]
= 1, Var

[
2 ‖ϕ+(u)‖2

]
=

3

n+ 2
.

15



Proof. This can be calculated directly using properties of the unit sphere, but the proof is complicated
by the fact that the entries ui, uj are not independent. Instead, there is an elementary proof using the
following equality in distribution:

ϕ+(u) ‖g‖ d
= ϕ+(g),

where g ∈ Rn has iid N (0, 1) entries and is independent of u. This follows because of the fact
that u d

= g
‖g‖ is independent of ‖g‖, so u ‖g‖ d

= g. By also using the fact that ϕ+(·) is a positive
homogeneous function ϕ+(|c|x) = |c|ϕ+(x), we see by applying ϕ+ to this equality in distribution
that ϕ+ (u) ‖g‖ d

= ϕ+(g) as desired.

Taking norm and expectation of this equality in distribution gives E
[
2 ‖ϕ+(u)‖2 ‖g‖2

]
=

E
[
2 ‖ϕ+(g)‖2

]
. Since ‖g‖ and u are independent, we can factor and rearrange to obtain

E
[
2 ‖ϕ+(u)‖2

]
=

E
[
2 ‖ϕ+(g)‖2

]
E
[
‖g‖2

] .

Since the entries of g are independent of each other, it is easier to compute using g and this identity
instead of using u. Moreover, because Gaussian distribution are symmetrically distributed, we have
that

{
g21 , . . . , g

2
n

}
is independent of,1 {g1 > 0} , . . . , 1 {gn > 0} Hence:

E
[
2 ‖ϕ+(g)‖2

]
= E

[
2

n∑
i=1

g2i 1 {gi > 0}
]

= 2

n∑
i=1

E
[
g2i
]
P [gi > 0] = 2n

1

2
= n

and so E
[
2 ‖ϕ+(u)‖2

]
=

E[2‖ϕ+(g)‖2]
E[‖g‖2]

= n
n = 1. Similarly, using E

[
4 ‖ϕ+(u)‖4

]
=

E[4‖ϕ+(g)‖4]
E[‖g‖4]

we now compute by looking at diagonal and off-diagonal terms as follows

E
[
4 ‖ϕ+(g)‖4

]
= 4E

 n∑
i,j=1

g2i g
2
j1 {gi > 0} 1 {gj > 0}


= 4

n∑
i=1

E
[
g4i
]
P [gi > 0] + 4

n∑
i,j=1
i 6=j

E
[
g2i
]
E
[
g2j
]
P [gi > 0]P [gj > 0]

= 4n · 3 · 1

2
+ 4n(n− 1)

1

2
· 1

2
= n2 + 5n.

Using E
[
‖g‖4

]
= n(n+ 2), we finally obtain E

[
4 ‖ϕ+(u)‖4

]
= n(n+5)

n(n+2) from which the claimed
variance formula follows.

Corollary 11. If u is a uniform from the unit sphere Sn−1, and X =
∥∥∥αe1 + λ

√
2
n ‖ϕ+(u)‖ g

∥∥∥2 as
in Lemma 9, then

Var(X) =
5λ4 + 4α2λ2

n
.

Proof. Plug in the result of Lemma 10 into Lemma 9.

Lemma 12. Assuming Conjecture 5 is true, and with X` defined as (22), we have

Var (X`) =
5λ4 + 4α2λ2

n

(
1 +O

(
1

n

))

Proof. By the conjecture, we have that E
[
2
∥∥ϕ+(ẑ`)

∥∥2] = E
[
2 ‖ϕ+(u)‖2

] (
1 +O

(
1
n

))
and

Var
[
2
∥∥ϕ+(ẑ`)

∥∥2] = Var
[
2 ‖ϕ+(u)‖2

] (
1 +O

(
1
n

))
. Hence we can compute Var(X`) up to a

factor of
(
1 +O

(
1
n

))
from Lemma 9 by plugging in the result of Lemma 10.
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B.3 Uniform distribution on spheres and Gaussian random variables

In this section we develop some approximations which are used in the next section. Let u ∈ Sn−1 ⊂
Rn be a uniform random variable from the unit sphere. Let Z ∼ N (0, 1) ∈ R be a standard Gaussian.
The results in this section concern the error rate in the well known approximation for the marginal
distribution of the components ui, namely

√
nui ≈ Z.

Lemma 13. Let f : R → R be any bounded function. Then the marginal distribution of any
coordinate ui satisfies

E
[
f
(√
nui
)]

= E [f (Z)] +O

(
1

n

)

Proof. This is a direct corollary to Theorem 2 of [43], which uses Stirling’s formula to show that the

total variation distance between the random variables
√
nui and Z is at most 2

(√
1 + 3

n−3 − 1
)

=

O(1/n).

Lemma 14. For p ∈ N, the 2p-th moment of the marginal distribution of any coordinate ui satisfies

E
[(√

nui
)2p]

= E
[
Z2p

]
·
(

1

(
1 +

2

n

)
· · ·
(

1 +
2p− 2

n

))−1
= E

[
Z2p

]
+O

(
1

n

)

Proof. As in the proof of Lemma 9, we use the equality in distribution ‖g‖u d
= g where g ∈ RN is a

vector whose components are iid N (0, 1) independent of u. From this it follows that

E
[
‖g‖2p u2pi

]
= E

[
g2pi

]
= E

[
Z2p

]
The result then follows by using the independence of ‖g‖ and u, and the formula for the p-th moment
of χ2

n random variable, namely ‖g‖2p = n(n+ 2) · · · (n+ 2p− 2).

Corollary 15. Let f : R→ R be any function that satisfies |f(x)| ≤ Ax2p +B for some constants
A,B > 0 and exponent p ∈ N. Then

E
[
f
(√
nui
)]

= E [f (Z)] +O

(
1

n

)

Proof. The proof is immediate writing the difference in expectation as an integral and then compar-
ing
∫
f(x)

(
ρ√nui(x)− ρZ(x)

)
dx to

∫ (
Ax2p +B

) (
ρ√nui(x)− ρZ(x)

)
dx by the results of the

previous two lemmas.

B.4 Pairwise covariances

Define the function J̄2 : R→ R by

J̄2(θ) := 2E
[
ϕ2
+(Z)ϕ2

+ (cos(θ)Z + sin(θ)W )
]
, (23)

where Z ∈ R,W ∈ R are iid N (0, 1) random variables. In Cho and Saul [36] they find an explicit
formula for this, namely:

J̄2(θ) =
J2 (θ)

π
=

3 sin(θ) cos(θ) + (π − θ)
(
1 + 2 cos2 θ

)
π

Lemma 16. Let u ∈ Sn−1 be a uniform random vectors from the unit sphere and let g ∈ Rn be a
Gaussian vector with iid N (0, 1) entries which is independent of u. Then

Cov

(
2 ‖ϕ+ (u)‖2 , 2

∥∥∥∥ϕ+

(
cos(θ)u+

sin(θ)√
n
g

)∥∥∥∥2
)

=
J̄2(θ)− J̄2(π − θ)

n

(
1 +O

(
1

n

))
.

(24)
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Proof. By expanding the norms into sums, ‖x‖2 =
∑n
i=1 x

2
i , we can compute the covariance by

summing over all pairs of coordinates ui, cos(θ)uj + sin(θ)n−
1
2 gj . There are two types of terms to

consider. (Note: we use the notation ϕ2
+(x) = (ϕ+(x))2.)

Diagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal TermsDiagonal Terms: Cov
(
ϕ2
+(ui), ϕ

2
+(cos(θ)ui + sin(θ)n−

1
2 gi)

)
for 1 ≤ i ≤ n We first use the

positive homogeneity of ϕ+ to extract a factor of
√
n from both terms

Cov

(
ϕ2
+(ui), ϕ

2
+(cos(θ)ui +

sin(θ)√
n
gi)

)
=

1

n2
Cov

(
ϕ2
+(
√
nui), ϕ

2
+(cos(θ)

√
nui + sin(θ)gi)

)
We now use the approximation of

√
nui by Z ∼ N (0, 1) as in Section B.3 to obtain

1

n2
Cov

(
ϕ2
+(
√
nui), ϕ

2
+(cos(θ)

√
nui + sin(θ)gi)

)
=

1

n2
Cov

(
ϕ2
+ (Z) , ϕ2

+ (cos(θ)Z + sin(θ)gi)
)(

1 +O

(
1

n

))
=

1
2 J̄2(θ)− 1

4

n2

(
1 +O

(
1

n

))
,

where we have used the definition of J̄2(θ) from (23).

Off diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal termsOff diagonal terms Cov
(
ϕ2
+(ui), ϕ

2
+(cos(θ)uj + sin(θ)n−

1
2 gj)

)
for 1 ≤ i ≤ n,1 ≤ j ≤ n,i 6= j

We compute the expectation

E
[
ϕ2
+(ui)

2ϕ2
+(cos(θ)uj + sin(θ)n−

1
2 gj)

]
by first conditioning on uj . Conditioned on uj , the distribution of ui is ui

d
=
√

1− u2j ũi, where ũ is
independent of u and is drawn uniformly from the unit sphere whose dimension is one smaller than
that of u, namely ũ ∈ Sn−2. Since the ϕ+ is positive homogeneous, we can factor

√
1− u2j out to

get:

E
[
ϕ2
+(ui)ϕ

2
+(cos(θ)uj + sin(θ)n−

1
2 gj)

]
= E

[
ϕ2
+(ũi)

2(1− u2j )ϕ2
+(cos(θ)uj + sin(θ)n−

1
2 gj)

]
= E

[
ϕ2
+(ũi)

2
]
E
[
(1− u2j )ϕ2

+(cos(θ)uj + sin(θ)n−
1
2 gj)

]
=

1

2(n− 1)
E
[
(1− u2j )ϕ2

+(cos(θ)uj + sin(θ)n−
1
2 gj)

]
As in the calculation for the diagonal term, we now again use the approximation that

√
nuj is

approximately marginally distributed like Z ∼ N (0, 1) and the positive homogoneity of ϕ+ to obtain

E
[
ϕ2
+(ui)ϕ

2
+(cos(θ)uj + sin(θ)n−

1
2 gj)

]
=

1

2(n− 1)

(
1

2n
−E

[
Z2ϕ2

+(αZ + λgj)
])(

1 +O

(
1

n

))
.

Renaming gj to W to match the notation of (23), we finally obtain

Cov
(
ϕ2
+(ui)

2, ϕ2
+(cos(θ)uj + sin(θ)n−

1
2 gj)

)
=E

[
ϕ2
+(ui)ϕ

2
+(cos(θ)uj + sin(θ)n−

1
2 gj)

]
− 1

4n2

(
1 +O

(
1

n

))
=

(
1

4n2(n− 1)
− 1

2n2(n− 1)
E
[
Z2ϕ2

+(cos(θ)Z + sin(θ)W )
])(

1 +O

(
1

n

))
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Summing the diagonal and off-diagonal terms, we find the total covariance is:

Cov

(
2 ‖ϕ+ (u)‖2 , 2

∥∥∥ϕ+

(
cos(θ)u+ sin(θ)n−

1
2 g
)∥∥∥2)

=4n× (Diagonal term contribution) + 4n(n− 1)× (Off Diagonal term contribution)

=

(
2J̄2(θ)− 1

n
+

1− 2E
[
Z2ϕ2

+(αZ + λW )
]

n

)(
1 +O

(
1

n

))

=

(
2J̄2(θ)− 2E

[
Z2ϕ2

+(αZ + λW )
]

n

)(
1 +O

(
1

n

))

Finally we notice the identity

2J̄2(θ)− 2E
[
Z2ϕ2

+(cos(θ)Z + sin(θ)W )
]

=4E
[
ϕ2
+(Z)ϕ2

+(cos(θ)Z + sin(θ)W )
]
− 2E

[
Z2ϕ2

+(cos(θ)Z + sin(θ)W )
]

=E [( 2ϕ2
+(Z)− Z2

)
2ϕ2

+(cos(θ)Z + sin(θ)W )
]

=E
[(
ϕ2
+(Z)− ϕ2

+(−Z)
)

2ϕ2
+(cos(θ)Z + sin(θ)W )

]
=2E

[
ϕ2
+(Z)ϕ2

+(cos(θ)Z + sin(θ)W )
]
− 2E

[
ϕ2
+(−Z)ϕ2

+(cos(θ)Z + sin(θ)W )
]

=2E
[
ϕ2
+(Z)ϕ2

+(cos(θ)Z + sin(θ)W )
]
− 2E

[
ϕ2
+(Z)ϕ2

+(− cos(θ)Z + sin(θ)W )
]

=J̄2(θ)− J̄2(π − θ),
which gives the claimed formula for the covariance.

Corollary 17. Assume Conjecture 5 is true. Then

Cov

(
2
∥∥ϕ2

+

(
ẑ`
)∥∥ , 2 ∥∥∥ϕ2

+

(
ẑ`
′
)∥∥∥2) =

J̄2
(
θ|`−`′|

)
− J̄2

(
π − θ|`−`′|

)
n

(
1 +O

(
1

n

))
, (25)

where θk is the angle such that θk = cos−1(αk), and the constant in the big O(·) notation is uniform
in `, `′.

Proof. This follows immediately from the approximation for the covariance in Conjecture 5 and
Lemma 16.

Remark 18. By the series expansion for arccos(x) = π
2 − x + O(x3) as x → 0, it follows that

J̄2(θk)− J̄2(π− θk) = 8αk/π+O
(
α2k
)

as k →∞. This exponential decay in k explains why the
total covariance correction Itotal remains O(d/n) even as as d→∞.

Lemma 19. Assume Conjecture 5 is true. Then

Cov (X`, X`′) = λ4
J̄2
(
θ|`−`′|

)
− J̄2

(
π − θ|`−`′|

)
n

(
1 +O

(
1

n

))
, (26)

where θk is the angle such that θk = cos−1(αk), and the constant in the big O(·) notation is uniform
in `, `′.

Proof. From the definition of X` from (22) as a sum of three terms, the covariance can be written as a
sum over pairwise combinations of the terms. The terms involving g`1, g

`′

1 are mean 0 and independent
from layer to layer, so these terms has no contribution to the covariance. We remain with

Cov (X`, X`′) = Cov

2λ2
∥∥ϕ2

+

(
ẑ`
)∥∥ ∥∥g`∥∥2

n
, 2λ2

∥∥∥ϕ2
+

(
ẑ`
′
)∥∥∥2

∥∥∥g`′∥∥∥2
n

 .

The result then follows since
∥∥g`∥∥2 = n, g` is independent of g`

′
, applying the approximation given

in Conjecture 5 and the result of Lemma 16.
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B.5 Central Limit Theorem

Lemma 20. We have the following asymptotics for the centered moments of X` −E[X`]:

E
[
(X` −E[X`])

3
]

= O

(
1

n2

)
,E
[
(X` −E[X`])

2m
]

= O

(
1

nm

)
for m ≥ 2 ,

where the constant in the big O(·) notation is uniform in `.

Proof. For convenience of notation, let c =
√

2
∥∥ϕ+(ẑ`)

∥∥. Conditionally on the value of the random

value c, X` =
∥∥∥α~e1 + cλn

1
2 g
∥∥∥2 = c2λ2

n

∥∥∥α√ncλ ~e1 + g
∥∥∥2 is a multiple of a non-central χ2

k

(
α2n
c2λ2

)
random variable. It is a basic fact about non-central chi squared random variables that if Y ∼ χ2

k(µ),
then

E
[
(Y −E[Y ])

3
]

= 8(3µ+ k)

Hence

E
[
(X` −E[X`])

3 |c
]

=

(
c2λ2

n

)3

8

(
3
α2n

c2λ2
+ n

)
=

24c4λ4α2 + 8c6λ6

n2

Using the fact that 0 ≤ c ≤
√

2 almost surely gives E
[
(X` −E[X`])

3
]

= O
(

1
n2

)
as desired. A

similar computation can be carried out to see the bound for the 2m-th central moment by using the
2m-th moment of a non-central χ2

n(µ) distribution. This can be seen using the formula for the m-th
cumulant: if Y ∼ χ2

k(µ), then Km = 2m−1(m− 1)!(mµ+ k), from which it follows by the formula
to convert from cumulants to central moments.

Lemma 21. Without loss of generality, assume that α2 + λ2 = 1. Let S =
∑d
`=1 lnX` then

E [S] = − d

2n
·
(
5λ4 + 4α2λ2

)
+ 2λ2

d∑
`=1

h` +O

(
d

n2

)
, (27)

Var [S] =
d

n
·
(
5λ4 + 4α2λ2

)
+ λ4

∑
1≤` 6=`′≤d

J̄2(θ|`′−`|)− J̄2(π − θ|`′−`|)
n

+O

(
d

n2

)
, (28)

where the constant in the big O(·) notation is uniform in d. Moreover, S is asymptotically Gaussian
in the infinite width and depth limit.

Proof. By Lemmas 7 and 10, we see that E[X`] = 1 + O( 1
n ) and Var[X`] = O( 1

n ). Moreover,
conditionally on

∥∥ϕ+(ẑ`)
∥∥, X` has a non-central χ2

n distribution Hence, by Chebyshev’s inequality,
we know that for any ε > 0, X`−E[X`]

E[X`]
= O( 1

n
1
2
−ε ) with probability at least 1 − O(nε). On this

event, we can hence take the Taylor series expansion of ln(x) around x = 1 to obtain the following

ln(X`) = ln (E [X`]) + ln

(
1 +

(
X` −E[X`]

E [X`]

))
= ln

(
E
[
X`
])

+

(
X` −E[X`]

E [X`]

)
− 1

2

(
X` −E[X`]

E [X`]

)2

+
1

3

(
X` −E[X`]

E [X`]

)3

− 1

4

(
X` −E[X`]

E [X`]

)4

+O

(
1

n
5
2−5ε

)
Using Lemmas 7, 12, 16, the bounds from Lemma 20, and the fact that ln(X`) has finite moments,
we can take the expectation and variance of this to obtain

E [ln(X`)] = 1 + 2λ2h` −
1

2

5λ4 + 4λ2α2

n
+O

(
1

n2

)
,

Var [ln(X`)] =
5λ4 + 4λ2α2

n
+O

(
1

n2

)
,

Cov (ln(X`), ln(X`′)) = λ4
J̄2
(
θ|`−`′|

)
− J̄2

(
π − θ|`−`′|

)
n

+O

(
1

n2

)
,
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from which the desired mean and variance formula for S follows.

The fact that S is asymptotically Gaussian follows by application of the Central Limit The-
orem for weakly dependent triangular arrays [42, Thm. 2.1] using the bounding sequence
λ4
(
J̄2(θr)− J̄2(π − θr)

)
. Note that the sequence ẑ0, ẑ1, ẑ2, . . . is a Markov chain, which sim-

plifies the verification of the covariance condition in this central limit theorem. The fact that the
sequence satisfies the Feller condition is also clear because of the independent Gaussian random
vectors that appear in the definition of X`.

Proof of Theorem 1. Recall that G = ln
∥∥z0∥∥2/n+

∑d
`=1X`. By the telescoping product (17), we

have that

ln

(∥∥zd∥∥2
n

)
= ln

(∥∥z0∥∥2
n

)
+

d∑
`=1

lnX` (29)

Also by Section 5, ln
‖z0‖2
n ∼ ln ‖x‖

2

nin
+ ln

χ2
n

n can be written in terms of a chi-squared distribution
with n degrees of freedom. By standard facts about χ2(n) random variables, we have the a central

limit theorem as n → ∞ namely ln
‖z0‖2
n → N

(
ln ‖x‖

2

nin
− 1

n .
2
n

)
. We also note that

∥∥z0∥∥ is

independent of X` for all `. By Lemma 21 the sum
∑d
`=1 lnX` converges to an independent

Gaussian random variable. The result follows from the fact that a sum of two independent Gaussians
is again Gaussian.

Proof of Theorem 4 . The proof is analogous to the proof of Theorem 1; the calculation for the
activation of the layers is simplified by the fact that which neurons activated in each layer are
uncorrelated by (10).

B.6 Input-Output Gradient for Balanced ResNets

Proposition 22. For any input x, the output of a Balanced ResNet can be written as

zout = M(x)x

where M(x) is an nin × nout matrix that depends on x and the random network weights. Moreover,
the marginal distribution of M(x) is statistically independent of x. Finally, the matrix M(x) has the
property that for almost every x, there is an open neighbourhood A(x) ⊂ Rn containing x so that
M(x) is constant on A(x).

Proof. First note that because the Gaussian weights are continuous random variables, the event that
any of the entries of z`i are exactly 0 is a probability 0 event. Hence, for almost every input x, it
makes sense to consider the derivative of the ReLU function ϕ′+ evaluated at the neuron values. By
writing the action of a ReLU function on a vector ϕ(z) as a matrix multiplication by a diagonal
vector of 1’s and 0’s as ϕ(z) = diag (ϕ′(z)) z, the update rule for ResNets can be written as matrix
multiplication, namely

z` = αz`−1 + λ

√
2

n
W `ϕs`

(
z`−1

)
(30)

= αz`−1 + λ

√
2

n
W `diag

(
ϕ′s`(z

`−1)
)
z`−1 (31)

=

(
αI + λ

√
2

n
W `diag

(
ϕ′s`(z

`−1)
))

z`−1 (32)

For the Balanced ResNet, the sign s` used is independent from layer to layer and neuron to neuron.
Therefore the derivative, ϕ′s` at any input is equally likely to be 0 or 1 independent of everything else
(i.e. no matter if the input zi is positive or negative, ϕ′s`(zi) = 1 exactly half the time, and ϕ′s`(zi) = 0
exactly half the time.) Hence, from (30), we see that the output zout is equal in distribution to

zout d=

√
1

n
W out

d∏
`=1

(
αI + λ

√
2

n
W `diag

(
B`i
))√ 1

nin
W 0x, (33)
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where B`i are fair {0, 1} Bernoulli random variables independent of the weights W `. Equation (33)
shows the marginal distribution of M(x) does not depend on x. Finally note that Bernoulli random
variables depend only on the sign of the intermediate neurons z` at the input x and the signs s`.
Therefore, if we find a neighbourhood A(x) of x such that none of the neurons change sign from
positive to negative within the region x, the matrix will remain constant. This is always possible as
long as none of z`i are exactly 0 since they are continuous functions of x. But z`i = 0 is a probability
zero event, so we can find such a neighbourhood A(x) for almost every x as desired.

Corollary 23. The derivative of zout with respect to any input xi has the distribution

∂

∂xi
zout d= M(x)ei

Proof. This follows immediately since M(x) is constant on the neighbourhood A(x).

Corollary 24. ∂
∂xi

zout has the distribution as the output zout at any input x with ‖x‖ = 1.

Proof. By the previous results, both are equal in distribution to Mu for any unit vector u, where M
is the distribution of the random matrix in (33).

C Experiments

Throughout the paper, the Monte Carlo simulations were computed on a single NVIDIA Titan-XP
GPU. The main tools used in the neural network simulations are the JAX library [44] (Apache 2.0
License) and the PyTorch library [45] (BSD 3-Clause License). Furthermore, the Python libraries
numpy [46] (BSD 3-Clause License), plotnine [47] (based on ggplot2 [48], GNU GPLv2 License),
and pandas [49] (BSD 3-Clause License) tremendously helpful. We used Python version 3.6.8 from
Anaconda 3 [50] (3-clause BSD License) and Jupyter notebook [51] (3-Clause BSD License).

C.1 Vanilla ResNet and Balanced ResNets: MNIST and CIFAR-10 Experiments
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(a) MNIST
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Figure 6: Fully connected Vanilla ResNet and Balanced ResNet accuracies on MNIST & CIFAR-10
using ADAM optimization [52] with learning rate 0.01, b1 = 0.9, b2 = 0.999, ε = 1e−8, and batch
size 128. Both networks use hidden layer sizes n = 1000, d = 30 and α = 1/

√
2, λ = 1

√
2

These experiments, displayed in Figure 6, investigate the difference between training performance
of the Vanilla ResNet from (1) and the Balanced ResNet defined in Section 2.1. This is beyond
the theory proven in our work which concerns statistical properties of the network on initialization.
Both of these architectures are fully-connected networks with skip connections between layers. We
observe that both architectures perform similarly in standard training regimes where the networks are
much wider than they are deep.
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(a) Convolutional ResNet18
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Figure 7: Pre-activation Convlutional ResNet18 and ResNet101 [54] and corresponding balanced
versions. Accuracies on CIFAR-10 are reportedwith learning rate 0.1, momentum 0.9, weight decay
5e−4, cosine annealing with T = 200, and batch size 128.

C.2 Convolutional ResNet CIFAR-10 Experiments

These experiments investigate how the Balanced ResNet architecture modification, namely randomly
flipping between ϕ+ and ϕ−, effects training for deep convolutional ResNets (We call these C-
ResNets here to distinguish from the fully connected ones studied in detail in the paper). Although
the theory in this paper only are proven for Vanilla ResNets (which are fully connected with skip
connections), we expect that the Balanced ResNet tweak does not negatively effect performance in
standard training regimes and may allow better initialization for very deep models.

For this experiment, we used the ResNet implementations from the GitHub repository by Liu et al.
[53] (MIT License). To create a Balanced Convolutional ResNet (Balanced C-ResNet), we modified
the class PreActBlock to add flipped ReLUs into the network channel-wise, thinking of channels
as the natural generalization of neurons for convolution neural networks. More specifically, we are
interested in an input tensor Y of dimension (b, c, h, w), where b is for batch size, c is for channel, h
is for height, and w is for width. Before feeding into a ReLU non-linearity, we will multiply Y by a
vector of iid random signs {sj}j∈[c], so that the ReLU output is

[ϕsj (Yi,j,k,l)]i,j,k,l = [ϕ+(sj Yi,j,k,l)]i,j,k,l . (34)

The experiment results are reported in Table 1 and Figure 7. Here, we demonstrate that using the
Balanced ResNet architecture does not reduce the performance of existing training regimes. For the
deeper ResNet101, the Balanced ResNet seems to perform slightly better early in training but finishes
0.2% worse at the end of training.

Note that even the deeper ResNet101 tested here is still relatively shallow compared to its “width”;
most of the layers are either 256 or 1024 channels by 8 × 8 neurons per channel which represent
many more neurons in each hidden layer than the depth of the network, 101. The possible advantage
of the Balanced ResNet idea is that it will enable the training architectures which are even deeper
compared to their width, which are currently not trainable or difficult to train due to initialization
issues. A detailed empirical study exploring this idea is needed to study how Balanced ResNets
perform beyond the theory proven in this paper.

C.3 Density Plot Calculations

In this section, we describe the calculations required for plotting Figure 1. Firstly, we need to estimate
the hypoactivation constant Cα,λ from Proposition 2 using Monte Carlo simulations. For the choice
of α = λ = 1/

√
2, we find the constant Cα,λ ≈ −0.876, which we use for estimating the mean. See

Figure 8 for further simulations with varying α, λ values, and Figure 9 for simulations demonstrating
these constants provide accurate prediction for mean and variance.
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Architecture Test Accuracy

Convolutional ResNet18 95.09%

Balanced C-ResNet18 95.08%

Convolutional ResNet101 94.93%

Balanced C-ResNet101 94.70%

Table 1: CIFAR-10 [55] experiment test accuracies with both pre-activation ResNets [54] and the
corresponding balanced versions. The ResNet18 architectures used a learning rate 0.05, and the
ResNet101 used a learning rate of 0.1. Both architectures used momentum 0.9, weight decay 5e−4,
cosine annealing with T = 200, and batch size 128.
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Figure 8: Hypoactivation constant Cα,λ from Proposition 2 vs. λ2. Here we fix α2 + λ2 = 1, and
n = d = 150.

Next, using the choice of ‖xin‖ = 1 and α2 + λ2 = 1, we can write

ln
∥∥zout

∥∥2 d
= − lnnin +G+ ln

∥∥∥~Z∥∥∥2 .
Here we observe that

∥∥∥~Z∥∥∥2 ∼ χ2(nout), and therefore we can compute the density of ln
∥∥∥~Z∥∥∥2 with

a coordinate change
1

2nout/2Γ(nout/2)
exp

(noutx
2

)
exp

(−ex
2

)
.

Finally, sinceG and ln
∥∥∥~Z∥∥∥2 are independent, we can recover the density of ln ‖zout‖2 via a numerical

convolution with a Gaussian density of mean EG− lnnin and variance Var(G).

To compute the density of the infinite width prediction, we first observe that in this limit zout ∼
N (0, σ2Inout). Therefore it’s sufficient to simply compute the variance.

To this goal, we follow the calculations of Hayou et al. [29] with the variance recursion formula
(slightly modified to include α)

Q` = α2Q`−1 + λ2
(
σ2
b +

σ2
w

2

(
1 +

f(C`)

C`

)
Q`−1

)
= Q`−1 ,

where we plugged in values of σb = 0, σw = 2, and C` = 1 and f(C`) = 0. To complete
the recursion, the initial Q0 = 1

nin
‖x‖2. This implies that zout ∼ N (0, 1

nin
Inout), and therefore
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‖zout‖2 ∼ 1
nin

χ2(nout), which implies ln ‖zout‖2 has density

1

2nout/2Γ(nout/2)
n
nout/2
in exp

(noutx
2

)
exp

(−ninex
2

)
.

C.4 Additional Monte Carlo Simulations

These additional Monte Carlo simulations provide further comparisons between the infinite depth-
and-width limit predictions and finite networks. See Figure 9.
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Figure 9: Mean and variance of G(n, d, α, λ) from Theorem 1 vs. λ2, where α2 + λ2 = 1 and
n = d = 150. The solid lines indicate our prediction using the infinite-depth-and-width limit. This
shows the excess variance appearing in Vanilla vs Balanced ResNets. Also note that fully connected
networks with no skip connections, corresponding to λ = 1, have the highest variance for all balanced
ResNets.
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